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The behavior of the amplitudes and phases of electromagnetic waves at the threshold of appearance of 
a new electromagnetic wave (a spectrum of a new order) is considered for the case of scattering by a 
transparent diffraction lattice or by the open end of a cylindrical waveguide. 

THE anomalous behavior of the amplitudes and phases 
of electromagnetic waves when a new mode is produced 
was considered in [ 11 for certain diffraction problems, 
and a theory of Wood's anomalies was developed for a 
reflecting diffraction grating. It was shown that the en­
ergy-conservation law makes it possible to determine 
the behavior of the phases and amplitudes of the elec­
tromagnetic field near the threshold of occurrence of 
the new harmonic. It is easy to see that in the problem 
of light scattering by a reflecting diffraction grating, 
the appearance of a new harmonic denotes physically 
the creation of a diffraction spectrum of higher order. 
It has been shown that the creation of the new spectrum 
is accompanied by characteristic changes in the ampli­
tudes of the already existing spectra. These character­
istic changes were experimentally observed at the be­
ginning of the century by Wood[ 21 and are called Wood's 
anomalies. Wood's anomalies are a typical threshold 
effect. 

We shall consider below two problems connected with 
threshold effects in electrodynamics: Wood's anomalies 
in the diffraction of light by a transparent diffraction 
grating, and the diffraction of electromagnetic wave by 
the open end of a waveguide. 

1. WOOD'S ANOMALIES IN THE DIFFRACTION OF 
LIGHT BY A TRANSPARENT DIFFRACTION 
GRATING 

Let us consider a transparent diffraction grating that 
is periodic along the y axis and has a period of arbitra­
ry structure; the coordinate axes are chosen as shown 

in the figure, with the x axis perpendicular to the plane 
of the figure. Assume that a plane electromagnetic wave 
in the form 

'I'= exp {-ikl + ikyy- irot} (1) 

is incident on the grating from the upper half-space 
x > 0. We assume henceforth that either the electric 
field or the magnetic field is directed along the x axis. 
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Therefore the quantity '.It stands for either Ex or Hx. 
The remaining components of the field vectors can be 
easily expressed in terms of '.It. 

The total field in our problem is a superposition of 
waves of the type 

'I' n± = exp { ± iz v ::-( k~ - 2~n r + i ( ky- 2;n) y - irot}' (2) 

which diverge upwards and downwards away from the 
grating. In formula (2) n is an integer that can be eith­
either positive, negative, or zero. The function +"~ de­
scribes a propagating wave only at definite values of 
the number n, satisiying the inequality 

~(k~-~) <n<~(k.+~). 
2rr c 2n c 

(3) 

The inequality (3) is the condition for the existence of 
a spectrum of n-th order. 

Just as in [ 11 , we shall say that the function lltn de­
scribes the channel numbered n. If n satisfies the in­
equality (3), i.e., if there exists a spectrum numbered 
n, then we shall call the channel open, otherwise the 
channel is called closed. 

Let us consider a case when an electromagnetic 
wave is incident on the grating through channel k. If 
this wave is incident from the upper half-space, then it 
is described by the function '.ltk. The field on both sides 
of the grating can then be described in the form 

{ 

%,- + ~ Rnh'I'n+ above the grating 

ll>~o = 
~Lnh'l'n- below the grating 

n 

where the coefficients Rnk and Lnk are chosen such 

(4) 

as to satisfy the boundary conditions on the grating. The 
coefficient Rnk can be naturally called the coefficient 
of the transformation of the incident wave of channel k 
into a reflected wave of channel n. Accordingly, Lnk is 
the coefficient of transformation of an incident wave of 
channel k into a transmitted wave of channel n. If the 
wave is incident on the grating from the lower half­
space, then the field is written in the form 

{ 

~ Knh•'l'n+ above the grating 

tllh' = 

'l'h·++ ~Mnk''l'n- below the grating 
(5) 
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Let the number of open channels (the number of dif­
fraction spectra) be equal to N. The channels above and 
below the grating are assumed to be different. Accord­
ingly, we renumber the channels in such a way that the 
index k in formula (4) takes on the values from 1 to N, 
and the index k' in (5) takes on the values from N + 1 
to 2N. In the general case the field at infinity can con­
tain converging and diverging waves of all the open 
channels, i.e., it can be of the form 

( N N N N 2N 

I 
=~ 

~ak'l'k-+ ~.~akRnk'I'n++ ~ ~ akKnk'l'n+, z-++oo, 
k=l n=ik=N+i 

m ~ m N b 
(6) 

I 
l 

~ ah'l'k++ ~ ~ akMnk'l'n-+ ~ ~ akLnh'l'n-, Z-+-oo. 
h=N+I n=N+ik=N+t k=1n=N+1 

If we set up a matrix P of order 2N out of the trans­
formation coefficients R, L, M, and K, namely 

P= (~ ~), (7) 

then relations (6) can be rewritten in simpler form 

l .tak'l'k-+ iiakPnk'l'n+, z-++oo; 
ll>= 

2N 2N 2N 

A ak'l'k++ ~ ~ akPnk'I'n-, Z-+- oo. 
k=Ntl n=Nti k=t 

(8) 

The matrix P, made up of the coefficients Pnk, de­
scribes completely the diffraction of the waves in the 
open channels. The order of the matrix is equal to the 
number of open channels 2N. We recall that in the as­
sumed notation each spectrum corresponds to two open 
channels (the wave can be radiated either into the upper 
or into the lower half-space). Therefore when a new 
spectrum appears, the order of the matrix increases by 
two. 

Let us write down the energy conservation law for 
the field (8), taking into account the fact that the compo­
nent of the Poynting vector along the z axis is propor­
tional to <11*o<11/oz. Equating the energy fluxes in the 
waves traveling to and from the grating, we have 

2N m 
~ jakj~Xk= ~ akah! PnhP~h'Xn, 
k=i n, k, k'=i 

(9) 

where 

_ [~ _ ( 2~n )z]''• Xn- c2 ky-d • (10) 

By virtue of the complete arbitrariness of the coeffi­
cients ak, we can conclude from (9) that 

(11) 

or, introducing the matrix 

(12) 

we obtain 

~ SnhS~"' = 6""'• (13) 
n 

i.e., the matrix S is unitary: 

S+= S-1. (14) 

The unitarity condition is in this case the consequence 
of the energy conservation law. 

Let us assume that the number N of the allowed 
spectra increases by unity. This phenomenon can occur, 
for example, when the frequency of the waves under con­
sideration increases. When a new spectrum appears, 
the number of open channels increases, and the order of 
the matrix S consequently increases, as already noted, 
by two. The matrix acquires two new rows, numbered 
N + 1 and 2N + 2, and two new columns with the same 
numbers. Let us examine the behavior of the matrix 
elements Snk near the point of appearance of the new 
spectrum. At the point of appearance of the new spec­
trum of order N + 1, the quantity 

(15) 

vanishes, and the quantity KN + 1 is small near this 
point. We can therefore represent the matrix S, accu­
rate to terms linear in KN + 1, in the form 

(16) 

where a is a matrix to be determined. To determine a, 
we used the unitarity of the matrix S, which is written 
near threshold in the form 

S+S =(So+- ia+ixNtd)(So+ iaixN+d) = 1 below the threshold 
S+S = S0+S0 = 1 at the threshold (17) 
s+s = (So++ WxN+d (So+ axN+J) + BxN+I = 1 above the 

threshold 

The matrix B is defined by the equation 

B;; = ,;.~JPN+J, ;P;+I,j +P2N+2,i p;N+2, ;]. (18) 
f'Kj'Xj 

The indices i and j cannot assume values correspond­
ing to the newly opened channel, i.e., the values N + 1 
and 2N + 2. 

With the aid of simple calculations, we obtain the fol­
lowing expression for the unknown matrix a: 

(19) 

We recall that the order of the matrix S0 is 2N. Sub­
stituting this relation in (16), we get 

i s = So- 2 1 xN+tl SoB below the threshold 

S = Sr.- 1/2xN+1SoB above the threshold 
The result (20) signifies that, generally speaking, when 
a spectrum of new order appears, the amplitudes in all 
the previously opened channels acquire a root singular­
ity of the form 

I ,___ 

A+ B v ::-[ k•- ~n (N + 1) r, (21) 

where the coefficients A and B depend on the grating 
parameters and on the number of the channel. The co­
efficients A and B are complex numbers and relation 
(21) describes the behavior near threshold of both the 
amplitudes and the phase of the wave in the open chan­
nel. The amplitude of the wave is then determined by 
the absolute magnitude of (21), and is equal to 

ReAB" 
IAI+xN+l-IA-I-. (22) 

The phase of the wave in the open channel near the 
threshold of appearance of the new spectrum is given by 
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lmA ImAB' 
tg qJ = ---~- X cv+l- ~-. (23) 

ReA . (ReA)2 

Formulas (22) and (23) are valid above the threshold of 
the appearance of the new spectrum. Below the thresh­
old, the amplitude of the wave in the existing channels 
can be written in the form 

ImAB' 
JAJ+JxN+d-JA-

1
-, 

and the phase is given by 

ImA ReAB' 
tgq; = -~+JxrHtl---. 

ReA (ReA)~ 

(24) 

(25) 

We note that the foregoing calculations are closely con­
nected with those employed in the theory of threshold 
nuclear reactions. [ 31 

2. DIFFRACTION OF ELECTROMAGNETIC WAVE 
FROM THE OPEN END OF A WAVEGUIDE 

We shall consider below the incidence of an electro­
magnetic wave on the open end of a waveguide. For 
simplicity we confine ourselves to the case of a cylin­
drical semi-infinite waveguide with infinitesimally thin 
ideally conducting walls. As is well known, the natural 
modes in a cylindrical single-connected waveguide are 
either of the electric type or of the magnetic type, de­
pending on which field component along the z axis 
(which is parallel to the waveguide generatrix) differs 
from zero. [41 When Ez * 0 we have E waves, and when 
when Hz * 0 we have H waves. 

Assume that a wave propagates from the interior of 
the waveguide to an open end. The field inside the wave­
guide can be written with the aid of two Hertz vectors­
electric n and magnetic ii: [ 5 ] 

- 'V L II + -· - ~ -II=II,=IIn +.LJ mn m, 11=11,= LJMkniTk+. (26) 
k 

By II~ and IT~ we denote here the Hertz vectors of 
the electric and magnetic modes that can propagate in 
the waveguide of a given cross section: 

(27) 

>11 n and >11m are the solutions of the co:r;_responding 
boundary-value problems, and hn and hm are the 
propagation constants of the electric and magne,!ic 
waves. We shall assume the functions >11n and >11m to 
be normalized in such a way that the energy flux car­
ried through the waveguide cross section is equal to 
the propagation of hn (and accordingly hm). The index 
n should be taken to mean the set of indices defining the 
eigenfunction. The electric and magnetic field~ in the 
waveguide are determined in terms of n and n in the 
well-known manner: 

1 ii211 1 jj -
E =----- --rotii, 

c2 ot2 c at 

1 oii 1 02rr 
H=-rot----. 

c 8t c' ol' 
(28) 

The expression for the field in the waveguide in the 
form (26) has the following physical meaning. The first 
term in the expression for the electric Hertz vector de­
scribes an E wave that travels from the interior of the 

waveguide to its open end. Upon striking the open end, 
this wave is partially reflected and is transformed into 
other electric and magnetic modes that travel from the 
open end to the interior of the waveguide. The sum over 
m in expression (26) for ll describes just the E waves 
that travel to the interior of the wave guide. The num­
bers Lmn denote the coefficients of transformation of 
the n-th inci!lent E wave into the m-th reflected E wave. 
The vector II describes H waves. The quantity Mkn is 
the coefficient of transformation of the n-th incident 
E wave into the k-th reflected H wave. 

We now write the field outside the waveguide at large 
distances R from the open end: 

(29) 
eikR 

if=Fn(tr,<r)R, 

where the functions Fn and Fn are determined by the 
number of the incident E waves. 

If an H wave is incident on the open end of the wave­
guide from its interior, the field can be written in the 
form 

II= ~NnkiTn +, II= IT,-+ ~ Rsh fl,+, {30) 
n s 

where Nnk is the coefficient of transformation of the 
incident H wave numbered k into the reflected E wave 
numbered n, and Rsk is the coefficient of transforma­
tion of the incident H wave numbered k into the re­
flected H wave numbered s. The fields outside the 
waveguide (as R- oo) are given by 

_ _ eihR 

II= <D"(tt, q:) 11--. (31) 

-
The functions <I>k and <I>k are determined by the num-
ber of the incident H wave. 

We now consider the general case, when an arbitrary 
superposition of electric and magnetic waves propagates 
from the interior of the waveguide towards its open end: 

(32) 

the total field inside the waveguide can be written in the 
form 

n,m k,m 

If we consider the field inside the waveguide, far from 
its open end, then the summation in (33) extends only 
over the open channels. 

We also write down the field outside the waveguide, 
at large distances from the open end: 

(34) 

Formulas (33) and (34) can be simplified. Let there be 
N1 open electric channels and N2 open magnetic chan­
nels. We introduce a matrix P of order N1 + Na, de-
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fined in the following manner: at the threshold 

(35) 
(44) 

and above the threshold 
Obviously S=So+ax, Fn=Fno+y,x, F,.=F,,o+'\'n?<. (45) 

Pil, = L;, (i, k <S;; Nl); 
P;, N,+k = N;k (t <S;; N,, k <S;; N,); 

PN,+l, k = M;k (i <S;; N2, k <S;; N,); 

If the values of F n and F n below the threshold, given 
(36) in formula (43), are substituted in formula (42), then 

we obtain 
PN,+i, N,+k = Rik (i, k <S;; N2). 

We also put 

(37) 

Then the law of conservation of the electromagnetic en­
ergy assumes the form 

(38) 

The summation over all the indices is from 1 to N1 

+ N2• The left side of (38) describes the energy flux of 
the incident waves. The right side of (38) is the sum of 
the energy fluxes of the respective waves and of the en­
ergy that goes out to the open space (the integral over 
all angles <in). 

In view of the arbitrariness of the coefficients Cl!n, 
we get from (38) 

• c k• s . . 
~SmnSmn' = 6nn·---= '(FnFn•+FnFn•)sin2 t}dQ, (39) 

m Srr '(hnhn' 

where 

(40) 

The matrix Smn introduced in this manner is symmet­
rical, as can be readily shown by using the reciprocity 
theorem. Relation (39), which follows from the energy 
conservation law, does not reduce in this case to the 
condition for the unitarity of the matrix S, since part 
of the energy goes out to the open space. 

Let us examine the behavior of the elements Smn at 
the threshold of appearance of the new channel (it is im­
material whether it is electric or magnetic). Let the 
propagation constant of the wave in the new channel be 
K. Near the threshold of the new channel we assume, as 
usual, that K is the small quantity and confine ourselves 
to relations of order not higher than the first inK. We 
write relation (39) in the form 

ss+ = 1- ([>, (41) 

where 

([>nn' = _c_ k• ~ (F nF:. + F,.F:•)sin 2 1'ldQ. (42) 
8:rt "{hnhn' 

Near the threshold of the new channel, the following re­
lations hold: below the threshold 

S =So+ ialxl, 
(43) 

([> = $o + ilxiA below the threshold (46) 

where 

c k• r; • • • • ( 
Ann• = ~-===- J (Fn•rf'in- F,oyn• + F,.,r,'\' 11 - F,r.'yn•)sin 2 t11Q. 47) 

8n 1hnhn' 

We note that the matrix A is anti-Hermitian, i.e., 
A+= -A. 

We now write the expansion in terms of K for the 
matrix <I> above the threshold. From (42) and (45) we 
get 

([> = cD, + xll above the threshold (48) 

where 
ck' r; • • 

H nn' = ---- J (F n•oYn + F nO'\'n• • + F n•o'\in + F no'\in.') sin2 1'l dQ. 
Srr 1hnhn' ( 49) 

From (49) we see that H is a Hermitian matrix. 
The obtained relations enable us to write down the 

electromagnetic-energy conservation law (41) near the 
threshold of the new channel: 

(So+ ia I xi) (So+- ia+ lx I) == 1 - <Do- iA I xI below the threshold 
SoSo+ = 1 - $o at the threshold 

(So+ ax) (So++ a+x) +Ex = 1 - $ 0 - Hx above the threshold 
(50) 

where 

(51) 

and N denotes the number of the channel. From (50) 
we obtain two relations 

Soa+- aSo+ = A, 

Soa+ + aSo+ = -B -H. 
(52) 

Adding and subtracting these two equations, we obtain 

Soa+ = 1/2(A -B-H), (53) 
aS0+ = - 1/ 2 (A + B +H). 

Recognizing that B and H are Hermitian matrices, and 
A is anti-Hermitian, we can show that one of the rela­
tions (53) is the consequence of the other. From (53) we 
obtain 

a= - 1/2(A + B +H) (S0- 1)+. (54) 

Substituting this value of a in formulas (43) and (45) 
and taking (40) into account, we obtain the law of the be­
havior of the transformation coefficients Pmn near the 
threshold of appearance of the new mode. 

Let us estimate the relative order of magnitude of 
the threshold anomalies. To this end we note that the 
matrix S defined by formula (12) is symmetrical, as 
can be readily shown with the aid of the reciprocity the­
orem. Taking the symmetry of the S matrix into ac-
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count, expression (19) can be rewritten in the form 

To estimate the value of aik, it is necessary to know 
the order of magnitude of the coefficients Pik that de­
termine the transformation of the waves in the newly 
opened channels numbered N + 1 and 2N + 2. 

To estimate the transformation coefficients P, we 
shall use the exact solution of the problem of diffrac­
tion of an electromagnetic wave that is normally inci­
dent on a plane grating made up of ideally conducting 
ribbons. It is assumed here that the width of the slits 
is equal to the width of the ribbons. Obviously, the ex­
act solution of such a probleml 51 gives expressions for 
the transformation coefficients Pon· Knowing these ex­
pressions, we can determine the form of the threshold 
singularities by· expanding P 0n in powers of KN + 1 at the 
threshold of currents of the new channel. In particular, 
in the case of a first-order spectrum, the coefficient 
P 00 , as follows from the exact formulas, behaves in the 
following manner: 

]Pool = 1- 2xt I k, 

and the coefficient P01 can be written in the form 

]Pot! = )'2(1- Xt/ k). 

It is seen from these formulas that in the region 2n 
< kd < 41T (i.e., near the threshold for the first-order 
spectrum) the magnitude of the threshold anomaly is of 
the same order as the first term of the expansion, 
which does not depend on K 1• From the exact formulas 
it is also seen that the relative magnitude of the anom­
aly in the behavior of the coefficient I P00 l decreases 
with increasing order of the occurring spectrum. In ad­
dition, P0n decreases in inverse proportion to n at 
high frequencies. 

The problem of diffraction by a grating has not yet 
found an exact solution capable of giving the complete 
matrix of the transformation coefficients Pik· The val­
ue of Pik can be estimated with the aid of the Kirch­
hoff approximation. This yields 

P;h - (i- k)-t 

at a sufficiently large difference i- k. Therefore the 
first coefficient in (20), which gives the behavior of the 
matrix coefficients at the threshold, is proportional to 
(i - k) -\ and the coefficient of K N + 1 is proportional to 
(N + 1- i)-1 (N + 1- k)-1 • These rough estimates can 
give an idea of the relative magnitude of the threshold 

anomaly of the coefficient Pik. It must be remembered, 
however, that all this reasoning does not apply to dif­
fraction by a grating having a more complicated profile. 
The magnitude of the anomalies depend strongly on the 
profile of the grating. 

Let us consider now the question of the useful infor­
mation that can be extracted by observing threshold 
anomalies. We note first that, as a rule, diffraction 
problems cannot be solved exactly and quantitative re­
sults are obtained mostly with the aid of electronic com­
puters. Knowledge of the law governing the threshold 
anomalies facilitates the calculations. Indeed, since all 
the coefficients Pik have near the threshold the form 
A+ BK, it is sufficient to determine the two constants 
A and B in order to ascertain the behavior of the am­
plitudes and phases of the waves near the threshold. 

In addition to this circumstance, we note also the 
following. The matrix aik (19), which contains the co­
efficients of K in the expressions for Sik, is deter­
mined only by the coefficients of transformations from 
the existing chann.els to the newly created ones (see 
formula (19a)). By measuring the threshold anomalies 
of the transformation coefficients in the "old" chan­
nels, we can determine with the aid of formulas (20), 
(19), and (19a) all the coefficients of wave transforma­
tion from the "old" channels into the "new" ones. 
Conversely, knowing all the transformation coefficients 
between the "old" and "new" channels, we can deter­
mine the threshold anomalies in the "old" channels. 
(The entire reasoning is applicable also to a wave­
guide.) The symmetry of the matrix S also reduces the 
number of measurements. 
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