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Appearance of gravitational waves is possible in a single-phase liquid near the critical point for the 
gas-liquid transition as a consequence of a considerable density gradient. The applicability of the 
existing theory of gravitational waves to such a medium is justified. The problem is solved of waves 
in a liquid with an exactly critical temperature. It is shown that the velocity of propagation of gravi
tational waves is determined by the derivative (a 3p/ap 3 ) c while the limiting frequency (the "Vaislini. 
frequency") is determined by the derivative (a1>fapaT)c. The subscript "c" means that the deriva
tives are taken at the critical point. 

1. As is well known, the compressibility of a medium 
increases greatly near the critical point for the vapor
liquid transition. A consequence of this is the appreci
able vertical density gradient in the liquid[lJ. It is 
therefore natural to expect even in a single-phase sys
tem the appearance of gravitational waves brought 
about by the deviation of the density from its hydro
static equilibrium distribution. 

Gravitational waves in an inhomogeneous liquid are 
described by a well known theory£2-4 1. The main as
sumptions of this theory are: absence of viscosity, 
smallness of oscillations, incompressibility of the 
liquid. Under these conditions the gravitational waves 
are described by the system of equations 

iJV V ' ' iJp' VV) 0 d V 0 po at=- p + p g, 6t +( po = ' iv = . (1) 

Here V is the velocity of the liquid, Po( r) is its equili
brium density (p 0 is the solution of the hydrostatic 
equation (apjap )TV Po= Pog), p' = P -Po, p' = P - Po 
are respectively the deviations of the density and of the 
pressure from their equilibrium values, g is the ac
celeration of free fall. 

If the positive z axis is directed vertically upwards 
the propagation of a horizontal monochromatic wave 
along the x axis will be given, for example, for the 
vertical component of the velocity V z by the expres
sion 

V.(z, x, t) = V(z) exp [i(rot- kx) ]. 

The amplitude of the wave V( z) then satisfies the 
equation[2l 

d•V +_!_ dp0 dV -k•(i+..!_~ dpo)v=O. (2 ) 
dz2 po dz dz ro2 Po dz 

On the rigid surfaces bounding the volume of the liquid 
the normal component of velocity must vanish. 

Equation (2) can be solved for a few special cases of 
the dependence of p0 (z) on z. In[3l, a quite general 
distribution of density (Fig. 1) is investigated which on 
the whole reflects the real dependence of p 0 ( z) on z 
for a compressible liquid in a gravitational field. 

As can be seen from Fig. 1, the liquid has a layer 
(of thickness a) of considerable variation of density 
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outside of which the density rapidly approaches its 
asymptotic values P1 and P2· 

In[3 l, the case of an unbounded medium was con
sidered. It was shown that gravitational waves are 
localized within the layer in which density varies sig
nificantly. The amplitude of the waves outside this 
layer falls off exponentially to zero over a distance of 
the order of a wavelength. 

In contrast to the well investigated case of two 
liquids with different, but constant densities (this case 
is obviously the limiting case a = 0) an infinite number 
of wave modes exists in a liquid with the density dis
tribution described above. In such a case the zero 
mode (the velocity amplitude V(z) has no zeros) cor
responds approximately to vibration as a whole of the 
layer in which the density varies significantly. In the 
limiting case of zero thickness of this layer this mode 
describes the oscillation of the surface separating the 
two liquids. The remaining modes correspond to oscil
lations of a number of horizontal layers into which the 
whole layer of thickness a can be divided. 

Moreover, it has turned out that the frequencies of 
all the modes are smaller than a certain limiting fre
quency w 0 (the Vaisalli. frequency) related to the maxi
mum logarithmic gradient of the density of the medium: 

1 1. clpo I roo2 = gmax -- . 
Po dz 

The dispersion curves wn(k) are shown in Fig. 2. 
We now apply these results to a medium the tem

perature of which differs from the critical temperature 
by a small amount AT = T - Tc > 0, while at z = 0 the 
critical density Pc is attained. Then the hydrostatic 
equation and the expansion of the equation state near 
the critical point(sJ yield: 
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g2 Jlg2 1 o--2 1 
(fJ2p/{)p&T)cAT ~ RTcAT/Tc ~ AT/Tc sec2 ' 

where 11. is the gram-molecular weight, R is the gas 
constant. For AT/Tc ~ 10-4 , w0 ~ 10 sec-1 • 

2. As has been shown above, the theory under con
sideration utilizes the approximation of an incompres
sible liquid. The possibility of such an approximation 
near the critical point for the vapor-liquid transition 
requires a special investigation. In taking into account 
the compressibility of the medium on the assumption of 
the adiabatic nature of the oscillations the second equa
tion of the system (1) must be replaced by the equation 

dp 1 dp 
dt= eli' dt' 

where cs is the adiabatic velocity of sound in the 
medium. Taking the hydrostatic equation into account 
this equation may be rewritten in the following manner: 

iip' 1 1 &p' 1 
-at --pogV.=--- c·2pogV., (3) 

eT2 es2 &t s· 

where CT is the isothermal sound velocity. 
It can be easily seen that when the well known con

dition for the incompressibility of a homogeneous liquid 

«~I k.,.g; cs, 

is satisfied, it is possible to neglect the first term on 
the right hand side of (3) in comparison with its left 
hand side. Indeed, the left hand side in virtue of the 
equation of continuity is p 0 divV and therefore contains 
a term of the order p 0 kVx. But the quantity ap'/at as 
a result of the equation of motion is of order p 0w2Vx/k 
and, consequently, the ratio of the terms under consid
eration is of order w2/k2c~. The ratio of the second 
term on the right hand side of (3) to the second term on 
the left hand side is ct / c~. As is well known, this 
ratio near the critical point is the smaller compared 
to unity the nearer the medium is to critical conditions. 
Thus, when the conditions 

w I k .,.g; es, eT21 ell- .,.g; 1, 

are satisfied Eq. (3) has the form: 
dp &p 
;_u==a~+(VV)p=O. 

Thus, the applicability of the approximation of an in
compressible liquid near the critical point is deter
mined by the smallness of the adiabatic compressibility 
compared with the isothermal one. 

We now consider the possibility of neglecting the 
viscosity. The viscous term A V in the Navier-Stokes 
equation in the region in which the waves are localized 
is obviously given in order of magnitude by 
v(k2 + n2/a2 )V (n is the number of the mode). Com
paring this term with the av/at term in the same equa
tion we obtain the condition for being able to neglect 
the viscosity: 

Near the critical conditions of interest to us the vis
cosity of water is of the order of 10-3 cm2/sec. Setting 
w ~ 10 sec-1 and a~ 1 em we obtain A~ 1/k >> 10-2 

em, n « 100. 
3. We will now consider the case of exactly critical 

temperature of the medium and we will assume that at 

z = 0 the critical density is attained. In this case the 
Vaisli.Ui frequency becomes infinite. In a real experi
ment, of course, such conditions are never realized. 
The Vaisala frequency always remains finite. However, 
if the frequencies of the gravitational waves under con
sideration are much smaller than the Vaisli.Ui frequency, 
this frequency in such a case can be regarded as infin
ite, and this corresponds to the ideal conditions under 
consideration. 

We solve the problem in a bounded layer of liquid of 
thickness 2d. In equation (2) we go over to a new inde
pendent variable p = p 0 ( z ). Then taking into account 
the hydrostatic equation 

1 dp g 
--= 
p dz (&pf&p)T 

we obtain 
d2V -1- [ ~ _ (&2p(&p2)T] dV -1- k•[ (&p/&p )T _ (&pf&p)T2 ] V = O. 
dp• p (&p/3p)T dp p•w• p•g• 

We shall assume that the layer is sufficiently thin so 
that the term 2/p can be neglected in comparison with 
the term 

(&2p/Dp 2)T ~ _2_ 
(&pf&p)T p -pc 

(utilizing an expansion in the neighborhood of the criti
cal point), and p 2 in the term with V can be treated as 
a constant equal to p~. Moreover, we assume that w is 
sufficiently low so that we can neglect the term involv
ing (apjap)T compared with the term involving 
(apjap}T. For this it is necessary that 

10-3 1 2---" . g2 
w -<;; mm (&pf&p)T 

where Ap is the difference between the densities at the 
boundaries of the layer. According to reference£11 we 
have 

[ 6gd ]''• 
Ap = Pc2 (&3p/i!p3)c . 

(4) 

Then the equation assumes the form 

d2V 2 dV k• ( iJ3p) -----+--- (p-p0 )2V=0. 
d(f- p- Pc dp 2pc2w2 &p3 c 

Setting V =t 314 l/l(t), where t = A(P - Pc)2/p~, and 
A2 = (k2p~/2w2}(8 3p/8p 3)c we obtain a Bessel equation 
for the function l/1 : 

1P"++1P'+[ 1-1'1/l¢=0. 

From this we obtain two types of solutions for 
V(p - Pc ), an even and an odd one. The general solu
tion must satisfy the condition that V should vanish 
over the boundaries of the liquid, i.e. 

{ A (p- Pc)"( h,[f,(p -pc)2!2pc•] ) 
(p ·-pc) /, 

+ B( L•t. [f, (p- P~y2pc2] )} = O. 
(p - Pc) 1' o~o 0±"P 

Here J 3/4 and J - % are Bessel functions of the first 
kind, while the expressions in parentheses are even 
functions of p - Pc· From this we obtain that either 
A"' 0, then B = 0 and J 3;4 (AAp 2/2p~) = 0; or B"' 0, 
then A =0 and J_3/4 (AAp 2/2p~) = 0. From this we ob
tain the dispersion law 
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Here ~n are zeros of the Bessel function J+3/4(~n) = 0. 
The square of the velocity of propagation of the wave 

u2 is equal, after (4) has been taken into account, to: 

( !J. p )4( iflp) p02 1 [ 6gd ]''' 
u• = Pc iJp3 c8sn2 = 81;,-;- Pc'1•(iJ3p/iJp 3)c'1• • 

Its maximum value (corresponding to the minimum 
value of ~n) is equal to: 

• _ r oga ]''· 
Umax- 0,11 l ,1 ("a jiJ ') , 

Pc ' 0 P P c 

where we have taken into account the fact that the lowest 
zero of the function J-3/4 is 1.06[61 • In order of magni
tude we have: 

2 (tJ..p\'RTc 
Umax,..., --} , 

Pc l.t 

or, if we assume that t!.p/Pc"' 10-2, then umax 
"' 10 em/sec. The adiabatic velocity of sound, at least 
in the practically accessible critical region, is much 
greater than this velocity of propagation of the waves. 
Thus, the approximation of an incompressible liquid is 
justified and, consequently, the applicability of the re
sults obtained is also justified in the neighborhood of 
the critical point. 

It should be noted that the results of experiments 
on the determination of the Vaislila frequency and of 

the velocity of propagation of gravitational waves in a 
liquid near its critical point could yield values of the 
quantities (a'\JjapaT)c and (a 3pjap3)c which are im
portant for the theory of the critical state. 

The author expresses his indebtedness to his scien
tific supervisor Academician M.A. Leontovich for 
suggesting this topic and for continued interest in his 
work. 
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