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We consider the limiting current of a relativistic electron beam in a drift space. It is shown that for 
an uncompensated beam the limiting current determined by the space charge increases linearly with 
electron energy in the relativistic limit. In a compensated beam the limiting current is determined 
from the condition for the onset of an electrostatic instability. In this case, as the electron energy in
creases in the relativistic region the limiting currents increase with energy as E3 ; this result indicates 
the possibility of obtaining high currents in compensated relativistic electron beams. 

J. In recent years there has been considerable interest 
in obtaining high-current electron beams in connection 
with the development of high-power electronic devices, 
the construction of intense sources of x-ray and micro
wave radiation, and in connection with the development 
of accelerator technology. In the case of nonrelativistic 
beams the question of limiting currents has been dis
cussed at length in the literature (cf. [1 ' 21 and the biblio
graphy given there). However, this question has not been 
fully resolved at the present time. As far as limiting 
currents in relativistic electron beams are concerned, 
we find that this problem has been investigated in [3 1 for 
the case of an infinite stabilized beam in an infinite 
magnetic field. It will be shown below that in the rela
tivistic energy region it is possible to obtain signifi
cantly higher currents in bounded compensated electron 
beams than in uncompensated beams. 

Below we investigate the limiting current in an elec
tron beam of radius ro which passes along the axis of a 
waveguide of radius R whose longitudinal dimensions 
are much larger than its transverse dimensions 
(L » R). In order to inhibit the expansion of the beam 
in the radial direction the system is placed in a strong 
longitudinal magnetic field, this field satisfying the con
dition 

(1} 

where n is the electron density of the beam in the labor
atory coordinate system while u is the electron velocity. 
It is further assumed that the self-magnetic field of the 
beam is small compared with B0 • This assumption 
guarantees the stability of the compensated beam with 
respect to compression (pinch effect). Here we note 
that the condition given in (1) also allows us to limit our 
analysis to the case of electrostatic perturbations in the 
investigation of beam stability. 

In the case of an uncompensated nonrelativistic elec
tron beam the limiting current that can be passed 
through the system considered here is given by the 
familiar relation [41 
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where e is the electron charge and m is the rest mass. 
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It is not difficult to generalize this expression to the 
ultrarelativistic case, in which the electron energy 
E » n'lc2• We find 

BC 1 
lo=-------. 

e 1+2In(R/ro) 
(3) 

When E ~ mc2 the expression for the limiting current 
becomes extremely complicated. It is evident from Eqs. 
(2} and (3} that in the region of nonrelativistic electron 
energies Io ~ E312 while in the region of relativistic en
ergies the dependence of the limiting current on E is 
weaker: specifically, we find Io ~ E. This feature im
poses a limitation on the limiting current in "vacuum" 
systems for relativistic beam energies. 

It should be noted that Eqs. (2) and (3) as well as all 
of the formulas obtained below for limiting currents 
refer to the stationary case and hence do not take ac
count of the work that goes into the formation of the 
self-magnetic field of the current. This work, particu
larly in the region of high currents and relativistic en
ergies, can exceed significantly the kinetic energy of the 
electrons in the beam; however, it is consumed only in 
the transient process of establishing the current in the 
system. In the stationary regime the energy of the mag
netic field associated with the current is constant and 
the work associated with it is not considered. 

2. Since the limiting current that can pass through a 
vacuum system is due to the space charge of the beam, 
one expects that this limitation on the current will not 
appear in systems in which the beam charge is compen
sated. This possibility was first indicated by Pierce. [SJ 

However, Pierce directed attention to the fact that 
compensated electron beams are subject to instabilities 
that can limit the current and determined the instability 
limit for a nonrelativistic electron beam. 

The stability of a compensated relativistic electron 
beam in a waveguide is investigated below and the limit
ing current that can pass through such a system is de
termined from the instability limit. Assuming that the 
electron beam is uniform along the axis of the wave
guide, we can write the potential for the perturbed elec-

tric field in the form ~ = ~(r}ei(-wt + lcp + kzz) where l 
and kz are the azimuthal and longitudinal wave numbers. 
In this case the equation for the electrostatic oscilla
tions of the field is given by 

( wLi• ) all> a ( liJLi• ) 
1-~ MD+a;:-a;: 1-----;2 



LIMITING CURRENTS IN RELATIVISTIC ELECTRON BEAMS 175 

OJLe2 (1- ~2)'1• l {) [ OIL.. 1 (4} + k,•«D--$- = 0, 
(ro- k,u) 2 r or Q.(ro- k,u) 

where {:3 = u/c, WLe and WLi are the plasma frequencies 
of the electrons and ions while ne and ni are the 
Larmor frequencies in the laboratory coordinate sys
tem. In writing this equation we have neglected the 
effect of the external magnetic field on the ion motion 
(w > ni) and have also taken account of the condition 
in (1). 

Equation (4) must be supplemented by boundary con
ditions. At r = r 0 these conditions are obtained by 
integrating the equation itself over a narrow layer close 
to the surface of the beam. The conditions assume the 
form 

At the surface of the waveguide, where r = R, 

IDJ,·~R = 0. 

(5) 

(6) 

Solving Eq. (4) with the boundary conditions (5) and (6} 
under the assumption that the beam is uniform for 
r < r 0 , we obtain the following relation 

( filL;•) 1 dlz(iak,ro) = ~-~~~_; ___ /z, (7) 
1 - - 01 .- ~,,..., (,..,ia--:k:-,~-.,--) · ~"""'"a"""ro--'- ro Q. ( ro - k,u) 

where 

0JLe2(1- ~2)'''( OlLj2 )-1 
a2 = 1- 1--- , 

( ro - k,u) 2 ,ro• 

I 1 (k,R)dK1(k,r0)/dr0 - K 1(k,R)di1(k,r0) /dro fz = '-~ ----· -~- ···--
I,(k,ro)K,(k,R)- I,(k,R)Kz(k,ro) 

and J z, Iz and Kz are Bessel functions. 
The relation in (7) for an unbounded waveguide repre

sents the dispersion equation that determines w = w (kz) 
in which the quantity kz is assumed to be a real quan
tity. However, if the waveguide is bounded then (7} is 
to be regarded as a characteristic equation for deter
mining kz which, generally speaking, can be complex. 

In this case <I> = :E Cn exp {ikznZ} where the kzn are the 
n 

roots of the characteristic equation (7). In order to ob
tain the dispersion equation this solution must be substi
tuted in the boundary conditions (at the ends of the 
waveguide}; the number of boundary conditions must 
correspond to the number of roots kzn· These boundary 
conditions will be written below. 

3. Proceeding to the analysis of (7) we note first of 
all that when r 0 = R, that is to say, when the beam fills 
the waveguide completely, fz- oo and Eq. (7) assumes 
the form 

(8) 

where the IJ.n l are the roots of the Bessel function 
J z(Mnz> (aside from IJ.nl = 0). For an unbounded wave
guide Eq. (8) generalizes the well-known equation of 
Buneman[6 J to the case of a relativistic electron beam. 
For a bounded waveguide Eq. (8) defines four roots kzn; 
hence, to determine the dispersion equation it is neces
sary to satisfy four boundary conditions at the ends of 
the waveguide, i.e., at z = 0 and z = L. If the ends of the 
waveguide are metal then obviously 

<llJz~o, L = 0. (9) 

As the other two boundary conditions we make use of the 
conditions given by Pierce:[sJ 

(10) 

where vz1 and n1 are the perturbations in the velocity 
and density of beam electrons due to the waves. 

In what follows we will be interested in long-wave 
perturbations for which kz ~ 1/L. It is precisely these 
perturbations that determine the limiting current in the 
system. For these perturbations Eq. (8) reduces to a 
quadratic equation for which 

k _ ---:-:,.----,=-:;--:-c ± !lniOl (ll) 
zl, 2 - r 0w Le(1- ~2 )''• (1- OJLi2/ro2) 'f, ± U!lnl. 

The boundary conditions (9) then reduce to the following 
dispersion equation for the waves: 

OJ roOJLe(1- ~)'I• ro2roL."(1- fl2 )'" 

k,u U!lnz(1- 0JLJ2/w2)'1• u 2!lni2(1- rou2/ro2) 
-1, (12) 

where 

k, = l"lS I L, s = 1, 2, 3, ... 

It should be noted that in solving Eq. (8) for the long
wave perturbations we have retained only two roots 
kz . The other two roots are negligibly small when 

1,2 

r~/L2 « 1. In this case the conditions in (10) are satis
fied automatically if w « kznU ~ ksu· It is easy to show 
from the dispersion equation (12) that the latter inequal
ity is satisfied if 

6,= 2m (1- {32)-'"~ ~1. ( !l 2 )~ 
M k."ro2 

(13) 

In this case we have oscillations with frequency 
w = ksuos. The minimum current for which the insta
bility arises in the system (this will be called the criti
cal current) corresponds to the excitation of the funda
mental mode IJ.oo = 2.4, k1 = 7T/L and is given by the ex-
pression 

mu3 (2,4)2 
I cr = --,----,---~.,.-

4e(1- (3 2)''• 1 + 3/261 
(14) 

For the case of a nonrelativistic beam with infinitely 
heavy ions ( o 1- 0) Eq. (14) coincides with the familiar 
expression for the limiting current given by Pierce. [sJ 
In this limit the critical current (14) is approximately 
6 times larger than the critical current for an uncom
pensated beam (2) for r 0 ~ R. The situation is different 
in the region of relativistic beam energies. From a 
comparison of Eqs. (3) and (14) we see that when ro ~ R, 
for ultrarelativistic energies (Icr/Io) ~ ( E/mc2) 2 , that is 
to say, the critical current in the uncompensated beam 
can be much greater than the current transmitted 
through a vacuum system. 

4. The analysis given above not only applies in the 
case in which the beam fills the waveguide completely, 
but also applies when there is a gap between the beam 
and the metal wall, provided the following condition is 
satisfied: 

rofz / !lnl > 1. (15) 
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If we assume that for the longwave perturbations (kzR 
~ 1) l 1 

f _ r0 In (R/ro) 
1 - l 1 +(r0/R) 21 

;:,- 1-(ro/R)2l 

l=O 
(16) 

then, in order for (14) to be valid, in accordance with 
(15) we require that 2.4ln (R/ro) ~ 1. 

If the gap is large, so that the inverse inequality to 
(15) is satisfied, then the critical current is determined 
by excitation of waves that have long wavelengths in the 
radial direction, for which we have the condition akzro 
~ 1. 11 As a result, from Eq. (4) we find 

(17) 

For axially symmetric perturbations ( l = 0) in the 
region w < kzu Eq. (17) yields two roots: 

Ul r 2 WLl(1-~2 )'/•)'{, 
kzt 2 a,:±- --o~·~-- • 

' WLi ro2ln (R/r0) u2 
(18) 

The boundary conditions (9) lead to the following disper
sion equation (we note that the condition in (10) is satis
fied automatically in this case): 

Whence we find the critical current for excitation of 
axially symmetric modes for R > ro: 

(19) 

mu3 2 
lcr = (20) 

4e(1- P2)'1• ln(R/ro) 

Taking account of terms ~w/kzu in this expression 
leads to a factor that is approximately equal to unity: 
[1 + (m/M)l/\1- i32rli2J-1. 

For axially asymmetric perturbations Eq. (17) leads 
to a quadratic equation (for modes with kzro < 1) in kz, 
the roots being given by 

Under these conditions the boundary conditions (9) lead 
to the dispersion equation b = ks which, in the limit 
w < ksu [(for these waves the condition in (10) is again 
satisfied automatically] , is of the form 

(22) 

1 l Actually for shortwave oscillations, in which akzr 0 ~ I, to a high 
degree of accuracy the roots of Eq. ( 4) coincide with the roots of the 
equation li (iakzr 0 ) = 0. In this case, the analysis of the dispersion equa
tion is similar to the one above and yields a limiting current larger than 
that in (14 ). 

Thus, we find the current required for excitation of 
modes for which l.., 0: 

I=~~+ 1) (t! + ul(l+ 1)L ·)-t. 
e(1- p2)''• nr02Q.(1- p2)'h 

If the following inequality is satisfied (for l .., 0) 

(23) 

1 + ul(l + f)L < 2l(l + 1)ln R , (24) 
nro20e ( 1 - 112}''• ro 

then the critical current corresponds to the excitation 
of a mode with l = 0 and is determined by Eq. (20). In 
this case, in the region of nonrelativistic energies this 
current is six times larger than the current (2) that can 
be transmitted through a vacuum system. For relativis
tic energies, however, the ratio of the current in (20) to 
the vacuum current (3) is Icr/Io ,.... (e/mc2)2 and increa
ses with electron energy. The situation is changed when 
the inequality inverse to (24) is satisfied in which case 
the critical current is given by (23) and corresponds to 
excitation of modes for which l .., 0. As is evident from 
(23), the critical current in the system exhibits a satura
tion with increasing electron energy: 

mc2 nr02Qe 
/Rp-+-·--. 

e L 
(25) 

Thus, the maximum possible currents can be achieved 
in systems in which (24) is satisfied, in which case (20) 
holds. Under these conditions the critical currents in 
the relativistic energy range are a factor (e/mc2)2 times 
greater than the limiting current that can be transmitted 
through a vacuum system. For example, with E "'" 5 MeV 
and R/r 0 = 10, according to (3) the vacuum current is 
Io ,.... 3 x 104 A whereas the critical current given by Eq. 
(20) is of the order of 3 x 106 A. It should be noted, 
however, that for these electron energies the inequality 
in (24) can only be satisfied in very high magnetic fields. 
Thus, if L ,.... 102 em and ro,.... 1 em the required fields 
are given by B0 ~ 107 Oe and can only be achieved in 
pulsed systems. 

In conclusion, the authors wish to thank v. P. Silin 
for discussion of the results and for valuable comments. 
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