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The problem of the ground state of antiferromagnetism is considered from the viewpoint of establishing 
the relation between antiferromagnetic ordering and multiplicity indeterminacy. It is shown that real­
ization of an antiferromagnetic state in a system consisting of an even number of atomic carriers of 
the magnetic moment with identical spins requires indeterminacy of multiplicity. The failure of 
attempts to explain antiferromagnetism in electron systems with an isotropic Heisenberg Hamiltonian 
is due to the fact that the Hamiltonian describes a spin system with a definite multiplicity. Of the var­
ious types of subsidiary (anisotropic) Hamiltonians that are usually introduced for stabilization of the 
antiferromagnetic state, the only Hamiltonians that describe states with indefinite multiplicity possess 
this property. It should be noted, however, that if the Hamiltonian commutes with the time-reversal 
operator the antiferromagnetic state cannot be realized in the degenerate state of a system with 
integer spin. We therefore consider antiferromagnetism in a system in which the Hamiltonian does 
not commute with the time-reversal operator. If the Hamiltonian describing a state with indefinite 
multiplicity commutes with the time-reversal operator, then the stabilized ground antiferromagnetic 
state is degenerate. 

1. THE PROBLEM OF STABILIZATION OF THE ANTI­
FERROMAGNETIC STATE 

J N earlier papersl 1- 3 J we established the connection 
between the change in the multiplicity and the antisym­
metrical exchange interaction. At the same time, we 
clarified the role played by the multiplicity change in 
the stabilization of the weak-ferromagnetism state. In 
the present article we consider the role of the indeter­
minacy of the multiplicity in the mechanism of anti­
ferromagnetic-state stabilization, first proposed by 
Neel l4J and Landau lSJ . 

In the study of antiferromagnetism it is usually as­
sumed that the principal role is played by exchange 
interaction, described by a Heisenberg Hamiltonian 

:JC 0 = l ~ Sy)\, 
(j, k ) 

(1) 

where I is the exchange integral, (j, k) are pairs of 
neighboring sites of the crystal lattice, and Sj is the 
spin-vector operator of the j-th site. It has however 
been noticed long ago that the Hamiltonian (1), with the 
aid of which it is possible to describe the ferromagnetic 
state when I< 0, does not make it possible to describe 
the antiferromagnetic state satisfactorily following a 
simple reversal of the sign of the parameter I (I > 0). 
The complexity of the quantum-mechanical treatment of 
the ground antiferromagnetic state is connected with the 
fact that the wave function 

'¥=IT lj:;(+S') IT lj:;(-S), (2) 

corresponding to two sublattices with sites i and j and 
antiparallel z-projection of their resultant spins +S and 
-Sis not an eigenfunction of the Hamiltonian (1) (see, 
for example/6l). It is therefore usually assumed that 
although the ground state of the antiferromagnetic sys-

tern does not coincide with the state described by the 
function (2), nevertheless it does not differ very strongly 
from the latter, so that the function (2) can serve as the 
starting point for the application of the spin-wave 
method l7 ' 8 l (or other methods l9J) in an approximate 
analysis of the antiferromagnetic state. This basic as­
sumption was not proved, so that the validity of the 
theory (using this assumption) is frequently assessed 
only on the basis of its self-consistency. There is cer­
tainly no such self-consistency if we confine ourselves 
to an analysis of the Hamiltonian (1). The latter is due 
to the fact that functions differing slightly from (2) pre­
suppose the presence of a large z-projection of the re­
sultant spin of each sublattice, whereas the Hamiltonian 
(1) leads to "rotation" of the sublattice spins in space 
(which is formally expressed in the divergence of the 
amplitudes of motion of the transverse components Sx 
and Sy of the resultant spin of the sublattices/8 ' 7 J ). 

The foregoing circumstance has made it necessary 
to introduce into consideration, besides the operator (1), 
additional Hamiltonians :;ell which are usually connected 
with the energy of the magnetic anisotropy of the crys­
tal. For example, the following expression was used 
for :Jt1 inl7J (see alsollo,HJ and elsewhere) 

d61K = K [ L; (Sx;2 + Sy;2 ) +] (Sx,f + Sy,2)] (3) 
; k 

for the energy of magnetic anisotropy with axial sym­
metry. It was concluded there that even small values of 
the parameter K (compared with I) eliminate the diver­
gence of the transverse spin components, making it 
possible by the same token to regard K as a convergence 
factor that ensures stability of the antiferromagnetic 
ground state. 

A similar result was obtained also inl8 J, where the 
anisotropy energy operator was chosen in the form 
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where exp(iW~) reverses sign on going from one lat­
tice site to the neighboring one, so that the effective 
internal magnetic field HA is directed in each site 
parallel to the spin projection in the state (2), f.J.B is the 
Bohr magneton, and g is the Lande factor. 

Thus, allowance for the anisotropy energy makes it 
possible to obtain, as it were, self consistency of a 
theory based on the aforementioned main assumption 
that the ground-state function is close in form to (2). 
However, one must not overestimate the significance of 
this conclusion, since, as noted in[121 , the satisfactory 
final result obtained when using anisotropic additions, 
which leads to stability of the antiferromagnetism, may 
be simply the consequence of the aforementioned main 
assumption, and not a confirmation of its correctness. 
In addition, a weak spot of the spin-wave theory is the 
introduction of a large number of fictitious states. All 
this makes it advantageous to return to a considerationof 
the problem of the ground state of an antiferromagnet 
without using the aforementioned main assumption and 
without using the spin-wave method. 

It will be shown below that realization of antiferro­
magnetism in a system made up of an even number of 
atomic carriers of magnetic movement with identical 
spins calls for an indeterminacy of its multiplicity. 
From the point of view of this criterion, the insufficiency 
of the Hamiltonian (1) for the description of the anti­
ferromagnetic state is due to the fact that the eigenfunc­
tions of the Hamiltonian (1) describes states with defin­
ite multiplicity. In addition, it turns out that the addi­
tional anisotropic Hamiltonians of the type (3) and (4) 
have different values for the stabilization of the anti­
ferromagnetism. Namely, inasmuch as the Hamiltonian 
(3) commutes with the time-reversal operator, its addi­
tion to the Hamiltonian (1), which has a nondegenerate 
ground state, cannot lead to antiferromagnetism. The 
opposite conclusion obtained in [?J is due to the use in it 
of the main assumption, which in this case takes the 
form 

S,k ~ -Sc+ (2Sc)-1 (SxA2 +SyA2), Sc = [S(S + 1)]''• 
(5) 

and in which one postulates essentially that the devia­
tion of the antiferromagnetic state from the state des­
cribed by the function (2) is small. This conclusion is 
thus a simple consequence of this assumption, which 
remains unproved. 

The Hamiltonian (4) does not commute with the time­
reversal operator, and can therefore lead, independently 
of the main assumption (5), to stabilization of the anti­
ferromagnetic ground state. However, the opinion ad­
vanced for example in[8 ' 131 , that the operator (4) plays 
only an auxiliary role and that an appreciable z-projec­
tion of the resultant spin of each sublattice remains in 
the system when the magnetic field HA tends to zero, is 
incorrect. It can be stated, however, that actually when 
HA-- 0 the magnetization of the sublattice vanishes, 
and therefore no antiferromagnetism is produced in this 
case. The opposite result obtained in[8 ' 131 is again due 
to the use of the main assumption (5). In this connec­
tion, we discuss in Sec. 6 of the present paper the possi­
ble appearance of a Hamiltonian of the form (4) in the 

crystal. It can also be shown that in a classical Neel 
antiferromagnetic state (2), which is an eigenstate of the 
Hamiltonian of the type (4), the indeterminacy of the 
multiplicity is equal to the largest possible spin value 
in the system. 

2. CONNECTION BETWEEN ANTIFERROMAGNETISM 
AND MULTIPLICITY INDETERMINACY 

To establish the connection between the antiferro­
magnetism and the multiplicity indeterminacy, let us 
consider a crystal with two sublattices I and II, the total 
spin-vector operator of which S is determined by the 
sum 

(6) 

where s1 and s11 are the spin-vector operators of the 
first and second sublattices. If the crystal is in an 
antiferromagnetic state, then the resultant spontaneous 
mechanization is equal to zero in the absence of an ex­
ternal magnetic field, but the magnetizations of the sub­
lattices (determined by the mean values of the z projec­
tion of the sublattice spins (S1 z> and (s11 z)) differ 

' ' from zero in the region of temperatures below the Neel 
point. Therefore, in the absence of an external field and 
below the Neel point, the antiferromagnetic state is 
characterized by simultaneous satisfaction of the follow­
ing relations: 

(S,) = 0, 

(Sr, ,) =I= 0, (Sn, ,) =/= 0. 

(7) 

(8) 

It follows from (6)-(8) that (SI z> = -(s11 z>• i.e., the 
' ' nonvanishing sublattice magnetizations are equal in 

magnitude and opposite in sign. We introduce the anti­
symmetric operator 

(9) 

which is a generalization of the operator A12 = S1 - S2 , 

which was introduced by us in[11 and used in[2•31 , to in­
clude the case of two centers. From (6) and (9) it fol­
lows that the sublattice spin operators s1 and s11 are 
connected with the operators S and A by the equations 

Sr= 1/ 2 (S+A), Sn= 1/ 2 (S-A). (10) 

It follows from (10) and (7) that the following relations 
hold in the antiferromagnetic state 

(Sr.,) = 1/•<A,), (Sn, ,> = - 1/•<A,). (11) 

Comparing relations (11) with inequalities (8), we see 
that in the antiferromagnetic state there should be 
satisfied the inequality 

(A,) =I= 0. (12) 

This inequality is the necessary condition for the real­
ization of the antiferromagnetic state, determined by 
relations (7) and (8), which reduces to the requirement 
that the mean value of the z projection of the antisym­
metrical operator (9) be different from zero. In this 
case, according to (11), the sublattice magnetizations 
are determined by the mean value of (Az). 

To explain the physical meaning of the necessary 
condition (12), we take into account the fact that, in 
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analogy with the case considered by us in[2 ' 3 l, the anti­
symmetrical vector operator A can transform the state 
of a crystal with spin S only into a state with a spin S', 
satisfying the conditions 

S' = S + 1, (13) 

S' = S. (14) 
In the case of (14), the following equality takes place 
(see, for example, U 4l) 

(S, S,IA,IS, S,) = AsBS,, (15) 

where the coefficient A~ does not depend on Sz. Equa­
tion (15) can be used to consider states in which S and 
Sz have definite values. We shall therefore assume at 
first that in the antiferromagnetic state S and Sz have 
definite values (there is no indeterminacy of the multi­
plicity). In this case it follows from (10) that 

8,=0. (16) 

Substituting (16) in (15}, we obtain (Az) = 0, thus violat­
ing the necessary condition (12). It follows therefore 
that it is impossible to realize antiferromagnetism in a 
state with definite multiplicity and with a value Sz = 0. 

This result suffices to demonstrate the inconsistency 
of theories in which antiferromagnetism is considered 
as a state with a definite spin and with a value Sz = 0. 
Such are, for example, papers in which it is stated that 
antiferromagnetism is a singlet state (for example it is 
stated in [7J that the "ground state of an antiferromagnet 
is indeed a singlet state"). Since S and Sz have definite 
values in the singlet state, namely zero values, it fol­
lows from (16), (15), and (12) that there is not antiferro­
magnetism in this state. 

Let us assume now that for some reasons inherent in 
the crystal Sz has no definite value. In this more gen­
eral case, Eq. (16) does not follow from the condition 
(7). If, however, S has a definite value, then the follow­
ing equality obtains 

(SIA,IS) = ~ I(S,S,IS)I2(S,S,IAziS,S,), (17) 
s, 

where (S, S,ziS) are the coefficients in the expansion of 
the state IS; in the states IS, Sz). We have shown in[2,sJ 
that in the case of a system made up of two centers 
with identical spins S1 = S2 (not necessarily equal to %) 
the matrix elements entering in the right side of (17) 
vanish at all possible values of Sz· The same statement 
remains in force for a system of any even number of 
centers with identical spins. Moreover, for this purpose 
it suffices to require that the system under considera­
tion consist of a pair of centers with spins of equal 
value. 

Indeed, the operator A, defined in (9), is additive with 
respect to the indicated pairs, so that we get the equality 

N/2 

Az= ~Az,a., (18) 

where a(jk} is the number of pair of sites with identical 
spins Sj = ~· and Az, a = Szj- Szk· In (18), each index 
j from the subsystem I is encountered only with a single 
index k from the subsystem II, so that there are N/2 
terms, where N is the number of centers. It follows 
from (18) that 

(S,S,IA,IS,S,)= ~(S,S,IA,,"IS,S). (19) 

To consider the matrix elements in the right side of 
(19), we represent the state IS, Sz) in the form of the 
sum 

IS, S,) = ~ (Sa, Sr., S,, a, S,, ~IS, S,) I Sa, S,, a) I Sr., S,, ~) 
Sz,a, Sz, f\ 

(Sz. a+ Sz, ~ = S,), (20) 

where a is a system of a pair of spins Sj and Sk; {3 is a 
system made up of all the remaining N - 2 spins, and 
(Sa, S{3, Sz,a• Sz,{31S, Sz) are Wigner coefficients. It 

follows from (20) that 
(S,S,IAz,aiS, S,) 

~ I (Sa, Sr,, S,, a. S,, ~IS, S,) 12 (Sa, S,, a I A,, al Sa, S,, a), (21} 

where account is taken of the fact that the operator 
Az a does not act on the system (3. But according 
toc2,sJ all the matrix elements in the right side of (21) 
are equal to zero, since the system a consists of two 
identical spins. We then obtain accordingly from (19) 
and (21) 

(S, S,IA,IS, S,) = 0. 

From (22) and (17) it follows that 

<SIA,IS> = 0. 

(22) 

(23) 

By the same token we have demonstrated that if the sys­
tem consists of an even number of centers with identical 
spins or if the system consists of pairs of centers with 
identical spins, then, regardless of the definiteness of 
the projection Sz, the condition (14) is excluded, so that 
the operator Az is the operator of the excitation of the 
multiplicity of such a system. From a comparison of 
(23) with (12) it follows that in a system made up of an 
even number of sites with identical spins antiferromag­
netism is possible only in states having an indeterminate 
multiplicity. 

3. PROOF OF UNSUITABILITY OF THE ISOTROPIC­
EXCHANGE HAMILTONIAN FOR THE DESCRIPTION 
OF ANTIFERROMAGNETISM 

We shall use the conclusion derived in Sec. 2 to 
analyze the properties of Hamiltonian (1). This Hamil­
tonian commutes with the operator S2 and consequently 
describes a state with definite multiplicity. According 
tou0 ' 15l, the ground state of the Hamiltonian (1} is sing­
let when I > 0. As noted in Sec. 2, in this case the anti­
ferromagnetism cannot be realized. This also explains 
the impossibility of describing antiferromagnetism with 
the aid of the Heisenberg Hamiltonian (1). 

It can be shown that in the case of a singlet state 
there is another possible proof, not derived from 
formula (15}, of the absence of antiferromagnetism. 
The point is that the singlet state is a nondegenerate 
state with an integer spin value. We shall show that if 
the Hamiltonian of the system commutes with the time­
reversal operator ®, then (Az) = 0 in any nondegenerate 
state with integer spin. 

Indeed, let >11 be the eigenstate of the energy operator 
of the system. Then, according to formula (26.8) of[lsl, 
the following equality holds 
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(24) 

It follows from the definition (9) that the operator Az 
anticommutes with the operator ®, and therefore 

(25) 

where, in addition, account is taken of the fact that Az 
is a self-adjoint operator. According to the condition 
assumed above, the Hamiltonian commutes with the 
time-reversal operator®. Consequently, the functions 
®>I!' and >I!' correspond to the same energy. Since this 
energy level is nondegenerate in accordance with our 
initial assumption, the following equality holds true 

(26) 

where y is the phase, so that ®2 = 1, as should be the 
case for a state with integer spin. Substituting (26) in 
(25) we get (A ) = -(Az), from which it follows that 
(A ) = 0. The zlatter, according to the condition (12), 
de;otes absence of antiferromagnetism. The conclusion 
that there is no long-range antiferromagnetic order 
defined by the quantity (SI z) in a nondegenerate ground 
state of the Hamiltonian tliat is invariant against time 
reversal, was qualitatively obtained in a paper by 
Prattu91 • 11 

We have thus shown that if the Hamiltonian of the 
system commutes with the time reversal operator, then 
no antiferromagnetism can be realized in a nondegen­
erate state with an integer spin. The result is an appli­
cation to the antiferromagnetism problem of the well 
known theorem that the mean value of any time-odd 
operator vanishes in a state that is "invariant" with 
respect to ® (see, for example, l17l ). From this point of 
view, the inadequacy of the attempts (undertaken in[71 

and elsewhere) to "correct" the Hamiltonian (1) by add­
ing to it an magnetic-anisotropy energy operator of the 
type (3) becomes clear. A more detailed analysis of the 
properties of the Hamiltonian (3) is presented below. 

4. INSUFFICIENCY OF THE ANISOTROPIC PERTUR­
BATION FOR THE STABILIZATION OF THE ANTI­
FERROMAGNETIC STATE 

Let us consider now the Hamiltonian 

de=:l6o+:l6,K=l ~S;S•+K [~ (S,}+S.lJ+ ~ (Sx•'+S••2)1, 
(j, h) j k (27) 

where I> 0. The Hamiltonian .7C1K differs from a con­
stant only if the spins of the magnetism carriers at the 
crystal-lattice sites are larger than 1/2. This Hamil­
tonian does not commute in this case with the operator 
S2 , and consequently its eigenstates can have an indeter­
minant multiplicity. If, however, in accordance with[71 , 

1>Mention should also be made that in another paper [20] the long­
range antiferromagnetic order is characterized by the quantity Rjk = 
~SjxSkx + SjySky), wherej and k ~e the ~umbers_of t?e.latti~e sites. 
Obviously, the operator Rjk, which 1s even m the spms, IS mvana~t 

against the time reversal, and therefore we cannot use the proof given 
in the text for the vanishing of the mean value <Rjk>. However, one can 
hardly regard the quantity (Rjk> as an adequate measure of the long­
range antiferromagnetic order, since, for example in the case of a sys­
tem consisting of a pair of sites with spin 1/2, this quantity differs from 
zero both in the singlet and in the triplet states (i.e., at both possible 
signs of the exchange integral). 

we regard the coefficient K as a "convergence factor," 
called upon to ensure stability of the antiferromagne­
tism, then it is easily seen that the Hamiltonian .7C1K 
does not possess this property. Indeed, if .7C1K is a 
small perturbation, then the ground state of the Hamil­
tonian .7C0 is shifted, but the new ground state of the 
operator (7), resulting from the singlet, remains non­
degenerate. Since the Hamiltonians :760 and X 1K commute 
with the time-reversal operator ®, it follows therefore, 
in accordance with the result obtained in Sec. 3, that 
(A ) = 0 in the ground state of the Hamiltonian (27), and 
co~sequently no antiferromagnetism is realized. 

The question may arise of how the opposite conclu­
sion, that the antiferromagnetic state is stable when an 
anisotropic operator (3) is added to the Hamiltonian (1), 
was reached inl7 J (and elsewhere). The answer becomes 
clear if it is recalled that in these papers they use, be­
sides the Hamiltonian (3), also the "main assumption" 
in the form of formulas (5). The latter makes it possi­
ble to transform the Hamiltonian (3) into 

:16m= 2KNS,2 + '!SJ( (~ Sz•- ~ Sx;), (28) 
k j 

or 

d6 1K = 2KNSc2 + 2S,KAz. (29) 

It becomes obvious from (28) and (29) that the as­
sumption (5) changes the character of the symmetry of 
.7C1K relative to the time reversal, and formally trans­
forms the Hamiltonian (3) into a Hamiltonian of the type 
(4). It follows therefore that the addition of the aniso­
tropic perturbation of the type (3) to the Hamiltonian 
(1) does not lead by itself to stability of the antiferro­
magnetic state. The opposite result obtained in [71 is a 
consequence of the additional assumption (5). In other 
words, the antiferromagnetism was obtained in (7) be­
cause it was postulated from the very outset. 

5. ROLE PLAYED IN THE STABILIZATION OF THE 
ANTIFERROMAGNETIC STATE BY A HAMILTONIAN 
THAT IS ODD WITH RESPECT TO TIME REVERSAL 

We now consider a spin-system Hamiltonian in the 
form 

(30) 
(jk) 

where p = JgJ.L BH A exp(iWRk) I and I > 0. This Hamil­
tonian contains from the very outset an operator Az 
which is odd with respect to time reversal. If, however, 
we apply to (3) a "main assumption" of the type (5), as 
is done in the spin-wave theoryl8 ' 131 , then the difference 
between :1C1A and 3t1K with respect to their commutation 
properties with the time-reversal operator vanishes 

h 1 . d . [8,13] formally. This has led tot e cone us1on rawn m 
that the coefficient p also plays the role of the '' conver­
gence factor," and that even in the limit as p -- 0 the 
lattice is spontaneously antiferromagnetic, and the 
magnetization of each sublattice is close to saturation. 
we shall now show that this conclusion, based on the 
assumption (5), is incorrect and that actually the magne­
tization of the sublattices tends to zero when p - 0. 

Let E and >I!' be respectively the eigenvalue and the 
eigenfunction of the Hamiltonian (30). Then for the aver-
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age value of the operator Az we have the equality 

<A,>= <'I' lA, I'¥>= oE I op. (31) 

Regarding pAz as a perturbation, we obtain for E the 
expression 

""' I<Wm•IA·I'I'o>l• (32) 
E=Eo+p('l'oiA,I'I'o)+p2 "'-~. Eo-Em• + ... , 

m 

where '11° and E0 (m ;>< 0) are the eigenfunctions and 
m m . th eigenvalues of the Hamiltonian i!Co, and Eo IS e energy 

of the singlet and consequently nondegenerate state of 
'11 0 , while the prime of the summation sign denotes 
elimination of the term with m = 0. The second term 
in the right side of (32), which is linear in p, vanishes 
because of the absence of transitions between the states 
with S = 0i14l. It therefore follOWS from (31) and (32) 

""' I ('l'm•IA·I'I'o) 12 + (33) 
(A,)= 2P "'-~ Eo-Ern• ... 

m 

Putting p = 0, we obtain from (33) (Az) = 0, which de­
notes, in accordance with (11), that the sublattice mag­
netizations are equal to zero and there is no antiferro­
magnetism. 

The same result can be obtained also without using 
perturbation theory. To this end we take into account 
the fact that the Hamiltonian (30) satisfies the commu­
tation relation 

S+d'6-d'6S+ = -pA+, (34) 

where 

8± = Sx ± iSy, A±= Ax± iAy. 

On the other hand 

S+A-- A-S+= 2A,. (35) 

It follows from (34) that 

('l'niS+I'I'm)(En-Em) =p('l'niA+I'I'm), (36) 

inasmuch as 'It and '~~m are eigenfunctions of the Hamil-
n nd' tonian (30), while En and Em are the correspo mg en-

ergies. On the other hand, according to (35) 
(A,)nn = ''I'niAzl'l'n) 

= 1/2]'[ ('l'n IS+ I 'l'm)('l'm lA-I 'I' n) - ('I' n lA-I 'l'mX'I'miS+I 'l'n) ]. 
'm (37) 

It follows from (37) and (36) that 

__ p "'1('1'rniA-I'I'n)l 2 +1('1'miA+I'I'n)l 2 • (38) 
(A•)nn- 2 '";: Em-En 

Putting in (38) p = 0 and noting that, by virtue of (36), 
the terms with Em = En make no contribution to (Az>nn• 
and when Em ;>< En the denominators on the right side 
of (38) are determined in the case when p - 0 from (30) 
by the nonvanishing exchange integral I, we get (Az>nn 
= 0, which means that there is no antiferromagnetism. 
Thus, the coefficient p, which is connected with the field 
HA, cannot be regarded as a convergence factor that 
vanishes in the limit. Only finite values of p can lead to 
a finite magnetization of each of the sublattices and 
consequently to antiferromagnetism. We note also that 
from (38) there follows a "sum rule" 

~ (A•)nn= 0.· (39) 

This means that the mean value (Az)nn is positive for 
some states and negative for others. 

In the ground state (n = 0) we get for the energy Eo 
the inequality Em - Eo > 0 at all values m ;>< 0. There­
fore (38) leads to 

sign (A,)oo = -sign p, (40) 

which is understandable, for in this case the contribu­
tion of pA to the energy, i.e., to the eigenvalue of the 
Hamiltoni!n (30), is negative. From (40) and (11) it fol­
lows that when p > 0 the magnetization of the sublattice 
I is directed against the z axis, and that of sublattice II 
along the z axis. When p < 0 the magnetization of the 
sublattices have the opposite directions. 

6. POSSIBLE CAUSES OF APPEARANCE OF STABIL­
IZING FACTORS 

The foregoing analysis shows that the presence in 
the Hamiltonian of an antisymmetrical spin operator Az 
connected with the change of the multiplicity can lead 
to the stabilization of the antiferromagnetism. Yet 
in[8,l3J, where they introduced and used the Hamiltonian 
(4) which is equivalent, as shown above, to the operator 
pAz, its origin was not explained. In this connection it 
is of interest to discuss the possible causes of the ap­
pearance of a term of the type pAz in the spin-system 
Hamiltonian. 

One of the possible and natural causes of the appear­
ance of an antisymmetrical spin operator Az in the 
Hamiltonian is, in our opinion, the spin-orbit interac­
tion. Indeed, the Hamiltonian of the spin-orbit coupling 
of two particles with spins S1 and S2 and orbital angular 
momenta l 1 and l 2 can be represented in the form 

i;(l1S 1 + l~2 ) = 1/ 2i;(l1 + l2)S + 1/2b(l, -l2)A, (41) 

where l; is the parameter of the spin- orbit interaction, 
S = S1 + S2, and A = S1- S2. The appearance in (41) of 
the operator A connected with the change of the multi­
plicity does indeed show that the spin-orbit interaction 
can play an important role in the stabilization of the 
antiferromagnetic state. It must be taken into account, 
however, that in the case of (21) the vector parameter 
p = % l; ( h - l2 ) is a function of the orbital angular mo~ 
menta, so that in this case the product pA as a whole IS 
invariant against time reversal. According to the 
theorem proved in Sec. 3, this means that the condition 
(A ) ;>< 0 can be satisfied only for the degenerate state. 
Co~sequently, the stabilized antiferromagnetic state of 
which spin-orbit interaction can lead is degenerate. 
This is understandable, for in the case Pz = % l; ( l~ - l~), 
for a specified z axis, it is impossible to speak of a 
definite sign of Pz• and consequently the two possibl~ 
sublattice magnetization directions are connected with 
a single energy. This degeneracy with respect to direc­
tion can be lifted (just as in the case of ferromagnetism) 
with a magnetic field. It is therefore advantageous to 
consider from the very beginning the case of exchange 
interaction in the presence of local magnetic fields. 

Let us consider for simplicity two centers with spins 
S1 = %and S2 =%in magnetic fields H1z and H2z· The 
Hamiltonian of this system 

d'6 = 1(8182) + JLs(S,,H,, + S2,H2,) (42) 

has the following eigenvalues, eigenfunctions, and aver­
age values of the operator Az = slZ- s2Z: 
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I llB 
Et=4+2(Ht,+H2,), 'l't='l'tT• (A,)H=O; (43) 

E2 = ~ - iB (H1, + H2,), "¥2 = '¥,T, (A,)22 = 0; (44) 

I 1 
Ea= - 4 + 2 [12 + llB'(H1,-H2,)']'", 

1 . 
'~'• = F {[I+ ii' + J.!B'(H,,- H,,) 2] 'l'T + J.!B(H,,- H,,) 'l'B}, (45) 

(A,)aa = !lB(Ht,- H,,)[/2 + !lB'(H1,- H2,)2]-'i•; 

I 1 
E,= -4-2[1'+ 1-'s'(H,,-H,,)•}'I•, 

1 . 
'l'•=p {(I +"fJ2+ llB2(H,,-H,,) 2]'l'8 - ~tB(H,,- H,,)'F}, (46) 

(A,) 44 = - (A,)a3; 

F = {[I+ yJ2 + llB2 (Htz -H,,)2)2 + lli(Htz- H,,)'}'\ 

where 'liT, 'lt1, and wT are triplet states with Sz equal 
to + 1, -l, and 0 respectively, and ~ is a singlet state. 

Let us assume that H lZ and H2z can vary freely in the 
range between-Hand +H, where H > 0. Then the mini­
mum value of the levels E1 and E2 is 

I 
Eu= 4 -illB!H, (47) 

which corresponds to the state 'ltf when J..I.B > 0 and to 
the state 'liT when J..I.B < 0. The index 11 denotes that the 
energy (47) is reached at H lZ = H2z = ±H, i.e., when the 
fields H1 and H2 have the same direction (both are either 
parallel or antiparallel to the z axis). 

The minimum value of the levels E3 and E 4 is 
I 1 •;,, 

E11 =- 4 - 2 (1'+ 4!-la'H') (48) 

where the index • t denotes that (48) is reached in the 
case when H1 and H2 are directed oppositely (H lZ = - H2z 
=±H). 

From (47) and (48) we get 

Eu -En = 1t.[2IJ.!BIH-J-i(2lfLBIH+ IJI)'±4IJ.IB:IIIIH]. (49) 

The right side of (49) is negative when I > 0 and posi­
tive when I< 0. Consequently in the case when I< 0, 
when the exchange without allowance for the fields H1 
and H2 contributes to the "ferromagnetic" orientation 
of the spins, the same exchange contributes to parallel 
orientation of fields H1 and H2 of equal magnitude. In the 
case when I> 0, and the exchange without allowance for 
the field H1 and H2 contributes to the realization of the 
singlet state, the same exchange contributes to anti­
parallel orientation of the equal fields H1 and H2. Thus, 
when I > 0 the minimum energy corresponds to the 
Hamiltonian 

(50) 

which is obtained from (42) by making the substitution 
H 1Z = - H2z = ± H, and the maximum value (Az), which 
equals, according to (46}, 

<A>- 2!-l# _ 
' - + (12 + 4~s' H•) •;, 

(51) 

A comparison of expressions (51) and (48) shows that 
degeneracy takes place in this case, since± J..I.B corre­
sponds to the same energy. This degeneracy is connec­
ted with the assumption that the sources of the field of 
given intensity H can freely change their orientation 

relative to the z axis. In the case of fixed field sources, 
and consequently fixed values of HlZ and H2z, there is, 
of course, no degeneracy. This is seen from (45) and 
(46), for different signs of (Az) correspond to different 
energies. 

The foregoing shows that the presence of local mag­
netic fields can lead to satisfaction of the condition (12), 
i.e., (Az) r< O, and consequently to the possibility of 
antiferromagnetism. 

It is possible to propose various models that ensure 
the appearance of local magnetic fields. Besides the 
spin-orbit interaction, interest attaches in this respect 
to the separation inl18J of the roles played by different 
d-electrons in the establishment of the magnetic order. 
If, for example, we assume, followingllBJ, that the ferro­
magnetic coupling is due toe-electrons (or, depending 
on the lattice, conversely, p-electrons), then the role of 
the magnetizing (non-exchange) factor can be assigned 
to p- electrons (or, conversely, to e- electrons) of the 
d- shell. These models, however, will not be considered 
here, since the main purpose of the article is to estab­
lish a connection between the antiferromagnetism and 
the indeterminacy of the multiplicity, independently of 
the concrete details of the model. 21 

The existence of such a connection follows not only 
from an analysis of the above-considered Hamiltonians 
that are usually employed in the quantum-mechanical 
study of antiferromagnetism, but also (as shown by the 
necessary condition (12) derived by us) from the general 
notion of antiferromagnetic ordering as an aggregate of 
two sublattices magnetized in parallel but with zero 
total magnetization. In particular, regardless of the 
origin of the classical antiferromagnetic state (2}, it 
can be shown that in this state the indeterminacy of the 
multiplicity is equal to the maximum value of the spin of 
the system. All this makes it possible to state that the 
appearance of two sublattices with antiparallel magne­
tization and with zero total magnetization is closely con­
nected with the multiplicity indeterminacy, which thus 
turns out to be essential for realization of antiferro­
magnetism. 
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