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It is pointed out that localized long-lived molecular vibrational states may exist in simple molecular 
crystals {H2, 02, N2, NO, CO). Stabilization of such excitations is connected with the anharmonicity of 
the intramolecular vibrations. Their mobilities are estimated. The mobility is found to depend strongly 
on the excitation quantum number. For example, in an N2 crystal the vibrational excitation of a mole
cule with n = 7 can go over to a neighboring molecule (completely, without any change) within a time of 
the order of ~ 1 sec. The finite time of such states is connected with the following processes: a) radia
tion involving a transition of the molecule to the (n- 1) level which occurs in the course of 
~ 105-106 sec for N2, 0 2, H2, and in the course of 1-10 sec for CO and NO; b) transition of the mole
cule to the (n- 1) level involving transfer of a quantum to a neighboring molecule and absorption of 
several phonons from the crystal. The process depends strongly on n and on the temperature. At 
T = 30°K and n = 7 the time required for the process is ~ 10 sec. The role of rotation of hydrogen 
molecules in an H2 crystal is discussed. It is also shown that in such crystals an excitation with n = 1 
exists up to the moment of the emission of radiation. An experiment is proposed for detecting such 
states. 

THE purpose of this paper is to point out the possibility 
of the existence of localized long-lived highly excited 
vibrational levels of molecules in molecular crystals. 
The physical reason for the localization of such states 
consists in the following. Let us consider two weakly 
interacting anharmonic oscillators. At the initial instant 
let the first oscillator be excited and the second at rest. 
If the excitation amplitude of the first oscillator is 
small, then the frequencies of both oscillators are close 
to one another. As a result of this, in a time inversely 
proportional to their coupling force the entire excitation 
energy will be transferred to the vibrations of the sec
ond oscillator 11 . If, on the other hand, the initial ampli
tude of the first oscillator is large, then the frequencies 
of the two oscillators differ strongly, since the eigen
frequency of the anharmonic oscillator depends on its 
amplitude. This leads to the breakdown of resonance and 
to strong inhibition of the energy transfer from one os
cillator to the other. 

There is a quantum analog of this phenomenon. Let, 
for instance, the first oscillator be at the n-th level and 
the other at the ground level. It is well known that the 
levels of an anharmonic oscillator are not equidistant, 
i.e., 

En- En-1 =I= E,- Eo. 

Therefore, by virtue of the law of conservation of en
ergy the first oscillator cannot transfer to the second 
oscillator a quantum and thus transfer part of the energy 
(we note that this is completely feasible for harmonic 
oscillators). Thus, for anharmonic oscillators only the 
entire energy and not part of it can be transferred from 
one oscillator to the other. The probability of such a 
process is, of course, small and shall be estimated be
low. The indicated difficulties in the energy transfer do 

1lThis phenomenon is often demonstrated by using as an example 
two identical pendulums suspended on a common thread. 
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not appear in the case of an oscillator in the n = 1 state. 
All this is, of course, only valid in the case when the 
anharmonicity energy is larger than the coupling energy 
of the two oscillators. This is always true for typical 
molecular crystals (such as H2, N2, 02, CO, etc.) In fact, 
the energy of the vibrational interaction of two neighbor
ing molecules (w) can be estimated from the formula 
w ~ Ev( ~ /r e)2 where Ev is the energy of the van der 
Waals interaction of the two molecules (~ 1 kcal) and 
~Ire is the ratio (~0.1) of the amplitude of the zero
point vibrations to the bond length of the molecule. 
Taking this into account, we find w ~ 5 cm-1. At the 
same time, the anharmonicity energy for a not too 
strongly excited molecule amounts to ~ 30 cm-1. 

For highly excited vibrational states with a large 
amplitude one should apparently take ~ to be the ampli
tude of these vibrations. However, in this case the an
harmonicity energy would also increase correspondingly. 
The cited criterion is of a qualitative nature, a more 
rigorous expression for it is given below [see the ex
planation of (9)]. 

Let us proceed to a quantitative description of the 
phenomenon. Let us first consider two coupled classical 
anharmonic oscillators. The equations of motion are in 
this case of the form 

x, + wahl+ BAX13 = ef1x2, 
x, + wo2Xz + eAX23 = ef1x,. (1) 

Here x1 and x2 are the coordinates of the first and sec
ond oscillator, wo are their zero-point vibrational fre
quencies, E is a small parameter, and .\ and {3 are 
parameters characterizing the anharmonicity aad 
coupling force of the two oscillators respectively. Let 
the oscillator mass be unity. In order to solve the sys
tem (1), we make use of the method of averaging. [1J Let 
us introduce the new complex amplitudes P1 and p2 using 
the equalities 
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and the auxiliary conditions 
p1eiwct + p1e-iffiot = 0, . 
p2eiwot + p2e-iwvt = 0. 

(2) 

(3) 

Substituting P1 and p2 in (1) and averaging over vibra
tions with a frequency wo, we obtain the following equa
tions: 

dp, 
i a:;-+ YIP! 12 Pi= P,, 

3A v=B, 
dp, 

i a.+ YIP21~ p, =Pi, 
te~ 

't=~. 

Wo 
(4) 

The first integral of motion of the system of equa
tions (4) is connected with the law of conservation of 
energy 

(5) 

Introducing new variables by means of the relations 

Pt = a cos 8ei¢,, P2 =a sin 8ei¢,, <p = '1'1- \jl2, (6) 

we obtain the following system of equations: 

e = sin<p, 
<jJ = a'y cos 28 + 2 cos <p ctg 28. (7) 

The absolute values of the phases ~ 1 and ~ 2 are obviously 
unimportant. This system can be integrated analytically 
with arbitrary initial conditions. For example, let the 
first oscillator have at t = 0 the maximum amplitude 
and zero velocity and let the second oscillator be at rest, 
i.e. ~ 1(0) = 8(0) = 0, <p(O) = TT/2, e(O) = 1. We then have 

a'y· 
cos rp = - 4 - sin 28, (8a) 

e dl'] 
't = ~ ~- - ~~---~~- . 

0 l"1-(a2y/4) 2 sin'211 
(8b) 

The first of these equations limits the region of possible 
values of e. For a2y/4 ::s 1, i.e. when the anharmonicity 
is weaker than the coupling between the oscillators, 
arbitrary values of e are possible, including e = TT/4-
the energies of both oscillators are equal, and 8 = TT/2-
the entire energy has passed to the second oscillator. 
The time required for this is 

>~L2 

T = _"'D_ \ dl'J ~··· - = _'<lO_ K I a.•y ) . 
e~ ·, l'1-(a2y/4) 2 sin2 T] e~ \ 4 (g) 

K(y) is a complete elliptical integral of the first kind. If 
the anharmonicity is stronger than the coupling between 
the oscillators, i.e. a2y/4 > 1, 8 cannot attain a value 
of 1T I 4 and in this case the energy of the first oscillator 
is always larger than that of the second oscillator21 . 

As has already been noted, in the case in which we 
are interested a2y /4 » 1. This means that 8 differs 
only little from zero. In this case 8 ~ 2/a2y and the 
energy of the second oscillator E2 ::s 8w6/a2y 2 at all 
times, i.e., there is practically no energy transfer. The 
smallness of 8 means that in the integrand of (8b) one 
can expand the sine, following which the time depen-

2>We note that although a value() = rr/2 does not contradict (8a), it 
is in a classically unattainable region. 

dence of the amplitudes becomes harmonic. Conse
quently, in this case one could solve the problem by re
placing the anharmonic oscillators with zero-point fre
quencies wo by two harmonic oscillators with different 
frequencies W1 = wo + 3 ~.\a2/2wo and w2 = wo with the 
same coupling between the oscillators. This rule can be 
used in the case of many interacting anharmonic oscilla
tors. Replacing the system of anharmonic oscillators by 
a system of harmonic oscillators with frequencies 
wi = wo for the oscillators which are not excited at the 
initial moment and W1 = wo + 3 ~.\ai/2wo for a strongly 
excited oscillator (excitation amplitude a1), we arrive 
at the problem of the local vibration. It is precisely the 
local vibration mode which is excited at the initial mo
ment. In this case too, there is no energy dissipation31 . 

Let us now go over to the quantum case. Although a 
transfer of the energy from a strongly excited anharm
onic oscillator to an unexcited oscillator is classically 
impossible, such a transfer occurs for quantum oscilla
tors (of course with a very low probability). Let us con
sider a system of two quantum anharmonic oscillators. 
The Hamiltonian of the system is of the form 

H= :3 (:i: +U(x;))+~x,x,. 
i=1,2 ~ 

(10) 

Let at the initial moment the first oscillator be in the 
n-th state with an energy En and a wave function ~n(x1)· 
The time during which the entire energy is transferred 
(as has been indicated above it cannot be divided) from 
the first to the second oscillator is 

'ton= ~fon-2, fon= ~ lj:o(x)xlj:n(x)dx. (11) 

The matrix element fon is very small for large n and de
pends strongly on the form of the anharmonicity. For a 
harmonic oscillator only the element f10 differs from 
zero. Let us estimate it for a Morse potential. 

In this case we have 

U(x) =De[1-exp{-~e(x-re)}]", (12) 

De is the dissociation energy and re is the equilibrium 
separation of a diatomic molecule. The energy spectrum 
is of the form 

En= liw.[n + 1/2- Xe(n + 1/,) 2], 

(13) 

The parameter xe characterizes the anharmonicity of 
the molecule. For the strongly anharmonic molecule H2 
the quantity Xe = 0.027 and for the weakly anharmonic 
molecule N2 we have Xe = 0.0061. [21 For heavier mole
cules (I2, K2, etc) Xe can be even smaller. The matrix 
elements f0n for the Morse potential have been calcula
ted in[31 . We present the answer for nxe « 1: 

Thus we have for the time of the transfer of the exci
tation from one molecule to another 

3iThe solutions cited above are in formal agreement only for t < 
1/e2w 0 ; however, with the aid of theorems developed in [ 1 ) one can 
show that the exact solution on an infinite time interval will be close to 
the family of solutions of Eqs. (4). 
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(14) 

Numerical estimates carried out for a series of 
crystals (see below) show that such excitations can 
move across the crystal (with a diffusion coefficient 
Dn ~ l 2/T0n, lis a length of the order of the lattice 
parameter) for a considerable time without exchanging 
energy. 

Let us enumerate certain processes which can lead 
to an energy redistribution, i.e., to a change in the quan
tum number n. First of all radiative transitions belong 
to such processes. For molecules with a small dipole 
moment (CO, NO, and others) the radiative lifetime for 
the n - n- 1 transition is about 1 sec and proportional 
ton. For molecules which have no dipole moment (such 
as 02, H2, and N2) the dipole transition is forbidden and 
only the quadrupole transition is possible. The lifetime 
for the quadrupole transition n - n- 1 is proportional 
to n2 which amounts to ~ 106-10 7 sec for the 1 - 0 tran
sition. [4J 

The most important processes facilitating a change 
of n are thermal transitions taking place with the absorp
tion of several phonons corresponding to translational 
vibrations of the molecules. In fact, since En- En-1 
< E1- Eo [see (13)], the process of transition of one 
quantum to a neighboring molecule is necessarily ac
companied by absorption of phonons from the crystal. 
The radiationless transition n- n- 2, although ener
getically possible at zero temperature, is, however, 
most unlikely since it is connected with the production 
of a very large number of crystal phonons. The number 
of phonons produced Nph can be estimated from the 
formula 

NF = Q I wo ~ 10 -:- 20, (15) 

where n are the intramolecular vibration frequencies 
(~ 1-2 x 103 cm-1) and wo are the highest optical fre
quencies of the intermolecular vibrations of the crystal 
(~ 102 cm-1). 

Let us estimate the probability of a thermal transi
tion with the transfer of one quantum of energy to the 
neighboring molecule. We shall assume that the very 
high-frequency optical phonons are absorbed. It has 
been shown in the theory of radiationless transitions [5 ' 6 J 
that just such processes are the most probable. Accord
ingly we shall restrict ourselves to a consideration of 
translational vibrations of two diatomic molecules loca
ted in one unit cell of the crystal. 

The Hamiltonian of such a system is of the form 
~ 

H= ~H0(x;)+Hq+U(x,x2)q. (16) 

Here H0(xi) is the Hamiltonian of the individual mole
cule which has a quasiharmonic form (for example, with 
a Morse potential), Hq is the oscillatory Hamiltonian of 
intermolecular optical vibrations 

fi2 8' mwo2 q2 

Hq= ----+·--2m oq2 2 
(17) 

m is the reduced mass of the two molecules and q is 
some relative coordinate of these 4 >. 

The third term in (16) represents the Hamiltonian of 

•>q can also be the relative quasirotational coordinate. 

the interaction of translational and intramolecular vibra
tions. We shall represent it in the following form: 

U(x,x2 ) q = q(a,x, + a 2x2 + ~uxt2 + ~22x22 + ~,,x,x,), (18) 

a 1 and 0!2 are linear coupling coefficient and J3ij are the 
anharmonic coupling coefficients of the intermolecular 
and intramolecular vibrations. The frequencies of the 
intramolecular vibrations are considerably higher than 
the frequencies of the intermolecular vibrations. As a 
result of this one can consider the motion of the mole
cular oscillators to be adiabatic. Their wave functions 
zi!s(x1, x2) and eigenvalues Es(q) will depend on q as a 
parameter. In first-order perturbation theory in 
U(x1x2)q we obtain for them 

E,(q) = E,0 + qUss, 

"" u ••. 
tj;,(x1x2;q)= tj;,O(x1x2)+q 4J E,o-E,.o tj;,.0 (x,x,). 

s' 

(19) 

Here zi;~(x1x2) and E~ are wave functions and eigen
values of the Hamiltonian ~Ho(xi) and 

1 
(20) 

The complete wave function in the adiabatic approxi
mation is the product of the wave functions of intra and 
intermolecular motion 

<P,.(x,x2 ; q) = tjJ,(x,x2 ; q)·cpv'(q), 

1 fi' o~ mwo2 q2 . l l ( 1 ) l • ---~+·--+E,(q) <vv'(q)= fiwo v+- +E,0 'l'<'(q). 
L 2m oq 2 2 (21) 

The nonadiabaticity operator giving rise to transitions 
in the system has the following matrix elements: 

V'S' fi' Uss' ( l" 0 ' ) (22) 
M"' =- m E,o-E,,o .l 'fv'(q)aq'h·' (q)dq , 

and the transition probability depends on them in the 
following manner[5 ' 6 J: 

(23) 

Evaluation of this sum yields the following result: 

s' rrp [n(T)]P wo 
W, = ~1)!y6P-1, 

p= 
E,o-E,,o liiUss·l' 

fiw 0 y = mwo(E,o- E,.o) 2 ' 
(24) 

(U.,- u, .•. )• 
6- n(T)= [e""'o/hT -1]-1. 

- 2mfiwo3 ' 

Here p represents the number of phonons which must 
be absorbed from the crystal in order that the transition 
from s to s' be possible energetically. In general p is 
not an integer; therefore in order to satisfy the conser
vation law an acoustic phonon is usually also absorbed. 
Account of this circumstance would complicate the esti
mate considerably. Consequently, following[aJ, we shall 
assume that p can take on arbitrary values in accord
ance with (24). 

In the initial state let the first oscillator be on the 
n-th level and the second one on the ground level; in the 
final state the first oscillator will be on the (n- 1) level 
and the second one on the first level. Then, using (13), 
we find 

2xeQ(n-1) 
P=Pn= 

(25) wo 

(;4 ~122 n 
y = 2fimwo3 Pn2 ' 
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The matrix elements Uss' are calculated in the 
harmonic approximation. The temperature dependence 
of the transition probability is given by the factor 
[ n(T) fn for fl. wo :::P kT (this is true for all the crystals 
under consideration; on increasing the temperature they 
melt); it has an activation form 

w·· { E,o-E,.'} 
•- exp - kT . (26) 

We shall present numerical estimates of the lifetime 
of the n-th vibrational level relative to the thermal 
transition of one quantum to a neighboring molecule for 
the N2 crystal. In the N2 crystal there exist two optic 
intermolecular vibrations: a translational one with nwo 
= 69 cm-1 and a quasi vibrational one with il wo 
= 49 cm-1• [9 J For estimates we shall take the first fre
quency. The anharmonicity coefficients are estimated 
with the aid of derivatives of the Lennard-Jones poten
tial of the N2 molecule. [loJ It was finally assumed that 

It v It -1 
~;,-;::;- -~ 1 em . 

><fl m;oo 

{)n 

v= 2pn2, 
W, ~ :rtwon [n(T)]Pn {)Pn. 

2p,.! 

For example, for n = 7 and T = 30°K we have W7 

~ 10-1 sec. The transition time of the excitation to the 
neighboring molecule is To7 = 1 sec. This means that the 
excitation will complete ten jumps before it imparts one 
quantum to another molecule. At lower temperatures 
(for example, at helium temperatures) the temperature 
factor becomes very small so that the excitation energy 
is practically not dissipated before emission 
(~ 10s-106 sec). The estimates cited provide the limits 
of the existence of such excitations and the method of 
their stabilization. An analogous situation occurs also 
for 02, CO, and NO crystals. The emission of the two 
latter molecules is rather rapid (~ 10 sec). 

A very favorable situation for the existence of 
strongly excited vibrational states occurs in the H2 
crystal. This is connected, on the one hand, with the 
strong anharmonicity of the hydrogen molecule and, on 
the other hand, with the rotation of the hydrogen mole
cule in the crystals>. In this case the transfer of an en
ergy quantum to a neighboring molecule is only possible 
if it has a large rotational energy. The energy which 
must be taken from the crystal is in this instance (for 
the n-th excitation) aEn = 240 cm-1 (n- 1). The transi
tions occur at the expense of the quadrupole- quadrupole 
interaction of H2. Only changes of the rotational quan
tum number J by two units are possible in the first 
order in this interaction. The most probable transition 
is that with the following change of the quantum numbers 
of the oscillators: (0, n!J, 0)- (1, n- 1IJ- 2, 1); the 
first two numbers in the parenthesis show the rotational 
and vibrational state of the first oscillator, and the 

5>Ya. B. Zel'dovich drew our attention to the important role of 
molecular rotation in the hydrogen crystal. 

following two numbers show the analogous states for the 
second oscillator. The transition from the state J = 0 
to the state with J = 0 is impossible for the first oscilla
tor, since it is forbidden for the quadrupole interaction. 
The probability of such a transition can be estimated in 
accordance with the formula 

W 2:rtVQ2 { B 1(1+1)+2} 
,.Q=· hBe exp - " kT ' 

where Be ~ 60 cm-1 is the rotational quantum of a hydro
gen molecule, VQ is the energy of the quadrupole
quadrupole interaction, [4 J and J is determined from the 
law of conservation of energy 

Be[l(l + 1)- (!- 2) (J-1)] = 2hxewe(n -1) + 2B •. 

This equation can be approximately rewritten in the 
form J ~ n. Even for n = 2 this probability is smaller 
than the probability of a radiative transition (for T < Tm 
= l4°K). On the other hand, because of the large 
anharmonicity the excitations of the hydrogen molecule 
have a high mobility. 

Let us note further that according to (24) the proba
bility of a change of one intramolecular quantum into 
intermolecular vibrations is negligibly small, since in 
this case Pn ~ 10-20. [The temperature factor in (24) 
must be omitted.] Consequently, the excited state with 
n = 1 exists up to the emission of this quantum (even for 
polar crystals of the HC l type). The presence of such 
localized long-lived states can lead to the appearance 
of very narrow lines in the inelastic neutron scattering 
by such crystals. 

In conclusion, I express my gratitude to Ya. B. 
Zel'dovich and M. Ya. Ovchinnikova, discussion with 
whom facilitated the clarification of the problem. 
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