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Possible changes in the nature of the decay threshold of quasiparticles in liquid He4 due to increasing 
pressure are investigated. It is shown that when kc > 2ko the energy spectrum begins to bend above 
2~. Pressure-induced decay in the optical phonon spectrum of the crystal is also considered. 

1. INTRODUCTION 

PITAEVSKill11 has shown that the energy spectrum of 
elementary excitations of the Bose type has singulari­
ties at the points of the threshold of the decay of the ex­
citations. It has turned out that there exist different 
types of thresholds, depending on the properties of the 
quasiparticles produced in the decay. At a given pres­
sure, of course, one of the threshold types is realized. 
However, if the pressure is varied, then one type of 
threshold may go over, at a certain critical pressure, 
into another type. The threshold may also disappear 
completely. The present paper is devoted to an investi­
gation of the properties of the spectrum at pressures 
close to critical. 

In the second section we investigate the possible 
change of the character of the decay threshold in liquid 
He4, and in the third we study the case of the appear­
ance of a decay threshold under pressure in the optical 
phonon spectrum of a crystal. 

2. THRESHOLD PHENOMENA IN LIQUID He4 

The experimental data l2J on the scattering of neu­
trons indicate that, actually, in liquid He4 at normal 
pressure, there is probably realized a threshold for the 
decay of the quasiparticle into two rotons which are 
emitted at a certain angle to each other. The momentum 
and energy of the quasiparticle at the threshold point 
are kc < 2ko and ~c = 2~, while the momenta of the 
rotons are equal to ko and the dispersion law near this 
point is given by 

e(k)=2~-ae1q:{-·ke~k}' (1) 

where a > 0 and {3 > 0 are certain constants, while the 
constants ko and ~ are determined by the form of the 
roton spectrum: 

1 
e(k)=~+ 21l(k-ko)2, k=jkj. 

The spectrum curve terminates at the threshold point. 
Further experiments [3 1 have shown, however, that at 
increased pressure the spectrum curve possibly rises 
above the value ~ = 2~. This can occur only if the 
threshold momentum kc becomes larger than k0 with 
increasing pressure. The pressure Po at which kc = 2k0 

is the critical pressure. When P > P 0 the quasiparticle 
will decay into two rotons with parallel momenta. 

In this section we investigate the properties of the 
spectrum at kc Rl 2ko and P Rl Po. The elementary-exci­
tation spectrum is determined by the poles of the 
Green's function. The Dyson equation for the Green's 
function G and the equation for the total vertex r are lll 

d'q 
G-•(k)- G0-•(k)= i ~ f 0 (k; q,k- q)G(q)G(k- q) r(k; q,k- q)-(2n)" 

f(k; q,k- q)- fo(k;, q, k- q)= i ~ f(k; q1, k- q1)G(qt)G(k- q1) 

d<qt 
Xy(q1,k-q.;q,k-q) (2n)•, (2) 

where Go is the free Green's function, ro is the bare 
vertex part, y is the irreducible four-particle vertex 
parti>, and k = {k, ~} and q = {q, w} are the four­
momenta. In the calculation of the Green's function 
near the threshold, greatest interest attaches to the non­
regular terms, which occur in the case of the singular 
integration in (2). In the case of the threshold connec­
ted with the decay into two rotons, such a singular in­
tegral is UJ 

r d3q 
l(k)= J e(q)+e(jk-qi)-e' 

In the arguments of the functions, k will denote 
{k, E}, and in all other cases it will denote lkl. The 
integration (3) is carried out in the region lq- qc I 
<< k0 , where qc is the threshold momentum of one of 

(3) 

the rotons. The singularity in the integral (3) is connec­
ted with the fact that the denominator of the integrand 
vanishes at the threshold point we have k = kc• q = qc, 
and E = Ec: 

where qc, kc- qc, and e(qc), e(lkc- qeD are the mo­
menta and the energies of the rotons produced in the 
decay. 

We shall calculate (3) assuming lk- 2kol « ko. For 
convenience in the calculation, we shall use the following 
devicel41 • We determine the roton spectrum accurate to 
terms of fourth order in k- k0, so that accurate to these 
terms we can write 

(k- ko)2 

1>-y(q" k- q 1; q, k- q) is the set of all those three-particle dia­
grams which cannot be divided between the points q" k- q" and q, k 
- q into two parts joined only by one or two lines. 
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We then have in place of (3) 

r{ (q•-ko•)• (lk-qj•-ko•)•}-t 3 (4) 
/(k)= J 2~-e+ 8ko2fl + 8ko2fl dq. 

Now the integration in (4) can be extended to infinity, 
since the integral converges and the main contribution 
is made by the region of interest to us. Let us make 
the change of variable 

u = (2kol'-;i)-'"(q- tf.k), 

and then 

{ [ 1 ]• (ku)• }-1 
J(k)c:/.> ~ 2~-e+ u2 +--- (k2~W) +---- d3u 

Bko l' fl 2ko l' fl 
(the symbol ro denotes equality apart from a regular 
coefficient and a regular addition). 

As the result of the integrations we obtain the singu­
lar term 

where 

l'2~ - e + 82 + 8 J(k) <:/.)In--'----'-------'-
a 

1 1 
8=---- (k2 -4ko2)::::::--:=(k-2k0). 

Bkol'fl 2l'fl 

The corresponding singular term in the Green's func­
tion is 

(5) 

[ l'26.-e+82 +8 J-t G-'(k)c:/.) In , 
at 

at >0. (6) 

The threshold is characterized by the presence of 
a branch point in the Green's function at k = kc and 
E = Ec· It is seen from (6) that two types of branch point 
are possible, and consequently two cases of threshold. 

1. s < 0, kc < 2ko, Ec = 2t.. In this case there is a 
logarithmic branch point, and the threshold is connected 
with the decay of the excitation into two rotons with 
momenta ko, emitted at an angle(} = 2v'(2ko- kc)/ko 
relative to each other. 

2. s > 0, kc > 2ko, Ec = 2t. + (kc- 2ko)2/4J.i.. In this 
case there is a root branch point, and the threshold is 
connected with the decay of the excitation into two rotons 
emitted parallel to each other, with momenta qc = kc/2. 

Let us see how kc varies when the pressure changes 
in this region. Assume that at a certain pressure Po 
we have kc(Po) = 2k0(Po). We obtain the total Green's 
function at kc = 2k0 and Ec = 2t. by adding to the irregu­
lar term the regular ones; recognizing also that 
G-1(2ko, 2t.) = 0, we have 

[ ( l'2~-e+8"+8 )-t J 
G-t(k)=A-' p In at -(k-2ko) , (7) 

where a 1 > 0 and f3 > 0 are certain constants. 
To determine the dependence of kc and Ec on the 

pressure, we assume that the pressure decreases by 
t.P, and then kc and Ec also change. We expand in (7) 
accurate to terms of first order in t.P = P - Po, t.kc 
= kc - 2ko, t.Ec = Ec = 2t.. It is assumed here that all 
the coefficients are regular functions of the pressure. 

At the new threshold point we have 
G-t(kc)= 

(8) 

-A-•(p(I l'-Aec+(Akc) 2/4fl+Akc/2"J'-;-)-t ] 
- n at -Akc+ "J..~P =0. 

An investigation of this equation shows that the following 
solutions are possible. 

1. A.t.P < 0; in this case 

8c = 2<1\, Akc = 'J..~P < 0. 

2. A.t.P > 0; in this case 

8c = 26. + (Mc) 2 / 4fl, Akc > 0 

and is determined from the equation 

(9) 

[ Akc ]-1 p In--_ -Ak.+MP=O. (10) 
2atl'JL 

This equation has a solution at any arbitrarily small 
A.t.P > 0. 

Let us determine the form of the spectrum near the 
threshold in both cases. 

1. kc < 2k0 • In this case the Green's function and 
E(k) near the threshold are given by 

[ ( l'2A - e + s" + 8 )-' ] 
G-'(k)=A-t ~ In at -(k-kc) ' (11) 

{ p }( 2ko- kc { P }) e(k)=2~-atexp ---- l' +atexp --k k (12) 
k.-k lA .-

or, accurate to exponentially small terms, 

e(k)= 2A-d(2k0 - k)exp{---P-} 
k.-k 

k < kc < 2ko. (13) 

We note that in (13), unlike in (1), the pre-exponential 
coefficient depends essentially on k. 

2. Analogously, when kc > 2ko, we have 

[ ( l'2A - e + 82 + s )-' ( 8 )-• l G-t(k)=A-t pIn -p In-;- -(k-k.)J 
at (14) 

and the spectrum is given by 

(15) 

where 

r= p /[ (k.-k)-P(.In k-2ko )-t]. (16) 
2atl'fl 

kc- k;:;,.- p (In k ~2ko r' 
i.e., whelt k ~ 2k0, the spectrum, as expected, goes over 
into (12) and has an exponential character. When 

k.-k..;:;-p(In k~2ko r. 
i.e., when k ~ kc, it assumes a power-law form 

e(k)= 26.+ :fl (k-2ko) 2• (17) 

In this region, the spectrum bends above 2t.. 
In both cases the spectrum terminates at the thres­

hold point. It is not clear at present, however, whether 
kc actually increases with increasing pressure and 
whether the pressure Po is reached before the helium 
solidifies. 

3. THRESHOLD PHENOMENA IN CRYSTALS 

In this part of the paper we consider the dependence 
of the spectrum of the vibrational excitations of the 
crystal on the pressure near threshold. Just as in the 
first part, we shall consider only the threshold of decay 
into two excitations. However, unlike in liquid He\ in a 
crystal the decay-causing interaction between the quasi­
particles is weak, and therefore the corresponding in­
vestigation can be carried out more completely. The 
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three-particle interaction of interest to us is connected 
with anharmonicity and is described in the Hamiltonian 
by the following term: 

Htnt = ~~1.-eo'""(k:-:)-e-,(,_q,...)e-z""(k---q')aq+at-qak + c.c., (18) 
l'V k, q . . 

where y ~ (pc2)112 is the interaction constant, p the den­
sity, and c the velocity of sound.21 The summation over 
the polarizations has been omitted. The dimensionless 
interaction constant is here a ~ (pca4t 112 « 1, and a is 
the interatomic distance. We shall assume that £o(k), 
which is the spectrum of the decaying excitations with­
out allowance for the interaction), and £1(q) and £2(q), 
which are the spectra of the produced quasi particles, 
are all specified, and that the pressure dependence of 
the parameters that enter in the spectra is also known. 
To determine the threshold, however, it is necessary to 
know the exact spectrum £(k), i.e., the spectrum of the 
excitations with allowance for the interaction. None­
theless, by virtue of the weakness of the interaction, 
E(k) does not differ strongly from Eo(k), and consequently 
that region of the values of k, q, and P, in which the 
solution of the equation Eo(k) = E1(q) + £2(k- q) appears, 
will be close to the true threshold region. On the other 
hand, an exact determination of the threshold and of its 
pressure dependence will be carried out only after £(k) 
is determined. Let us assume that in the threshold 
region the decaying excitation has a spectrum with 
minimum at k = 0, and the spectrum of the produced 
excitations is symmetrical with respect to q with a 
maximum at q = ± q0 , it being assumed also that the 
crystal has a symmetry center31 . Without allowance 
for the interaction, all the coefficients in the spectrum 
are assumed to be regular functions of the pressure. 
Just as in the first part of the paper, a diagram of the 
type shown in Fig. 1 is significant. We have 

G-'(k) = G0- 1(k)- ~(k), 

'y'· 
~(k)= (~)' ) Go(q)Go(k-q)d'q, 

Go(k)- eo•(k) 
- e2 -eo2(k)+iB' 

(19) 

(20) 

(21) 

~(k)= __!'!__) e,•(q) ez"(k-q) tPqdw 
(2n)' w2 -e12(q)+i6 (e-(J)) 2 -e22(k-q)+i6 

_ _f__ r k _ et( q)+ Ez(k- q) ) 22) 
- 16n• J 8t(q)ez( q) e2 -[e1 (q)+ez(k-q)]2 +i6 q. 

An irregular term appears in (22) upon integration in 
the vicinity of the threshold value of q in the threshold 
region of the variables £ and k. To simplify the subse­
quent derivations, we use the simplest form of the ex­
pansion of Eo(k), £1(q), and £2(q) in the threshold region: 

~ 
k-q 

FIG. I 

2>We use a system of units in which h = I. 
3lJt is possible to take the spectrum of the decaying excitations with 

a maximum at k = 0, and the spectrum of the decay excitations with a 
minimum at q = ± q0. 

1 
e,(q)= 1\,-- (q-qo) 2, 

Jli (23) 

It is easy to generalize the results obtained below to 
include the case of the more general expansion (23). 

Using the expansion (23), we obtain for the irregular 
term the following expression: 

~(k)""') e-21\1 +,..1 '[{q-q~~+(k-q+qo)2J+i6 ""' 
r ~ ~4) 

""'J e-ethr(k)+2!lt-1[{q-qo)+'/•kJ2+iB ' 

where £thr = 2Al- k2/21J.l· In (24), the integration is 
carried out in the region lq- q0 - %kl « qo. The exact 
value of the coefficient in front of the irregular term 
will be given later. To calculate (24), we use the follow­
ing device. We introduce ~ = £ - £thr(k) and differen­
tiate ~ with respect to ~ ; then 

a~ ~ 

iis ""'-) ls+2(q-qo-'/•k) 2/ 11,+i•W • 
(25) 

It is possible to extend the integration in the resultant 
integral to infinity, since the integral converges and the 
main contribution is made by the region of interest to 
us. Therefore the integral in (25) can be readily calcu­
lated by making the change of variable u = q- q0 - %k: 

a~ 1 u2du 1 
~""' - -~ [6 + 2u2fl.tt + i6]2 ""' - -l'-f' 

~ > 0, whence 

~CI:l-1~. 6 > 0. (26) 

When ~ < 0, it is easy to show that 

~""' -il'Ttf. (27) 

and the coefficients in (26) and (27) are identical. As 
the result we find that the Green's function near the 
pole in the threshold region is given by 

G-1 (k) = A-'[e -eo(k) + 2b l'e- e thr{k) + iB], (28) 

'1'2 (Itt)'/, -b=--i\3 - -a2 l'i\ 
128n 2 · 

The regular term that arises in (22) following integra­
tion over the remote regions is included in A, leading 
to an inessential (~ a 2) renormalization of A. 

The spectrum £(k) is of the form 

e(k) = Eo{k) + 2b2- 2byb2 + Eo(k) - l!thr {k) (29) 

and is determined by the choice of the branch of the 
root in (28) in accordance with (26) and (27). We note 
also that 

l!.thr (k) =max [et (q) + e2(k- q) ], 

and the threshold is determined from the condition 

lle = e(ke) = l!.thr {ke)• (30) 

Let us determine now the dependence of the spectrum 
and of the threshold on the pressure. To this end we 
substitute £o(k) and £thr(k) in (28) and (29) and expand 
with respect to the pressure accurate to terms of first 
order in P - P 0 • It is important here that the quantities 
£o, £1> and E2 are independent of the interaction and are 
the~efore regular functions of the pressure: 
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G-'(k)= A-1 [ Ae- :: +2b -v L\e + ~~ +TJ], (31) 

e(k)=A+~+2b2 -2b[ b2 +.!_k2 ( L:t_.!_)+TJ !]''•, (32) 
where 21-1 2 J.l J.lt 

( ot:. ollt) 
Ae=e-A, T]= {)P -2 oP P~P, (P-Po). 

An investigation of the expressions (30)- (32) shows 
that there are the following regions of the behavior of 
the spectrum as a function of the pressure. 

1. T/ > 0. There are no threshold points for any 
value of k. 

2. T/ = 0. A threshold point arises at kc = 0 and 
t:c = t::.. 

3. T/ < 0. Then 

[. J.ltJ.I ]''• 
k.= 2ITJI J.lt + 1-1 , 

kc2 
8c = ethr>(kc) =A+ 2;. 

The spectrum exists when k > kc, and kc is the 
termination point of the spectrum. The spectrum van­
ishes when k < kc· The behavior of the spectrum is 
shown schematically in Fig. 2. Here T/ 1 

e(k) 

FIG. 2. Schematic diagram of the be­
havior of the spectrum: I - 71 > 71 1 > 0, 
2 - 1lt > 7j > 0, 3 - 7j = 0, 4- 7j < 0. 

= b2JJ.(Jl + 2JJ.t)/JJ.~ and is determined from the condition 

02e I = 0. 
ok2 A~o. ~-· 

Attention should be called to the fact that in the pre­
threshold region, when T/ < T/., the minimum on the 
curve of the spectrum must be replaced by a maximum. 
This can facilitate an experimental observation of the 
phenomenon. One might assume that such a behavior of 
the spectrum at P = Po would lead to singularities in the 
thermodynamic functions of the crystal. It can be 
shown, however, that this is not the case. The thermo­
dynamic potential of the crystal is a regular function of 
the pressure at P = Po. 
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