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It is pointed out that localized long-lived molecular vibrational states may exist in simple molecular
crystals (Hz, Oz, Nz, NO, CO). Stabilization of such excitations is connected with the anharmonicity of
the intramolecular vibrations. Their mobilities are estimated. The mobility is found to depend strongly
on the excitation quantum number. For example, in an N, crystal the vibrational excitation of a mole-
cule with n =7 can go over to a neighboring molecule (completely, without any change) within a time of
the order of ~1 sec. The finite time of such states is connected with the following processes: a) radia-
tion involving a transition of the molecule to the (n — 1) level which occurs in the course of

~10°-10° sec for N3, O, Hz, and in the course of 1—10 sec for CO and NO; b) transition of the mole-
cule to the (n— 1) level involving transfer of a quantum to a neighboring molecule and absorption of
several phonons from the crystal. The process depends strongly on n and on the temperature. At

T =30°K and n = 7 the time required for the process is ~10 sec. The role of rotation of hydrogen
molecules in an H, crystal is discussed. It is also shown that in such crystals an excitation with n =1
exists up to the moment of the emission of radiation. An experiment is proposed for detecting such

states.

THE purpose of this paper is to point out the possibility
of the existence of localized long-lived highly excited
vibrational levels of molecules in molecular crystals.
The physical reason for the localization of such states
consists in the following. Let us consider two weakly
interacting anharmonic oscillators. At the initial instant
let the first oscillator be excited and the second at rest.
If the excitation amplitude of the first oscillator is
small, then the frequencies of both oscillators are close
to one another. As a result of this, in a time inversely
proportional to their coupling force the entire excitation
energy will be transferred to the vibrations of the sec-
ond oscillator”. If, on the other hand, the initial ampli-
tude of the first oscillator is large, then the frequencies
of the two oscillators differ strongly, since the eigen-
frequency of the anharmonic oscillator depends on its
amplitude. This leads to the breakdown of resonance and
to strong inhibition of the energy transfer from one os-

cillator to the other.
There is a quantum analog of this phenomenon. Let,

for instance, the first oscillator be at the n-th level and
the other at the ground level. It is well known that the
levels of an anharmonic oscillator are not equidistant,
i.e.,

En—Eny % Ey—E,.

Therefore, by virtue of the law of conservation of en-
ergy the first oscillator cannot transfer to the second
oscillator a quantum and thus transfer part of the energy
(we note that this is completely feasible for harmonic
oscillators). Thus, for anharmonic oscillators only the
entire energy and not part of it can be transferred from
one oscillator to the other. The probability of such a
process is, of course, small and shall be estimated be-
low. The indicated difficulties in the energy transfer do

DThis phenomenon is often demonstrated by using as an example
two identical pendulums suspended on a common thread.
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not appear in the case of an oscillator in the n = 1 state.
All this is, of course, only valid in the case when the
anharmonicity energy is larger than the coupling energy
of the two oscillators. This is always true for typical
molecular crystals (such as Hz, N, Oz, CO, etc.) In fact,
the energy of the vibrational interaction of two neighbor-
ing molecules (w) can be estimated from the formula

w o~ e.‘,(E/re)2 where €y is the energy of the van der
Waals interaction of the two molecules (~1 kcal) and
E/re is the ratio (~0.1) of the amplitude of the zero-
point vibrations to the bond length of the molecule.
Taking this into account, we find w ~ 5 cm™. At the
same time, the anharmonicity energy for a not too
strongly excited molecule amounts to ~30 cm™.

For highly excited vibrational states with a large
amplitude one should apparently take £ to be the ampli-
tude of these vibrations. However, in this case the an-
harmonicity energy would also increase correspondingly.
The cited criterion is of a qualitative nature, a more
rigorous expression for it is given below [see the ex-
planation of (9)].

Let us proceed to a quantitative description of the
phenomenon. Let us first consider two coupled classical
anharmonic oscillators. The equations of motion are in
this case of the form

&y 4 wolry + ehxd = efxy,

Fp + wo*r2 + eAxy® = efzy. (1)

Here x; and x, are the coordinates of the first and sec-
ond oscillator, wo are their zero-point vibrational fre-
quencies, € is a small parameter, and A and 3 are
parameters characterizing the anharmonicity and
coupling force of the two oscillators respectively. Let
the oscillator mass be unity. In order to solve the sys-
tem (1), we make use of the method of averaging.’ Let
us introduce the new complex amplitudes p, and p, using
the equalities

. .
Zy = piei®t - pre=iool,
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T2 = ppeivet + py " e=ivet (2)
and the auxiliary conditions

Preiot + pre=iod = 0,

Poeiot | p,:e—ith = 0.

®)

Substituting p, and p, in (1) and averaging over vibra-
tions with a frequency wo, we obtain the following equa-
tions:

dpy 3A

[ —— 2p) = ;= ——

14 de +'V|P1| Pt P2 Y B )

. dp te

i— vlpelt=py = 4)
T o

The first integral of motion of the system of equa-
tions (4) is connected with the law of conservation of
energy

E = E; + E; = 2a%0¢?,
(5)

E1= 2‘[]1'2(\)02, E2= 2]p2|2(002.

Introducing new variables by means of the relations
¢ = P1— Py, (6)
we obtain the following system of equations:

p1 = acos Bet¥,  p, = a sin Be¥z,

6= sin @,
¢ = a?y cos 20 +- 2 cos @ ctg 26. )

The absolute values of the phases ¥, and ¥, are obviously

unimportant. This system can be integrated analytically
with arbitrary initial conditions. For example, let the
first oscillator have at t = 0 the maximum amplitude

and zero velocity and let the second oscillator be at rest,

i.e. ¥3(0) = 0(0) = 0, (0) = 7/2, 6(0) = 1. We then have

cos P = — a[ki sin 20, (8a)
9 dn

T gyt

(8b)

The first of these equations limits the region of possible
values of §. For a’y/4 = 1, i.e. when the anharmonicity
is weaker than the coupling between the oscillators,
arbitrary values of 6 are possible, including 6 = 7/4—
the energies of both oscillators are equal, and 0 = 7/2—
the entire energy has passed to the second oscillator.
The time required for this is

72
T—_‘”_“.'.__.d"_f—,.f:ﬂlda‘i"). (9)
ef ", V1 —(a%y/4)?sin®n ep 4

K(y) is a complete elliptical integral of the first kind. If
the anharmonicity is stronger than the coupling between
the oscillators, i.e. a®y/4 > 1, 6 cannot attain a value
of m/4 and in this case the energy of the first oscillator
is always larger than that of the second oscillator®’.

As has already been noted, in the case in which we
are interested a®y/4 > 1. This means that 6 differs
only little from zero. In this case § < 2/a%y and the
energy of the second oscillator E, = 8 wg/a%y? at all
times, i.e., there is practically no energy transfer. The
smallness of 6 means that in the integrand of (8b) one
can expand the sine, following which the time depen-

2)We note that although a value 8 = 7/2 does not contradict (8a), it
is in a classically unattainable region.
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dence of the amplitudes becomes harmonic. Conse-
quently, in this case one could solve the problem by re-
placing the anharmonic oscillators with zero-point fre-
quencies wo by two harmonic oscillators with different
frequencies w; = wo + 3 €ra?/2wo and w, = wo With the
same coupling between the oscillators. This rule can be
used in the case of many interacting anharmonic oscilla-
tors. Replacing the system of anharmonic oscillators by
a system of harmonic oscillators with frequencies
wj = wo for the oscillators which are not excited at the
initial moment and w; = wo + 3 €xa}/2w, for a strongly
excited oscillator (excitation amplitude a,), we arrive
at the problem of the local vibration. It is precisely the
local vibration mode which is excited at the initial mo-
ment. In this case too, there is no energy dissipation®’.
Let us now go over to the quantum case. Although a
transfer of the energy from a strongly excited anharm-
onic oscillator to an unexcited oscillator is classically
impossible, such a transfer occurs for quantum oscilla-
tors (of course with a very low probability). Let us con-
sider a system of two quantum anharmonic oscillators.
The Hamiltonian of the system is of the form

H= Z <.pi2 +U(Ii)>+ﬁ1112.

(10)
2\ 2H

Let at the initial moment the first oscillator be in the
n-th state with an energy E, and a wave function ¢p(x)).
The time during which the entire energy is transferred
(as has been indicated above it cannot be divided) from
the first to the second oscillator is

o — F”ffm—z, fon=§ bo(z) 2 (2) . (11)
The matrix element f, is very small for large n and de-
pends strongly on the form of the anharmonicity. For a
harmonic oscillator only the element f,, differs from
zero. Let us estimate it for a Morse potential.

In this case we have

U(z) = De[1 — exp {—Be(z—1e)} ]2 (12)

D¢ is the dissociation energy and re is the equilibrium
separation of a diatomic molecule. The energy spectrum
is of the form
En = fie[n 4 Yy — ze(n 4+ 1/2)?],
. (13)
fiwe = V2D B2H% [ p, 2z = hwe [ 4De..

The parameter xg characterizes the anharmonicity of
the molecule. For the strongly anharmonic molecule H,
the quantity x, = 0.027 and for the weakly anharmonic
molecule N, we have xg = 0.0061.”’ For heavier mole-
cules (I, Kz, etc) xg can be even smaller. The matrix

elements f = for the Morse potential have been calcula-
3]

ted in®’. We present the answer for nxg < 1:
Anz,"
2
|f0n| zumenz.

Thus we have for the time of the transfer of the exci-
tation from one molecule to another

3The solutions cited above are in formal agreement only for t <
1/€%w,; however, with the aid of theorems developed in ['] one can
show that the exact solution on an infinite time interval will be close to
the family of solutions of Egs. (4).
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Numerical estimates carried out for a series of
crystals (see below) show that such excitations can
move across the crystal (with a diffusion coefficient
Dy ~ 1*/7q, ! is a length of the order of the lattice
parameter) for a considerable time without exchanging
energy.

Let us enumerate certain processes which can lead
to an energy redistribution, i.e., to a change in the quan-
tum number n. First of all radiative transitions belong
to such processes. For molecules with a small dipole
moment (CO, NO, and others) the radiative lifetime for
the n — n — 1 transition is about 1 sec and proportional
to n. For molecules which have no dipole moment (such
as Oz, H,, and N;) the dipole transition is forbidden and
only the quadrupole transition is possible. The lifetime
for the quadrupole transition n — n — 1 is proportional
to n® which amounts to ~10°—107 sec for the 1 — 0 tran-
sition.t

The most important processes facilitating a change
of n are thermal transitions taking place with the absorp-
tion of several phonons corresponding to translational
vibrations of the molecules. In fact, since En — Ep -,
< E; - E, [see (13)], the process of transition of one
quantum to a neighboring molecule is necessarily ac-
companied by absorption of phonons from the crystal.
The radiationless transition n — n — 2, although ener-
getically possible at zero temperature, is, however,
most unlikely since it is connected with the production
of a very large number of crystal phonons. The number
of phonons produced Nph can be estimated from the
formula

where Q are the intramolecular vibration frequencies
(~1—2x 10° cm™) and wo are the highest optical fre-
quencies of the intermolecular vibrations of the crystal
(~10% cm™).

Let us estimate the probability of a thermal transi-
tion with the transfer of one quantum of energy to the
neighboring molecule. We shall assume that the very
high-frequency optical phonons are absorbed. It has
been shown in the theory of radiationless transitions
that just such processes are the most probable. Accord-
ingly we shall restrict ourselves to a consideration of
translational vibrations of two diatomic molecules loca-
ted in one unit cell of the crystal.

The Hamiltonian of such a system is of the form

5,61

2
H= 3 Ho(z:)+ H,+ U(ziz)q.
i=1
Here Ho(x;) is the Hamiltonian of the individual mole-
cule which has a quasiharmonic form (for example, with
a Morse potential), H, is the oscillatory Hamiltonian of
intermolecular optical vibrations
h2 02
T 2m 6g2

(16)

moe? g2
—
m is the reduced mass of the two molecules and q is
some relative coordinate of these®.

The third term in (16) represents the Hamiltonian of

Hy= (17)

#q can also be the relative quasirotational coordinate.
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the interaction of translational and intramolecular vibra-
tions. We shall represent it in the following form:

U(z122) g = g(ouzs + aoZs + Buzi® + Baoto? + Brozaze),  (18)

a1 and o are linear coupling coefficient and gj; are the
anharmonic coupling coefficients of the intermolecular
and intramolecular vibrations. The frequencies of the
intramolecular vibrations are considerably higher than
the frequencies of the intermolecular vibrations. As a
result of this one can consider the motion of the mole-
cular oscillators to be adiabatic. Their wave functions
¥s(x1, X2) and eigenvalues Eg(q) will depend on q as a
parameter. In first-order perturbation theory in
U(x1Xz2)q we obtain for them

Es(q) = E° + qUS.Sy

Ugs
$s (21225 @) = 0 (z122) + ¢ ) =

o g b (@)
s s’

(19)
Here yg(x,1x.) and Eg are wave functions and eigen-
values of the Hamiltonian Z)Ho(xi) and
i
U= \ g dzy dzy ¢ (2122) U (2122) 0 (2472) (20)

The complete wave function in the adiabatic approxi-
mation is the product of the wave functions of intra and
intermolecular motion

Dy (21225 q) = Ps(x122; ) 9v°(4),

2 g2 1
POL 1 Eu(0) | 0ot (@)= ou( v+ 5) + B2 0 0).

(21)
The nonadiabaticity operator giving rise to transitions
in the system has the following matrix elements:
h2 Uy g ,
?WG (Fus(CI)E%'S (Q)d'I> )
and the transition probability depends on them in the
following manner®?:

Az o?

L 2m ag? 2

M= — (22)

ZRVQ

we =&y -E /kT
hZ =,

[ M pe B (Byy — Evw), Z=Dle . (23)
v

Evaluation of this sum yields the following result:

Wss’ np [n(T)]P ®o y8P—1,
(r—1!
ES—E,0 | Uso |2
P = "0 0 VT Tmae(ES— E0y2 (24)
(U:s - Us's')z ,
[ . At T)= [ehodrT — 1]-1,
b=t (D)= ]

Here p represents the number of phonons which must
be absorbed from the crystal in order that the transition
from s to s’ be possible energetically. In general p is
not an integer; therefore in order to satisfy the conser-
vation law an acoustic phonon is usually also absorbed.
Account of this circumstance would complicate the esti-
mate considerably. Consequently, followingm, we shall
assume that p can take on arbitrary values in accord-
ance with (24).

In the initial state let the first oscillator be on the
n-th level and the second one on the ground level; in the
final state the first oscillator will be on the (n — 1) level
and the second one on the first level. Then, using (13),
we find

o 2zQ(n—1) 5 — E4(P1r— p22)®
p=pm= wo ’ T 2hmed (25)
v = Epuin £2 r_

T 2hmaed pa2’
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The matrix elements Ugys are calculated in the
harmonic approximation. The temperature dependence
of the transition probability is given by the factor
[n(T)IP1 for Aw, > KT (this is true for all the crystals
under consideration; on increasing the temperature they
melt); it has an activation form

s’ E o_Es’0
W ~ exp{——-;}.

kT (26)

We shall present numerical estimates of the lifetime
of the n-th vibrational level relative to the thermal
transition of one quantum to a neighboring molecule for
the N; crystal. In the N; crystal there exist two optic
intermolecular vibrations: a translational one with fw,
= 69 cm ' and a quasivibrational one with f wo
=49 cm .} For estimates we shall take the first fre-
quency. The anharmonicity coefficients are estimated
with the aid of derivatives of the Lennard-Jones poten-
tial of the N; molecule.'™®? It was finally assumed that

hh 1em™
Bis Qu ¥ mag )
Then 6 =~ 107%,
Y= _6L7 W, gwapm
213112 2[7:;!

For example, for n =7 and T = 30°K we have W,

~ 107 sec. The transition time of the excitation to the
neighboring molecule is 7¢7 = 1 sec. This means that the
excitation will complete ten jumps before it imparts one
quantum to another molecule. At lower temperatures
(for example, at helium temperatures) the temperature
factor becomes very small so that the excitation energy
is practically not dissipated before emission

(~10°~10° sec). The estimates cited provide the limits
of the existence of such excitations and the method of
their stabilization. An analogous situation occurs also
for Oz, CO, and NO crystals. The emission of the two
latter molecules is rather rapid (~10 sec).

A very favorable situation for the existence of
strongly excited vibrational states occurs in the H;
crystal. This is connected, on the one hand, with the
strong anharmonicity of the hydrogen molecule and, on
the other hand, with the rotation of the hydrogen mole-
cule in the crystal®’. In this case the transfer of an en-
ergy quantum to a neighboring molecule is only possible
if it has a large rotational energy. The energy which
must be taken from the crystal is in this instance (for
the n-th excitation) AE, = 240 cm™ (n — 1). The transi-
tions occur at the expense of the quadrupole-quadrupole
interaction of Hz. Only changes of the rotational quan-
tum number J by two units are possible in the first
order in this interaction. The most probable transition
is that with the following change of the quantum numbers
of the oscillators: (0, n|J, 0) — (1, n— 1{J — 2, 1); the
first two numbers in the parenthesis show the rotational
and vibrational state of the first oscillator, and the

9Ya. B. Zel’dovich drew our attention to the important role of
molecular rotation in the hydrogen crystal.
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following two numbers show the analogous states for the
second oscillator. The transition from the state J = 0
to the state with J = 0 is impossible for the first oscilla-
tor, since it is forbidden for the quadrupole interaction.
The probability of such a transition can be estimated in
accordance with the formula
2nV? JU+1)+2

szj oxp {_B” kT }
where Bg ~ 60 cm™! is the rotational quantum of a hydro-
gen molecule, Vg is the energy of the quadrupole-
quadrupole interaction,!®! and J is determined from the
law of conservation of energy

BT +1) — (T —2) (7 — 1)] == 2hzs0.(n — 1) + 2B..

WnQ ="

This equation can be approximately rewritten in the
form J ~ n. Even for n = 2 this probability is smaller
than the probability of a radiative transition (for T < Ty,
= 14°K). On the other hand, because of the large
anharmonicity the excitations of the hydrogen molecule
have a high mobility.

Let us note further that according to (24) the proba-
bility of a change of one intramolecular quantum into
intermolecular vibrations is negligibly small, since in
this case p, ~ 10—20. [The temperature factor in (24)
must be omitted.] Consequently, the excited state with
n = 1 exists up to the emission of this quantum (even for
polar crystals of the HC! type). The presence of such
localized long-lived states can lead to the appearance
of very narrow lines in the inelastic neutron scattering
by such crystals.

In conclusion, I express my gratitude to Ya. B.
Zel’dovich and M. Ya. Ovchinnikova, discussion with
whom facilitated the clarification of the problem.
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