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It is shown that processes which occur without conservation of the number of quasiparticles in ferro­
dielectrics or metals result in the additional absorption of second sound, similar to the absorption 
associated with second viscosity in hydrodynamics. 

AS is well known, temperature waves can propagate in 
solids at low temperatures. These are called second 
sound and represent oscillations of the density of ele­
mentary excitations, i.e., ordinary sound in a gas of 
quasiparticles. For the existence of second sound, it is 
necessary that the normal collisions between quasipar­
ticles, which lead to the establishment of local thermo­
dynamic equilibrium in the system of quasiparticles, be 
more probable than processes that establish equilibrium 
between the quasiparticles and the lattice (transport 
processes, scattering by lattice defects and so forth). 
The attenuation w" of second sound is connected with 
collisions of both types and is equal, in order of magni­
tude, to 

"'" ( l . --- ffi'tN+--), 
ro ro'tv 

where TN and Tv are the relaxation times of the normal 
collisions and of the processes which establish equili­
brium of the quasiparticles with the lattice, and w is the 
frequency of second sound, which satisfies the conditions 
Ty « w «TN. 

In this paper we take into account the influence of 
processes connected with the nonconservation of the 
number of quasiparticles on the absorption of second 
sound in ferrodielectrics and metals with multiply con­
nected Fermi surfaces. The sound absorption mechan­
ism considered is similar to the mechanism proposed 
by Mandel'shtam and Leontovich for liquids, [lJ in which, 
as is well known, it is assumed that the presence of 
slow processes of establishment of equilibrium is 
macroscopically equivalent to the presence of a second 
viscosity with dispersion. In our case, the role of the 
slow processes is played by the processes which take 
place with nonconservation of the number of particles, 
and the parameter which characterizes the slow proces­
ses is the chemical potential of the system, J.l.· 

1. In ferrodielectrics, second sound is the oscillation 
of the magnon density. l2l For not too low temperatures, 
T ;;::: 10° K, the role of normal collisions is played by 
processes with exchange interaction between the quasi­
particles, as is well known. For this case, the number 
of magnons is conserved, as is their chemical potential 
J.1.. Account of weak relativistic interactions, which do 
not conserve the quasiparticles, leads to relaxation of J.1. 
under these conditions and hence to an attenuation of the 
second sound. 

Let us consider a uniaxial ferromagnet with a pre­
ferred axis along the direction of the external magnetic 
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field Ho, i.e., Ho llniMo. The law of dispersion of mag­
nons differs from a power law and has the form 

~(p, r, t) = e(p) + t.tB(nh), 
(1) 

where 
H•t = H0 + pMo. 

Here the following notation is used: ® c is a constant on 
the order of the Curie temperature, a the lattice con­
stant, h Planck's constant, J.l.B the Bohr magneton, {:3 the 
constant of magnetic anisotropy, and h the variable 
magnetic field produced by the spin wave. The kinetic 
equation for the magnon distribution function 

dN ~ ~ dN oN oN 8e (2) 
-=l,(N)+la(N), -=-+v- v=--

dt dt iJt or ' iJp ' 

can be solved by the method of successive approxima­
tions, as is well known (I4(N) is the integral of fourfold 
exchange interactions, Ia(N) is the integral of threefold 
relativistic interactions). The zero approximation f4(N°) 
= 0 leads to the drift solution N° 
= N0("E- p · u- JJ.)/(1 + v)T, where u is the drift velocity, 
.J the relative change in the temperature, No(E) 
= [exp(E/T)- 1r1 is the equilibrium Bose distribution 
function. 

We write down the conditions for solution of the 
kinetic equation in first approximation, which consist of 
the conservation of the number of particles in the ex­
change collisions with conservation of energy and quasi­
momentum for collisions which include both exchange 
and relativistic interactions: 

~J4dp = ~e(p)(/: + l,)dp ~ ~p(I4 + J3)dp. (3) 

The conditions of the solvability of (3), the expression 
for the density of magnetic moment M and Maxwell's 
equations, in which the displacement current can be 
neglected because of the smallness of the ratio V /c « 1 
(Vis the speed of second sound, c the speed of light), 
form a complete set of equations for the drift param­
eters u, J.1., .J, the magnetic moment M, and the field h: 

. . . (1) 
(1) f.l +(e) 1') + (p.v.) div u- ~'B (1) (nh) + -- f.l = 0, (4) 

'ta 

(e)~+ (e2)t}. + <pxVxe>div u- ~~B<e> (ub) = 0, 
. iif! , ofr iJ(nh) 

(p;pk) Uk + (pxVx) --- + <PxVxEt ~--- f!B (pxVx) -i)- = 0, 
GXi OXi Xi 

II ( f!B r ) l\1 = H , M0 - --;;;; J N° dp , roth= 0, div(h + 4nl\1) = 0, 
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where 

H = Ho+h, 
(' uNo 

(q;(p)) =- .l q;(p)-dp. · ae 
We have introduced T3 above as the mean relaxation time 
in relation to processes of threefold relativistic interac­
tions, 

which is obtained as the result of substitution of the 
drift solution N> in the integral of triplet collisions, 
using the linearization 

A No(e) 1 
la(N°)= -----[1 

T Ta(pt) 

(5) 

and then averaging over the momenta; T3(pl) is the re­
laxation time of relativistic scattering of magnons with 
momentum P1· 

_ 1_ = \ dp2 dpa { \ '¥(1, 2; 3) \2 No(ez) (No(ea} + 1) · 
-ra(P1) • 

·O(p 1 + pz- p3)o(e, + Bz- ea) -\'¥(2, 3; 1) \2 (No(ez) + 1) · (No(ea) 
+ 1}6(p1 - Pz- pa)ll(e,- ez- ea) }, 

(6) 

where -¥(1, 2; 3) ~ -¥{2, 3; 1) ~ P-BM0/v'N is the ampli­
tude of relativistic scattering of the magnons, N the 
number of magnons, 1 = p1, 2 = p2, 3 = P3· In obtaining 
(5), it was assumed that BNo/BE = -No/T. 

According to[31 , 

~ ~ J!'J!Mo)' (_!__ )'h In' ~JlBlJef fllJ'I <if; T (7) 
't3 1!8, 8, I T • 

In the case under consideration, the sound wave is, as 
is known,[21 principally a temperature wave (P.Bh/JT 
« 1); therefore, in obtaining the dispersion equation of 
the system (4), the variable magnetic field h can be left 
out of consideration. Assuming u, p., J 
~ exp(- i wt + ik · r), we obtain the following dispersion 
equation of the system (4): 

w = d (Vo2 - V~2iw-ca) ((e2) (12__-:- \e)2)+ V02 (e)'l';, 
(e') \1)- iw-r3 ((e2) (1)- (e)') \ ' {8) 

where V~ = (a-1)KK(pKvKE) 2/(E2) is the speed of second 
sound in the case in which the number of quasiparticles 
is not conserved and p. = 0, 

V 2 _ (;-1}xx((pxVx? 2(e2) +J:P~x£)2 (1)-2 (pxVxB) (pxVx) (e)) 
oo - ( (e2) \1) - (e) 2} 

is the speed of sound when the number of particles is 
conserved, aik = (pipk), (a-1) = (&-1)ik Ki Kk, K = k/k is 
the unit vector along the direction of propagation of the 
wave. 

In the case of small frequencies wT3 << 1 (here, 
naturally, we must satisfy the conditions wTN « 1, 
wTy » 1, TN< 73) from the dispersion equation (8) we 
get 

h··W 2 . ( (e)2 ) w =kV0 --"-(V '-L,2 ) 1----
2Vo2 00 

· (e2) <f) · (9) 

It follows from Eq. (9) that the speed of propagation of 
sound in the case of low frequencies wT3 « 1 is equal to 
Vo, since in this case the period 1/w of the sound wave 
is large in comparison with the relaxation time T3 and 
equilibrium can be established in the system relative to 
processes of threefold relativistic interactions. The 
attenuation w" in this case is proportional to w 2. 

In the opposite case of high frequencies w T3 » 1, the 

solution of the dispersion equation (8) has the form 

. (V ~'- Vo2) ( (e) 2 )-1 
w =kV~-' 1----

2-ra V oo 2 , (e2) (1) · 
(10) 

The sound wave in this case is propagated with a speed 
Voo, inasmuch as three-particle interactions cannot take 
place within the time of a single period and the number 
of particles in the system is conserved. The attenuation 
w 11 in the case w T3 >> 1 does not depend on the frequency 
w. 

In both limiting cases the relative attenuation is 
small, w"/w << 1; it has a maximum at some intermed­
iate frequency, equal to 

Vo ( (e)' )-1 
Wext = TaV~ 1-(ez) (1) . 

The maximum attenuation is given by {Fig. 1): 

( w") V~-Vo 
-;;;--- ext = V oo + Vo . 

It is not difficult to show that 

V ~' _ Vo' = (;;,-1}xx ((PxVx) (e2) - (pxVxe) (e)) 2 {11) 
(e2) ((e2 ) (1)- (e) 2 ) 

As follows from (11), the attenuation of sound w" differs 
from zero only for a non-power-law dispersion for the 
magnons E(p); in the opposite case, [21 (E2)(pKvK) 
- (pKVK )(E) = 0. 

We estimate the value of the attenuation at the maxi­
mum. Substitution of the magnon dispersion law (1) in 
(11) yields the result 

( ~) ~ ( [1BJ1'1 )', 

W 'ext T 
(12) 

We set T ~ 10°K, J3 ~ 3-5, P-BMo ~ 1oK; then (w"/w)ext 
~ 0.1-0.2. Such an absorption is entirely susceptible 
of experimental observation. 

We shall now consider the case of low temperatures, 
T < 10°K, when the threefold relativistic interactions, 
more probable than the fourfold exchange interactions 
(T3 < T4), will play the role of normal processes. In this 
case, the fourfold interactions will not lead to an addi­
tional absorption of second sound, since they do not 
change the states of the magnon system (they change 
neither the energy, the momentum nor the number of 
magnons). Formally, this follows from the circumstance 
that the solution of the equation ~(No) = 0, which has the 
form 

( £- pu ) 
NO= N~ I (1 + t't) T', fl =0, 

also causes the integral of the four-particle exchange 
interactions to vanish; i.e., I4{N°) = 0. 

t/w 

FIG. I. Relative attenuation of second sound in ferrodielectrics as a 
function of the period of the sound wave, with account of processes lead­
ing to second viscosity; the value of the attenuation at maximum amounts 
to (pH/T)2 . 
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2. In metals at low temperatures, second sound is 
possible in the system of conduction electrons, the inter­
action among which takes place by way of exchange of 
thermal phonons. l 41 The necessary condition for the ex­
istence of second sound is the equality of the number of 
electrons and holes in the metal: n. = n_. This is neces­
sary in order that the drift regime of the kinetic equa­
tion does not lead to the appearance of an electric cur­
rent. We consider metals with multiply-connected 
Fermi surfaces, which can consist of separate surfaces 
(or groups of surfaces), separated from one another by 
a distance much greater than the temperature momen­
tum of the phonon. The role of the normal collisions 
here is played by the processes of migration of elec­
trons within the limits of a single Fermi surface due to 
the absorption of thermal phonons. The transitions of 
the electrons b.etween the separate groups of surfaces 
lead to an additional attenuation of the second sound in 
metals, which in its nature is similar to the second vis­
cosity in hydrodynamics. This attenuation can be found 
by means of the simultaneous solution of the kinetic 
equations for electrons f(p, r, t) and phonon N(q, r, t) 
distribution functions by the method of successive ap­
proximations. The kinetic equations for the electrons 
and phonons in zeroth approximation will have drift 
solutions with identical values of the parameters u 
and"· However, we should consider the change in the 
chemical potential of the electrons li 11 a to be different 
for the separate groups l 4 l (a is the index denoting the 
group). The solvability conditions of the kinetic equa­
tions in first approximation lead, as above, to a set of 
equations for the drift parameters u," and li~: 

( 1 ) i (i)u C1 (6[1"- 6[1"') 
(1)"6~t" + (e)•tt + u; (p;)"-- (p1v,)• = -- ~ , 

V W a' 'taa' 

~ 6~t"(e)•+tt((e2)+(Q2))+u;[ (p;e)- ~.((p1u,e)+(q,s,Q))] =0, 

~ 6[1" ( (p,)a- ~ (p;v,)a) + t'i [ (P;F.)- ~ ((p;Vx€) 

+ (q;s,Q)) J + uk [ (p;pk) + (q;qh)- ~T (p;phvx)] = 0. (13) 

Here we have used the following notation: w = kV, 
k = Kk; E(p) and v = oE/op are the dispersion law and 
speed of electrons, respectively; a(q) and s = aajaq 
are the dispersion law and speed of phonons, respec­
tively, E = E - J1; 

(<p(p))• = ~J dp•q:(p•)(- ~:~ ). 

1 r ( fJNo) 
('ljl(q)) = h• J dq'IJ(q) '-TQ , 

f0 = [exp("E/T) + 1]-1 is the electron distribution function, 
No= [exp(a/T) -1]-1 is the phonon distribution function. 

We introduced T~a above as the mean relaxation time 
for transition of electrons between groups a and a', de­
fined by the formula 

( 1)" =~ dp•'(- iJfo) ~dq!UP+Q,a';P,ai 2No(Q) 
'taa' (T) iJe 

X (1-fo(e.•+Q))cS(£;;.-e.•-Q), (14) 

where Up +q, a'; p, a is the amplitude of the electron 
transition and it has been assumed that ofo/oE = -fo/T. 

At low temperatures, the number of phonons which 
generate a transition of electrons between separate 
groups is exponentially small; therefore, T aa' 
~ exp(ao/T), where ao is the phonon threshold energy, 
associated with the transition. In what follows, we shall 
limit ourselves for simplicity to the case of two groups 
of Fermi surfaces, when processes connected with 
second viscosity can be characterized only by a single 
relaxation T, which describes electron transitions be­
tween two groups of surfaces. 

Initially, we shall consider the limiting cases of high 
(wT » 1) and low (wT « 1) frequencies, when the addi­
tional damping brought about by the second viscosity is 
small. In the case of high frequencies wT » 1, the 
Fermi surface can be considered as composed of sev­
eral separate groups, for the reason that within the 
time of a single period electron transitions between 
groups do not occur and the number of electrons is con­
served in the limits of each group. The dispersion equa­
tion of the system (13) in this case has the form 

w =k[ (7z"-') "' ((M·x)")2]';, 
XX 7 (1)" ' 

(15) 

where the notation 

• 2i "\' (p;)• (pk)a 
aik = ailt -l- WT- Uik, a-iR=' an'~- 7 (f)a ' 

a;k = (pkp;) + (q;qk). 

is used. Solution of the dispersion equation (15) will be 

(16) 

where 

is the speed of second sound when wT » 1. In order of 
magnitude, 

At temperatures T ~ T 1, the phonon averages become 
important in the expression for the speed of sound, the 
speed decreases and tends to the speed of the phonon 
sound (the upper curve in Fig. 2). 

The low-frequency case wT << 1 is characterized by 
the fact that in a single period of the wave 1/w one can 
establish equilibrium in the system over the electron 
transitions between the separate groups of surfaces and 
therefore the entire set of separate groups can be con­
sidered as a single group. The dispersion equation of 
the set (13) in this case has the form 

(17) 

where 

and has the solution 

w = kVc- iw2t. (18) 

Here 
V2= ((pxvxe)+(<~.>:~~Q))2(~-') -

0 ((i'2)+(Q"J) XX 

is the speed of second sound in the case of low frequen-
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T, T 

FIG. 2. Dependence of the speed 
of second sound in metals on the tem­
perature in the case of a "temperature 
breakdown". The upper curve refers 
to the case of several groups ofF ermi 
surfaces, the lower to a single group. 
The mean curve describes the "tem­
perature breakdown"-the transition 
from the upper curve to the lower as 
a result of the union of several groups 
into one upon increase in temperature. 

cies. l 4 J In order of magnitude, V o is 

T · T zl V0 ~v,CJ[_1+(~) .· 
For T :;;:, T1, the sound becomes purely phonon (the lower 
curve in Fig. 2). In the intermediate case, when wT ~ 1, 
the absorption of second sound due to second viscosity 
becomes large and amounts to 

w") l'oo- Vo - ~---~1 
( W ext V"" + Vo ' 

since V 00 >> V o. Consequently, the propagation of sound 
waves is impossible in the region of frequencies wT 

~ 1. (One can reach a similar conclusion by considering 
the solution of the dispersion equation (13) for wT ~ 1.) 

In metals, for which the distance between the separ­
ate groups of surfaces is much less than the Fermi 
momentum of the electron PF, "temperature breakdown" 
can be observed. This phenomenon is such that with in­
crease in temperature the probability of electron tran­
sitions between the separate groups of surfaces increa­
ses, such that they can be regarded as a single group. 
Here the phase velocity of the sound wave of frequency 
falls with increase in temperature from V oo, when w T 

» 1, to Vo for w T « 1 (in the intermediate region w T 

~ 1, the wave cannot be propagated in view of its large 
attenuation). For observation of the temperature break-

down, in addition to the smallness of the viscous attenua­
tion wTN(vF/Vo)2 « 1 l 4 J it is necessary that the damp­
ing associated with transport processes be small and 
the transition to the lower branch of the speed of sound 
take place before the phonon averages in Eq. (15) be­
come important. Fulfillment of the last two conditions 
guarantees the topology of the Fermi surfaces chosen 
above. 

The region of existence of second sound in metals at 
constant temperature, in distinction from the ferro­
dielectrics, generally consists of two intervals of high 
(T-1 « w « TN) and low (T~ « w « T-1) frequencies, 
with different speeds of propagation of the sound inside 
each of the intervals. However, the presence of a large 
factor (vF/Vo)2 in the expression for viscous damping of 
the sound in the case of low frequencies l 4 J can lead to 
the result that the corresponding branch of the oscilla­
tions will not exist. 
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