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A rule for calculating the asymptotics of many-point correlations in the critical region is proposed for 
cases when the distance between some points is much larger than that between others. A simple phys­
ical interpretation of the phenomenon is presented. Variation of the correlation functions induced by 
magnetic fields of different strengths is derived. It is shown that at the phase transition point the 
magnetic-moment correlator decreases with the distance at least as rapidly as predicted by the 
Ornstein- Zernike formula. As a function of temperature, the correlator has an extremum near the 
critical point. The problem of universality of critical correlations is considered. The results obtained 
are compared with the exact solution for the plane Ising model. A new method for summation of "par­
quet'' diagrams is proposed in the Appendix. 

1. INTRODUCTION 

I N a system of many particles, at temperatures close 
to critical, the effective interaction between the parti­
cles becomes strong, and no small parameters are left 
in the problem. In this region, only the exact relations 
are valid, and this raises the question of which of these 
relations can be used. 

The present author has previously established UJ an 
analogy between the problem of phase transitions and 
relativistic quantum field theory. It was observed that a 
correspondence exists between the correlation functions 
of the system experiencing the phase transition, and the 
different propagation functions defined in field theory. 
The role of the quantum mass was played by the recipro­
cal correlation radius rc. The ultraviolet divergences 
were cut off at momenta of the order of r 01 » r"C1 

(where ro are the interatomic distances). Owing to the 
renormalizability of the interaction, the dependence on 
r 0 entered in the correlation functions in the form of an 
inessential factor, and therefore all the correlations 
were determined by a single characteristic radius rc· 
To study the concrete properties of the different corre­
lations, use was made of the S-matrix theory formalism, 
viz., the unitarity and analyticity relations, and also the 
consequences of the conservation laws (the Ward identi­
ties). 

In this paper, using the same methods, we obtain a 
number of new results concerning the structure of the 
critical correlations. In Sec. 2 we explain the analytic 
properties of the correlation functions in the momentum 
representation, we carry out their analytic continuation 
(which will be needed later) to imaginary momenta, and 
obtain an inequality for the critical index. In Sec. 3 we 
investigate the condition for the compatibility of the 
unitarity relation and the Dyson equations. It is shown 
that the correlation function of the magnetic moments in 
the momentum representation G(k, T) has a minimum 
with respect to Tat a certain T = To(k). This minimum 
can be observed experimentally in neutron scattering. 
In Sec. 4 we obtain the asymptotic forms of the many­
point correlation functions in those cases when certain 
relative distances exceed others. A simple physical 
interpretation of such asymptotic forms is presented. 
In Sec. 5 we investigate the influence of a weak magnetic 
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field on the correlations. In Sees. 6 and 7 we compare 
the results with the data known from an exact solution 
of the Ising model, and analyze the question whether 
the critical indices and the functions are universal. 

2. UNITARITY OF THE GREEN'S FUNCTION AND 
INEQUALITY FOR THE CRITICAL INDEX 

The method of analyzing phase transitions, proposed 
in [lJ , can be applied to any system in the critical reg­
ion. In order to specify the terminology concretely, we 
shall consider a three- dimensional Ising model and use 
the ordinary diagram technique. We start with the analy­
tic continuation of individual diagrams. 

Let us consider the diagram 

t 11/qp -~ (2.1) 

where the thin lines correspond to bare Green's func­
tions (k2 + Tt 1 (Too IT- Tc 1/Tc>· We have 

(-i..) 2 I d 3kid6k2 
~(i)(q)= -(2:rt) 6 .1 (k12 + ,;) (k,2 +'t') ( (q- ki ~ k,) 2 +,;) . <2·1') 

Here A is the coupling constant, with A > 0 correspond­
ing to repulsion. 

For an analytic continuation to imaginary q, i.e., q2 

< 0, it is necessary to go over to pseudo-Euclidean 
integrals. Let us consider this question in great detail. 
We compare expression (2.1') with the following expres­
sion: 

(-i..)• I (-id"k1)(-id3k2 ) • 

- (2rr) 6 J (,;-kf•-iO)~k,2--i0)(,;-(q-kf-k,) 2 -iO) ' 

d3k = dkxdkydk,, k2 = kx2 - ky2 - kz'. 

if during the course of integration with respect to kx we 
perform the standard rotation of the contour through 
90° , which is permissible in the case of "spacelike" 
q2 = q~- q;- q~ < 0, we find that (2.2) coincides with 
(2.1') only if q2 = -q2 • Since the integral (2.2) is an 
analytic function for all values of q2 , Eq. (2.2) gives the 
desired analytic continuation of (2.1') to q2 < 0. Analy­
tically continued diagrams of the Euclidean technique 
give the usual diagrams of the relativistic quantum 
theory[2 J, where each line is set in correspondence 
with a propagator i/ (k2 - T + iO), each bare vertex 



152 A. M. POLYAKOV 

corresponds to - iA , and all the momenta are pseudo­
Euclidean. Repulsion in Euclidean space (i.e., the case 
when the initial diagrams are of alternating sign) corre­
sponds to repulsion in the relativistic theory. All these 
follow from the fact that in integrals of the type (2.2) 
rotation of the contour denotes the substitutions d3k 
- id3k, k2 - -k2, and 7- 7- iO. 

Let us consider now the exact properties of the 
Green's function G(q2 ) obtained in the "relativistic" 
theory after the analytic continuation. The singularities 
of G(q2) are arranged in the following manner: when q2 

< 0, the function G is certainly regular and real, since 
G(-q2), in the sense of the analytic continuation, is the 
Fourier transform of the correlation function of the 
magnetic moments. Since the correlations fall off ex­
ponentially, or at least (at the very point of the phase 
transition) like the reciprocal power of the distance, 
their Fourier transforms have no singularities on the 
real axis. In the language of relativistic theory, the 
singularities at q2 < 0 would correspond to a "ghost" 
state. Further, G has no complex singularities. The 
first singularity of G, as a rule, is a pole at q2 = m 2 

= rt This pole corresponds to a single-particle state 
with mass m. In some cases G(q2 ) may have no poles, 
and this possibility is discussed in Sec, 7, but will not 
be considered now. 

The singularity following the pole is a branch point. 
It is located at q2 = (2m)2 if one particle can virtually be 
transformed into two, and at q2 = (3m)2 if this transition 
is forbidden by the symmetry of the problem and only 
transformation of one particle into three is possible. 
The first case corresponds to the system below the 
transition point, or placed in an external magnetic field; 
the second case corresponds to a system above the 
critical point, in the symmetrical phase. 

Further, there is an infinite set of branch points, 
connected with the transition of one particle into end 
particles and located at q2 = (nm)2 • The jumps on the 
cuts drawn from these points are subject to the unitarity 
condition and are positive, owing to the hermiticity of 
the theory. 

We introduce the renormalized Green's function in 
accordance with the formula 

G(q2) = Z(-r)G,(q'). 

The renormalization constant Z is defined as the residue 
at the pole of G(q2) as q2 - m2 , thus, 

1 
G,(q2)-rq' _ ml-, q'-+ m'. 

To calculate the imaginary part it is necessary to 
cut up the given diagram in all possible ways and to 
make in each section the substitution 

the obtained unitarity condition for the renormalized 
Green's function 11 is of the form[3 • 41 

1mG;1!~~1= -e- +--®-- + ··· (2.3) 

Here each line with a cross, carrying a momentum k, 
corresponds to the quantity 21Tll (k0) 15 (k2 - m 2). The 
shaded blocks are set in correspondence with the re­
normalized vertex parts defined by the formula 

(where rn is the sum of the Feynman diagrams with n 
ends, and the Green's functions corresponding to the 
ends are not included in rn)· For each of the rg there is 
a separate unitarity condition. From all these equations 
it i~ possible to eliminate the mass m by introducing 
the dimensionless functions g and y n by means of the 
formulas 

G,(q') = m-2g(q2f m2), 

r n'(kt ... kn) = m3-ntloy(kd m, ... , kn I m). (2.4) 

It is easy to verify that after substituting (2.4) in (2.3), 
the latter assume the form 

Jmg-1(x)= ~) ITd3x;lyn(l<i)l 2 cS x-~xi)e(l<io)ll(xi 2 -1) 
(2.5) 

and the mass actually drops out of the equations. 
The observed correlation functions are connected, as 

shown inl 11 , with non-renormalized quantities. We must 
require that in the limit as 7- 0 the dependence on 7, 
which enters in these quantities via the factors Z(7) and 
m(7), disappear. Since m(7) ~ 7{3 and Zoo 7{3(2-a), 
where a and {3 are the critical indices, this requirement 
yields 

(2.6) 
( 

X! l<n ) . ( ><2 Xn ) 
'Vn ---;;;'.,,'---;;; ,_ 'Xi3-nacp \R'.,.' ~ ' xz~oo. 

The asymptotic condition (2.6) makes it possible to 
obtain a limitation on the quantity a. For g(K) we can 
write, by virtue of (2.6) and (2.5), the dispersion rela­
tion 

00 

1 1 Im g(z)dz 
g(x2)=--+ J ~--. 

x2 - 1 4 x,2 - z + iO 
(2.7) 

By virtue of (2.5) we have Im g > 0, therefore as K2 

- oo the integral (2. 7) decreases no more rapidly than 
1/K2 • Consequently a ::::: 2. This result is closely con­
nected with the hermiticity of the Hamiltonian, which 
leads to the positiveness of Im g. The meaning of the 
inequality in the coordinate representation lies in the 
fact that the correlations at the transition point decrease 
more rapidly than in accordance with the Ornstein­
Zernike formula (1/r). We note that a numerical calcu­
lation in the three dimensional Ising model yields a 
variation like r- 1 "008 l21 • 

3. DEPENDENCE OF SPIN CORRELATIONS ON THE 
TEMPERATURE 

The thermodynamic properties of the Ising model 
are determined by the dependence of the average energy 
E per spin on 7 oo IT - Tc 1/T c. The function E ( 7) is 
connected with the correlation function G(k, 7) by the 
obvious equality 

E(-r)= ~ Vrr•(crr<J"r)= ~d'kVkG(k,-r), (3.1) 
r' 

where a r is the spin and V rr' is the spin interaction 

Orn ( 1 ] there was used a less convenient form for the unitarity con­
dition, although containing the same information as (2.3). 



PROPERTIES OF LONG AND SHORT RANGE CORRELATIONS 153 

potential. In the sum (3.1), the significant distances are 
of the order of the interaction radius r 0 , and conse­
quently the basic role in the momentum representation 
should be played by lkl ~ r 01 • Therefore we cannot 
substitute in the integral a Green's function in the form 

G(k, -r) = lkl-"/(k2.r-{!~). (3.2) 

This formula is valid only when lkl « ri/. Inr11 we used 
the unitarity condition and showed that the singular part 
of E(r) is proportional to r3/3-1. On the basis of form­
ula (3.1) it is natural to assume that G(k, r) has for all 
values of k a singularity with respect to r of the type 
r 3 /3-1. This result is already given in ro . We shall 
show in Sec. 4 that this singularity actually arises and 
is a particular case of one general property of the 
correlation functions. We consider here another aspect 
of formula (3.1). 

The specific heat C is determined by the integral 

Coo 8~ = ~ Vk lJG~k,-r) d3k. (3.3) 
o-r • O't 

In this integral there is a region of large momenta lkl 
~ ro\ where (3.2) is not valid, but there is, in addition, 
a region of small momenta lkl << ro1 • Let us examine 
the contribution made to C by this last region. We have 

c (/) i v oG (k, -r) d"k + \ v oG (k, -r) a•k (3.4) 
J ko-r J ko-r 

Jkf<ro-1 lkf-ro--t 

=Vo ~ JkJ-a~/(k"r-2~)d8k+ ~ 
fk:f<!'o-1 fkl-ro-1 

= -2~V0,;(s-a)~-~~d"xf'a~~·) + ~ . 
J X J lkl-r,-• 

In the last equality we have made, after differentiation 
with respect to r, the change of variable K = kr-/3 and 
extended the integral with respect to K to all of space. 
We had a right to do this, since, as will be shown now, 
the values I K I '"" 1 predominate in the integral. To prove 
this, let us examine f' ( K 2). Since the Green's function 
has at T - 0 a singularity with respect to T in the form 
r3/3-1, it follows that 

and 
f(x") 1'::1 const.·(x2)-<5HJ/2P as x"-+oo. (3.5) 

At small K 2 , i.e., when k2 << r2J3, the Green's function 
becomes a function of r. We have 

G(k, or) =-r-<>P, /(x") 1'::1 const· (x2)<>12, x-+0. 

Consequently, the integral with respect to K behaves 

like jd3 K/IKI3 +a- 1//3 at the upper limit and like Jd3 K 
at the lower limit. If a > 1//3, as is the case for most 
systems, then the significant values of I K I, as already 
stated, are of the order of unity. Under the same condi­
tion (a > 1/ J3) the singularity turns out to be so strong, 
that a contradiction arises, namely, we know that the 
singularity of the specific heat is r 3 13-2 and the singu-
larity of the integral of (3.4) is r(3-a)/3-1. Therefore 
the integral (3.4) should vanish2 >: 

2>The integral over the region lkl - r0 _, does not cancel out the in­
dicated singularity, since the singularity of G(k,T) with respect to T is 
T3{:1-t 

Plot of G(k,T) at fixed k in the following cases: a - ilG I ilTI T = o > 0, 
b - ilG I ilTIT = 0 < 0. 

~ d~ 
---f(x2)=0. 
Jxl<>-2 

It follows from this equality that the derivative 

(3.6) 

8G(k, r)/8r should reverse sign for all values ofT, and 
consequently there exists a value lkl = k0(r) = x 0T /3 such 
that 8G/8r = 0. Depending on the sign of aGjar at T = O, 
two types of dependence of G(k, r) on T can be realized, 
as shown in the figure. We have taken into account the 
fact that at large T we get G = r-at 13. Since G is the 
scattering cross section integrated over the energycsJ, 
these relations can be observed experimentally, but the 
existing experiments on critical scatteringr21 are still 
too inaccurate. 

4. ASYMPTOTIC FORM OF MANY-POINT GREEN'S 
FUNCTION AND RULE OF COALESCENCE OF 
CORRELATIONS 

In those cases when some momenta of the many-point 
diagrams exceed others, it is possible to obtain rules 
for the calculation of their asymptotic forms. We start 
with the vertex part of the energy density ~(p, q), 
where ~(p, q)G(p + q/2)G(p- q/2) is the Fourier trans­
form of the correlation function ( £ r a r a r ) (where E:r 

1 2 
is the energy density and a r is the magnetic moment). 
We have 

f[MI :A,. ATATA+ 
(4.1) 

The lines in these diagrams correspond to exact Green's 
functions. Let us assume that p ~ ri/ ~ q(p = !pi, 
q = lql). All the lines that carry momenta p compress 
in this case to a point, and the vertex becomes depen­
dent only on q: 

(with p ~ ro1). In perfect analogy, the four-point dia­
gram experiences, following a successive increase of 
the external momenta, the evolution: 

p-ru-' 
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Such a transition will be called coalescence of correla­
tions. 

It seems natural that the polygons that enter in form­
ulas of this type are universal. For example, the two­
angle diagrams in (4.3) and (4.2) should be equal to the 
energy correlation function (4.1). Indeed, (4.2) is pro­
portional to the correlation (ErO"r1ar) in the case when 

(4.4) 

The energy correlation function is given by 

(4.5) 
r, 

(Vr1r 2 is the spin interaction with radius r 0). We are 
therefore dealing in both cases with correlations of two 
pairs of spins, and the spins making up the pair are 
close to each other, while the distance between pairs is 
large and equal to lr- r1, 2 j. Obviously the dependence 
of the correlation on lr- r 1,2 l does not change if the 
spins of one pair are shifted relative to each other 
slightly (by a distance much smaller than lr- r 1,2 1}, 
and therefore when lr- r 1,2 l >> lr1- r 2 l the correlation 
(ErO"r O"r ) decreases with increasing lr- r1,2 l exactly 
as the1cofrelation (ErEr ) does with increasing lr- r1l· 

1 
It follows from this reasoning that it is not necessary to 
impose the condition lr1- r 2 l ~ r 0 in order for the 
statement made above to be correct. Nonetheless, we 
begin the formal proof for the case when this condition 
is satisfied, and then eliminate this condition. 

Let us examine the unitarity condition for fr: 

'"''~= ~+ ~+-··(4.6) 
assuming that p ~ rii1 and using the rule for coalescence 
of the correlations, we obtain 

Jm~= ~ +··· (4.7) 

The unitarity condition for the four-point diagram 

lm X = XX + . . . (4.8) 

is transformed when p ~ r 01 into the relation 

···+~=-~"') (4.9) 

Comparison of (4.9) and (4.6) shows that these quantities 
satisfy the same equations and therefore coincide. 

We can now lift the limitation p ~ rii\ leaving only 
the conditions p » max(q, rc1). The only difference in 
the formulation of the rule for the coalescence of the 
correlations in this case is as follows. Since the essen­
tial momenta in the Feynman diagrams are of the order 
of max ( q, r"C1), we can, as before, contract the lines 
carrying the momentum p into a point. But when p << r 01 
one cannot neglect the dependence of these points on p. 
Therefore 

A - "" i = '"'"" · (4.10) 

where p » max (q, r"C1), p' » max (q, p, rc1), and :T(p, q) 
and C(q) are the same as above. The unknown functions 
can be found from the requirement that all the ampli­
tudes have correct dimensionalities. Then (4.10) will 
yield the asymptotic forms of the dimensionless corre­
lation functions. 

We begin with ?r(p, q). Its dimensionality is defined 
by the Ward identity 

(4.11) 

Consequently 

fr(p, q)= po.-1{~ t ( :~ , T~ ) . (4.12) 

From (4.10) and (4.12), with allowance for the fact that 

it follows that 
C(q) = q<3~-2''~c(qT-~), 

f(p) ~ fr I C ~ const I p>-o.-11~. (4.13) 

We see therefore that the function iT(p, q) defined in 
(4.12) has the following form when p is large: 

fr (p, q) ~ q(3~-2)/~po.+t!~-3c ( qT-P), p ;:;.. q, T~. 

This corresponds to the formula 

t(x, y) ~ const·(JyJ/ \xJ)<3Hll~c(y}, 
Jxl >Jy. 

When q = 0 we obtain the already known results 

fr(p, 0} ~ const-T"P-2po.H/il--3. 

(4.14) 

(4.15) 

(4.15') 

The asymptotic form of fr(p, q), in the case when the 
momentum of one of the solid lines is p « q (we have 
replaced p- q/2 by p), can also be determined. It is 
simplest to use physical considerations. In the coordin­
ate representation the given values of the momenta 
represent the configuration when there is a group of 
three closely located spins and one spin far from them. 
From the foregoing reasoning it is clear that the corre­
lations do not change if the group of three spins is re­
placed by a single spin. (This can be proved formally 
with the aid of unitarity.) Consequently 

or 
fr(p, p + q)G(p)G(p + q) ~ h(q)G(p}, q;:;.. p 

fr (p, p + q) ~ const. qo.-•t~, q ;:;.. p. 
(4.16) 

(Dimensionality considerations have been used in the 
last equality.) 

It is possible to investigate analogously the asymp­
totic forms of all other correlations. These asymptotic 
forms are determined by two known critical indices and 
do not require introduction of new constants. 

5. WEAK MAGNETIC FIELD 

In this section we use the previously derived rule of 
correlation coalescence to determine the change of the 
correlation in a system under the influence of a mag­
netic field. The change of the Green's function following 
application of a static field h is given by the diagrams 

86 = ~ + ~ +-·-· (5.1) 
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The shaded blocks correspond to the amplitudes rn 
introduced above. Thus, 

82G-t I oh2 = r,(p, p, O)G2 (0) +... (5.2) 

This identity sets the dimensionality of the magnetic 
field: 

h ~ (r,G3J-''• ~ p<3+a)'"· (5.3) 

Formula (5.3) is well known£•J. It only tells us the 
dimensionless combinations of h and p on which G de­
pends. Our problem consists of finding the explicit de­
pendence of G on h for small values of h. 

When h « T /3{3 +a/2 and for arbitrary values of p, 
the solution is trivial, and it follows from (5.2) that the 
expansion of G-1(p, h) begins with terms prOJ?.Ortional to 
h2 • Further, in the region h 4> [max(p, T/3)](3 +a/2 an 
important role is played in the diagrams for r 4 only by 
virtual momenta of order h2/(3 +a), therefore r 4 depends 
only on h. In this case we obtain the known£21 result: 

G(p, h) co h-2<>/(3+<>l, (5.4) 

We now examine the region p 4> h2/(3 +a) ~ T/3, In 
spite of the relative weakness of the magnetic field, the 
dependence on this field does not drop out of r 4, since 
momenta of order of T f3 and not of order of p are of 
importance in the diagrams. All the lines carrying a 
momentum p must be contracted into a point that depends 
on p. The obtained contracted diagram depends only on 
h. We must find this dependence. Taking into account 
the correlation coalescence rule, this can be readily 
done. We have 

X _f{,,y, (5.5) 

i.e., r 4 = f(p)g-(h, T)G2 (h, T) (where g- is the energy­
density vertex at zero values of the external momenta). 
From dimensionality considerations (see formulas 
(4.12) and (3.2)) we get 

fT = T"~-1t(hT-~<H"l'2), G = T-a~g(hrll<S+al/2). (5.6) 

When h 4> Tf3(3 +a)/2 the dependence on T drops out 
of (5.6), and it turns out that r 4 ~ f(p)h-2(1 +a/3)//3(3 +a). 
Therefore 

[ ( 
h21(3+<>) )3-1/P] 

G-1 (p,h)~ G-l(p,O) 1+const· -p- . (5.7) 

This formula contains no new critical indices. A result 
similar to (5.7) but for a plane Ising model is given in 
Sec. 7. 

6. NON-UNIVERSALITY OF THE CRITICAL BEHAVIOR 

The magnitude of the critical indices in the form of 
the dimensionless functions are determined both by the 
type of symmetry, which is violated in the phase-transi­
tion process, and also by the concrete structure of the 
interaction. Since at a given symmetry the characteris­
tics of the interaction (the bare coupling constants) do 
not enter in the unitarity conditions, their influence on 
the Green's function can appear either via the subtrac­
tion constants in the dispersion relations, or in the form 
of a non-uniqueness of the solution of the unitarity and 
analyticity equations. 

However, owing to the asymptotic condition (2.6), the 
dispersion relations must apparently be written without 
subtractions. In diagram language, this corresponds to 
the fact that in the expansion of the vertex part r 4 

x = x + a+ . . (6.1) 

it is possible, in the case of small p, to discard the first 
term if r4 4> 1 when p « rjj1 • If r4 « 1, then this first 
term is cancelled out by the contribution of the momenta 
of order rii1 in the right side of (6.1), and can again be 
neglected. 

We arrive at the conclusion that the system of equa­
tions for the correlation functions knows nothing con­
cerning the bare interaction. If its solution were unique, 
then this would imply that the critical indices and func­
tions do not depend on the bare constants. However, 
computer calculations have revealed that in Heisenberg 
ferromagnets with different values of the spin s, the 
critical indices are different£21 • This means that the 
solution of the system is not unique and the correct 
branch is determined by the conditions for continuity in 
the region of momenta of order of r(/. 

These conditions, of course, contains. From the 
theoretical point of view, how can the non-uniqueness 
appear? There are two known types of ambiguities in 
S-matrix theory. First, obviously, it is possible to 
specify an arbitrary mass spectrum in the system; 
namely, there can exist not only one type of particle 
with mass m, but an arbitrary set with different masses. 
This set is determined by the bare interactions. As indi­
cated in an analogous situation by Gribov and Migdal £eJ, 
this type of ambiguity leads apparently to a jumplike 
dependence on the coupling constants (i.e., in our case 
on s), since the process of formation of the bound states 
is also jumplike. However, in our problem there can 
appear another ambiguity, which can cause a smooth 
dependence on s. This is an ambiguity of the CDD 
type£71 • 

The unitarity condition for the Green's function G 
determines the imaginary part of G-1• The dispersion 
relation for G-1 is of the form 

q2 -m2 r ImG-t(z)dz 
G-t(q•)=.,.;:.... __ .l 

a •m' (z- q•- iO) (z-w) 

q2 -m• Rn + ~ +c(q•-m•) 
:T! (Zn- m2) (Zn- q2) 

(6.2) 

(where c ;:::: 0 and Rn;:::: 0). Using the asymptotic condi­
tion (2.6), we find that c = 0 when a < 2 (the integral in 
(6.2) increases more slowly than q2 as q2 - 00). How­
ever, Rn and Zn can be arbitrary, and this creates an 
ambiguity that is limited only after continuity is estab­
lished in the region of momenta of the order of rii1 • 

Thus, we verify that the dependence of the critical indi­
ces on the bare parameters does not contradict our ap­
proach. 

7. COMPARISON OF THE RESULTS WITH THE EXACT 
SOLUTION OF THE PLANE ISING MODEL 

In this section we verify our results with the aid of 
the plane Ising model. Unfortunately, even in the plane 
Ising model it is impossible to calculate to conclusion 



156 A. M. POLYAKOV 

many of the important quantities. Thus, we are unable 
to verify a formula of the type (5.7), which in the Ising 
model, where a= 7/4, f3 = 1, and the number of dimen­
sions is equal to 2, takes the form 

G-1(p,h) ~p7'4 (1+const·h8/15/p), p';J;>h 8i15 ';2;>-r. (7.1) 

Formulas of the type (3.4) and (4.15), as already noted 
inuJ, have been confirmed. Inr9 J it is shown that in the 
Ising model 

G-•(p, -r) ~ p714 [ 1 + const·~ ln ~ J, p ';2;>-r, (7 .2) 

which agrees with formula (4.15). 
To verify the correlation-coalescence rule it is 

necessary to calculate the function (~::ra r 1 a r 2 ) and 

other many-point correlators. Such a calculation is 
possible in the Ising model, but it has not yet been car­
ried out, so that a verification is still impossible. 

At the same time, the results calculated in this model 
yield interesting and somewhat unexpected information. 
We refer to the asymptotic forms of the correlation 
functions when r >> rc· It was shown inUJ that these 
asymptotic forms are determined by the first singulari­
ties in q 2 in the momentum representation. The use of 
the unitarity condition has made it possible to obtain the 
pre-exponential factor in the asymptotic form when 
r » rc· 

Above the transition point, according to Kadanoffr 10J, 
the spin correlations in the Ising model have an asymp­
totic form r-112 exp (-r/rc). This means, according 
to r1J , that the first singularity of the Green's function 
G(q2) is a pole at q2 = m2 = rc2 , as was indeed assumed 
in Sec. 2 of this paper. However, below the transition, 
the calculationr1oJ has led to an asymptotic form 
r 2 exp (- 2r/rc). According toUJ, this indicates that the 
function G has no pole, but only a two-particle branch 
point. This raises the question whether this fact contra­
dicts our initial premises concerning the existence of a 
single-particle state. We propose a hypothesis that lifts 
this apparent contradiction. The absence of a pole in 
G{q2 ) suggests that some selection rules forbid the 
single-particle state in the Lehmann expansion. The 
simplest possibility consists in the fact that a single­
particle state with a nonzero spin or with negative parity 
is produced. Since G{q2) is a correlation of two (spa­
tially) scalar quantities, a transition of the type 

(7.3) 

(where the wavy line is the line of the particle existing 
the theory, and the solid line corresponds to the mag­
netic moment ar) is forbidden by the momentum (or 
parity) conservation law. At the same time, a transition 
of the type 

(7.4) 

is possible, and this indeed produces the two-particle 
singularity. 

Depending on whether it is the angular momentum or 
the parity which forbids the pole of the Green's func­
tion, the term following (7 .4) will be of the three- or 
four-particle type, since the angular momentum of three 
particles with nonzero spin can be equal to zero, while 
the parity of three identical particles with negative 

internal parities and with zero total angular momentum 
must be negative. Calculationsr1oJ show that the term 
following exp (-2r/rc) is asymptotically exp (-4r/rc)· 
This means apparently that the second of the possibili­
ties considered by us is realized. We note, finally, that 
factorization of the coefficients in the asymptotic form 
with r >> rc, noted by Johnsonr11J, is valid regardless 
of whether the pole or the branch point is the leading 
singularity. 

The correlation coalescence rule for the four-dimen­
sional Ising model is verified in the appendix. 

Thus, all the relations existing in the Ising model do 
not contradict our approach. 

APPENDIX 

Inasmuch as the correlation coalescence rule cannot 
be regarded as rigorously proven, it is advantageous to 
verify in some exactly solved problem. Let us consider 
the four-dimensional Ising model. This model imitates 
the critical behavior' of uniaxial ferroelectricsr 12 J. In 
this model, the fluctuations interact logarithmically, 
and the problem reduces to a summation of "parquet" 
diagramsu2 J. Let us calculate the four-point diagram 
(4.3) at momenta p' » p » q. The summation of "par­
quet" diagrams by the methods ofr13 J is in this case too 
cumbersome, and we therefore propose a modification 
of these methods. 

The logarithmic integrals are due to two-particle 
cross sectionsr13 J. Separating in each diagram that two­
particle cross section in which the integration momen­
tum is the smallest, we represent the scattering ampli­
tude in the form (l3J 

where P1,2 = q/2 ± p and P3,4 = q/2 ± p'. The shaded 
blocks are the scattering amplitudes in which all the 
virtual momenta are K >> k, where k is the integration 
momentumin(A.1) {K= jKj,k= jki). Thelasttwo 
terms produce a logarithmic integral only because of 
the region k » p' » p » q. Let 

A A A A 
S.=ln-, ~=In-, T]=ln-, x=ln-k. 

p' p q 

Then the contribution of the last two terms in 
r ( ~ ::s !; ::s 71) is given by 

~ 

2 ~ dxf2(x,x,x). (A.2) 

We now consider the second term in (A.1). The 
logarithmic integrals occur in it as the result of three 
regions: 

1) k';J;>p'';J;>p';J;>q, 2) p'';J;>k';J;>p';};>q, 

3) p'';J;>p';J;>k';};>q. 
(A.3) 

Recognizing that Ki >> k, we can easily write the con­
tributions of all three regions: 

~ 

3) \dxf(s,:t,x)I'(~,x,x). (A.4) 

adding (A.2) and (A.4), we find an equation for 
'l 

1'(1;,\;,1'])= -y+3 ~ f2(x,x,x)dx+ (A.5) 
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~ lj 

+ ~ f(~,x,x)f(x,x,x)dx+ ~ f(~,x,x)f(l;,x,x)dx. 
£ ; 

When ~ = t = T/ we obtain the equation of[13 J, which was 
already used in[12 J to calculate r(~, ~, ~ ). The solution 
of (A.5) is obtained immediately: 

r-- 2y _, r\1+3yYJ)!I3 (A6) 
- (1 + 3y~)~i3 (1 + 3y;;y:s' (1 + 3vs)21'(J + 3vsl''' · • 

For comparison with the correlation coalescence 
rule, we note that[ 12 J when p ""' q :T(p, q) takes the form 

:Too [1-:-- 3y ln (A I p) ]-'!. = (1 + 3yt;)-'lo. 

Putting p ""'q and T/ = tin (A.6}, we get r(L t, t) 
= <P( ~) :T( t, t). Similarly, fT( t, T/) = f( ~ }C(T/) when 
T/ » ~ » 1/y, where C{T/) R< y-1(3y'f/) 113 is the specific 
heat. Thus, in this model the correlation-coalescence 
rule is already satisfied. We note that the method pro­
posed in this appendix for summing the "parquet" is 
suitable and convenient for all practical problems. 
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