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The nonorthogonality of unstable states with common decay channels is considered. The mechanism of 
the formation of nonorthogonal unstable states through the mixing of orthogonal stable levels is analyzed 
within the framework of the two-level problem. If the quasi-stationary states are nonorthogonal, the 
change of the total number of systems (particles) with time cannot be described by a sum of exponen­
tials, and the energy spectrum of the decay products cannot be reduced to a sum of Breit-Wigner terms. 
In the special case of two overlapping nonorthogonallevels the decay law (40) holds, which corresponds 
to the presence of a second-order pole in the scattering matrix. 

1. It is known that the wave functions describing differ­
ent stationary states of stable quanta! systems are 
mutually orthogonal. This is, in general, not true for 
quasistationary unstable states. Thus, in the case of the 
CP violation in the decays of K0 mesons, the quasista­
tionary wave functions of the particles KL and Ks, which 
correspond to definite values of the mass and the life­
time, are in general not orthogonal (cf., e.g. ,£11). This 
nonorthogonality leads to observable consequences, for 
example, to the charge asymmetry of the leptonic de­
cays of KL. £21 The nonorthogonality of the states KL and 
Ks is connected with the circumstance that they have 
common decay channels if CP parity is not conserved. 
This situation, where two states of a quanta! system 
(two particles) have common decay channels, is of 
course not a specific feature only of the K0 mesons. 
Whenever it occurs, one may expect that the quasista­
tionary wave functions of these states (particles) will be 
nonorthogonal. 

In atomic and nuclear physics one encounters a whole 
series of phenomena which find a natural physical inter­
pretation in the language of unstable nonorthogonal 
states. Examples are the "beats" in the total number 
of unstable systems and decay products, the excitation 
and decay of atomic and molecular levels under condi­
tions which lead to the appearance of a second-order 
pole in the scattering matrix, l31 the interference effects 
in the formation of excited nuclear states, £41 etc. 

However, at present the concept of nonorthogonality 
is fully employed only in the analysis of the problem of 
the CP violation in the decay of neutral K mesons. In 
atomic and molecular physics, these phenomena are 
almost exclusively described within the S matrix form­
alism. We therefore think it useful to consider in detail 
the problem of the nonorthogonality of quasistationary 
states in the general case. 

2. Let us consider an unstable two-level system. 
Let l1/11) and 11/1 2) be normalized, in general nonortho­
gonal quasistationary wave functions of this system; 
they correspond to the complex energies E1,2 = ~1,2 
- in,2/2, where r1,2 are the widths of the two levels. 
At the initial moment t = 0 we construct a state which is 
a certain superposition of 11/1 1) and l1/12), i.e., 

(1) 
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Then the wave function 11/1 (t)), which describes the be­
havior of the system at later times t, has the form 

(2) 

It follows from (2) that the number of systems under 
conS'ideration, N, changes with time in the following way: 

N(t) co ("ljl(t) l"¢(t)) = lciJ•e-r.tJn+lc2 1•e-r,tfn 
(3) + 2Re {(ljl1 lljl2)c1'c2ei(&,-&,Jt/h}e-(r,+r,)t/2h. 

If the states l1/11) and l1/12) are nonorthogonal, i.e., 
(1/1111/12) >" 0, then, according to (3), the quantity N ex­
periences "beats" which are damped out in the course 
of time. 

Using (3), we can determine the rate of decay: 

a r r Tt <IP (I) I "ljl(t))= --f I ell• e-r,tJn- ; I c.J• e-r.tlll. 

+ 2 He { cl' c, <"¢11 "¢z) [ ~ (;gl - 18,) - I'l ~ r.] e'(~,-d,Jtln} e-(r,+r,Jt/2~~) 
On the other hand, 

a "I A -iE,t;n + A -iE,I/tt I" -("ljl(t)l'\l(t)) =-L.; C1 1me Co 2me , 
~t m 

where A1m and A2Ill are the amplitudes for the decay 
from the states 11/1 1) and 11/1 2 ) into certain final states 
lm); L; includes also the integration over continuous 

m 

(5) 

variables, for example, over the angles of emission of 
the decay products. Comparison of (4) and (5) leads to 
the following relations: 

r1(21 = li~ IAI(2)ml•. (6) 

m 

Formulas (6) and (7), have been obtained earlier by 
Bell and Steinbergerlsl for application in the analysis 
of the decay of K0 mesons. 

If we have a system of more than two quasistationary 
states, then an analogous consideration leads to rela­
tions of the type 

(8) 
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where the indices l and k refer to the individual states. 
According to (7) and (9), the "magnitude" of the non­

orthogonality of the states 11/J a) is completely deter­
mined by the difference of the corresponding energies 
and the amplitudes of the various decays. If the ampli­
tude A and hence, the width r, tend to zero for a con­
stant energy difference ~1- ~2 , then the quantity 
(l/J1Il/J2) also tends to zero, and in the limit of stable 
particles the states ll/11) and ll/1 2) are orthogonal. How­
ever, the states ll/11) and ll/12) are also orthogonal when 
decays occur, as long as the levels 1 and 2 have differ­
ent quantum numbers which are conserved during the 
decay. 

If the quantum numbers by which the levels 1 and 2 
differ are not conserved during the decay, then the quan­
tity (l/Jdl/12) can be different from zero, and the wave 
functions ll/11) and ll/12) are not orthogonal. In general, 
the quantity ( l/J 1ll/J2) is complex, and its absolute value 
lies between zero and unity. According to[61 (l/J 1Il/J2) ;e 0 
means that 11/J 1) and ll/12) are not completely different, 
or "quasi-identical" states, which interfere under any 
measuring conditions. 

3. Orthogonal quasistationary states can go over 
into nonorthogonal states when an appropriate interac­
tion is switched on. Let l.p1) and l.p2) be the wave func­
tions of two orthogonal quasistationary states {for ex­
ample, the 28 and 2P states of the hydrogen atom), and 
let 101,2 and y 1,2 be their energies and widths. Let us now 
switch on a mixing interaction {for example, an external 
electric field). The new quasistationary wave functions 
satisfy the Schrodinger equation 

(10) 

where His an effective, in general nonhermitian Hamil­
tonian, and E1 and E2 are complex energies. We write 
11/J 1,2) in the form 

I1Jl1,2) = C!(2)d(jli) + C!(2)21(jlz). (11) 

Then it follows from the normalization condition for 
11/J 1,2) that 

(12) 

Using the standard method for solving (10), we obtain 
the following expressions for the energies E1,2 and the 
coefficients c: 

Hu +H22 1 
E1,2 = 2 + -(Y(Hu- Hzz) 2 + 4H12H21; 

I I H21 1")-'/, Hz1 
cu=\1+ I~ , c1•=-;-cu; 

H1z 
C21 =--c .. , 

a 
( I H!2 1")-'t. c22= 1 + 1 --;;-- , 

where 

(13) 

(14) 

(15) 

Hu- H22 1 
a= E1- H22= Hu-E• = + -- ]I(H11 -H22) 2 +4HI2Hz~o 

2 2 n~ 

and Hik = I .Pi IH I l'{lk) are the matrix elements of the 
operator H. 

Knowing the coefficients c, we can easily express the 
"nonorthogonality" of the functions ll/1 1) and ll/12) 
through the matrix elements Hik· We have 

(17) 
or 

We emphasize that, since the states 11/J 1) and ll/12) are 
only defined up to a phase, we can always choose these 
phases such that the measure of nonorthogonality 
(l/J1Il/J2) be real (positive). 

4. We recall that the Schrodinger equation with an 
effective nonhermitian Hamiltonian can be obtained in 
the Weisskopf-Wigner approximation, starting from the 
theory of radiation damping, which deals with a hermit­
ian interaction operator W (cf. [7- 91 ). Let us write the 
operator w in the form w = v' + v' where v' describes 
the decays and V is some hermitian interaction which 
mixes the states l.p1) and l.p2) (for example, the interac­
tion of the system with external electric or magnetic 
fields). We assume further that the decay interaction 
does not mix these states. In this case the matrix ele­
ments of the effective Hamiltonian have the form 

Hu=et+Vu-i "V~, H22 =e2+V22 -iYf-, 

H12 = Hz1' = ¥12 = Vz1', (19) 
where E1 and E2, Y1 and Y2 are the enerraes and widths 
of the levels before the mixing (cf. also 81 ). As is seen 
from (18), (l/Jdl/12) ~1m a for H12 = H:1. It is easy to see 
[formula (16)] that Im a.., 0 and hence (l/J 1Il/J2).., 0, if the 
widths of the levels before the mixing are not equal to 
each other (y 1 ¢ ;'2). If l(y 1- y2)/(E1- 102) I « 1, then 
l(l/J1Il/J2) I« 1 independently of the magnitude of the 
mixing interaction. The "nonorthogonality" is also 
much smaller than unity if the mixing interaction is 
small compared with the difference of the energies of 
the levels l.p1) and l.p2), independently of the difference 
of their widths. In this limiting case 

ReH21 
('iJdiJl•)=i IHu-H2212(yz-Y!). {20) 

We note that, if the quasistationary levels are mixed 
by an external field, where according to (19), H12 = H:1, 
the widths of the new levels can be expressed in the 
form 

r; = -2ImEt =-21m ('ll;j.lij'ljl;) = lctd"vi +lc;zl"vz, (21) 

where. ch and ch are given by (14) and (15). Then 

(22) 

i.e., the sum the new widths is equal to the sum of the 
old widths. 

The equality (21) can also be obtained with the help 
of (6) if one takes account of the linear relation between 
the new and old amplitudes Aim and azm (i, l = 1, 2): 

m 

A simple analysis of the equations (10) also shows 
that expression (18), with H12 = H:1, and expression (7), 
with account of the linear relation between the new and 
old amplitudes (23), lead to the same formula 

(¢1 11Jl•)= (¢•IHI~>:-~~IHI¢•> cu'c21Vt + c12'c•zY2 (24) 
1- 2 (YI+Yz)/2-i(~t-~2) 

We note that in general H12 ;e H:1 if the interaction 
which causes the decays also mixes the states l.p1) and 
l.p2) (B a1ma;m ¢ 0); then nonorthogonality occurs for 

m 
any values of the original widths. Formulas (21) and 
(24) are invalid in this case, but (22) and (23) remain 
true. 

5. Let us now consider the case where the energies 
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and widths of the quasistationary levels coincide as a 
result of the inclusion of the interaction W. It follows 
from (13) that 

E -E -~--Y•+Vz+Vu+Vzz_ Hu+H22 (25) 
,_ z- 2 1 4 2 - 2 ' 

if the expression under the root is zero: 

(Hu - H22) 2 + 4H,.nz, = 0. (26) • 

Using the notation Hn- H22 = li + i/3, (26) can be re­
written in the form of the two conditions 

()2- f!2 + 4Re (H12H 2!) = 0, bfl + 2Im (H, 2H.,) = 0. (27) 

For a hermitian mixing interaction 

Im (H,.H.,) = 0, Re (H12H21 ) > 0, 

and E1 can become equal to E2 if li = 0 and f = 4IH1212. 
In this case a= i(y 2- Y1)/4, and the expression for the 
'' nonorthogonality'' becomes 

. vz-Yt Htz 
(1Jld111z)= z I I IH I (28) Vz-Yt tz 

We see that I ( 1/Jtll/!2) I = 1 in the limit where E1 = E2. 
It is easy to verify that also if the mixing interaction is 
nonhermitian (H12 ¢ H:1), we have 1(1/Jtll/!2)1 = 1 for 
E1 = E2. 

We note here that, irrespective of the "degeneracy" 
(E1 = E2), the wave functions ll/!1) and 11/! 2) entering in 
(28) are uniquely defined if we regard the above-given 
relations as limits for E1- E2. 

6. Let us now assume that the state 11/J(O)} corre­
sponding to lcp1) has been formed as a result of some 
process. Let us consider its change with time. To this 
end we expand lcp1) in the quasistationary states ll/!1) and 
11/! 2). It follows from (11) that this expansion has the 
form 

(29) 

where D = cuc22- C12c21. The development in time of 
lcp1) is described by 

111' (t)) = ~"11Jl1) e-iE,tf~ - ~· IIJlo) e-IE,ttn • (30) 

The probability for observing the system in the initial 
state lcp 1) at the time t is given by 

P(t) =I (<pd1Jl(t)) J•. (31) 

Let us consider (31) for the case where E1- E2. For 
E1 = E2 the coefficients in the expansion (29) become 
singular. The precise prescription for going to the 
limit leads after some algebraic transformations to the 
formula 

p (t) = 11 - i (Hu -;,1iHu) t r e-<v•+'l'•>tt•n, (32) 

or 

P (t) = {1 + ~ + f!• ;};,.{)• t•} e-<v,;y,)tfon, (33) 

where {3 and li satisfy (27). 
It should be noted that, for t ¢ 0, there exists also a 

finite probability for observing the system in the state 
lcp2): 

Q (t) = (q>1 Jijl (t)) =I H~.t \" e-<V•+Vo)l/2~, (34) 

Accordingly, the total number of systems (particles) 

which were originally in the state lcp1) changes with 
time in the following way: 

N (t) = P (t) + Q (t) = {1 + ~ + {)• +II"+ 41 H12 12 t2} e-<v•+'l'•)t/2~. 
1i 41i" (35) 

If the levels are mixed by an external field, we have, 
as already noted above, li = E1- E2 + Vu- v22 = 0. Ac­
cording to (27), the mixing interaction must be severely 
restricted, viz., 

IH,.I = IHzd = 1/41'\'I -vzJ. (36) 

Thus the decay law for the state lcp1) is in this case 

p (t) = ( 1 + :y.; y1 tr e-(y,+y,)l/2~, 
Q (t) - <v.- '\'1)• t• e-(y,+y,)l/2~ 

- 161i2 • 
(37) 

If the state I cp 1) was stable ( y 1 = 0, y 2 = y) before the 
mixing, then 

p <t> = ( 1 + z~ y e-vtt•n. (38) 

The expression (37) agrees with the Goldberger-Watson 
formula for the decay of a pole of second order. uoJ If, 
on the other hand, y 1 = y, Y2 = 0, we have11 

p (t) = ( 1- 1~ r e-vt/2~. (39) 

We emphasize that our type of non-exponential law for 
the decay of lcp1) is simply a special limiting case of 
the general law for the decay of lcp1), which leads to 
damped beats in the case E1 ¢ E2. 

It follows from our analysis that if the two nonortho­
gonal quasistationary states are degenerate, the decay 
law is generally of the form 

(40) 

where 11 depends on the type of excitation. If 11 ¢ 0 the 
amplitude for resonance scattering on the above-con­
sidered system of two levels will have a pole of second 
order at Eo= E1 = E2 (cf. alsol3 ' 11J ). 

7. Our theory of the decay of unstable systems is 
quite general and can be applied to various physical 
situations. We have pointed out already that a strong 
nonorthogonality of the quasistationary states requires 
that the difference of the level widths be comparable 
with the energy differences. Let us consider, for exam­
ple, the decay of the excited 2s112 and 2P1/2 states of the 
hydrogen atom when they are mixed by an external elec­
tric field, and the Lamb shift is compensated by a 
corresponding magnetic field[ 12 J (the electric and mag­
netic fields must be perpendicular to each other). In this 
case lcp1) and lcp2) correspond to the states 2s112 and 
2P112 in the absence of the electric field. During the 
mixing of the levels the nonorthogonal states II/! 1) and 
11/! 2) with the energies E 1 and E2 appear. This causes 
the number of excited atoms to change in time accord­
ing to a non-exponential law [formula {3)]. For E1- E2 
we have (1/! 111/!2)- 1, and the law for the decay of the 
system is given by (38) and (39). lsJ The amplitude for 
resonance scattering of photons has in this case a 

0 See also [3]. The case where one of the widths is zero corresponds 
to the Lee model. The non-exponential decay in the framework of this 
model has been considered earlier in [ 11 I . 
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second-order pole in the point Eo= E1 = Ez, i.e., is 
proportional to 1/(E- E 0) 2 • 

To give a second example, we note that the excited 
states 8 Bei and 8 Be:, which were considered in r4J , are 
also nonorthogonal. Indeed, both states of beryllium 
have the same spin and parity and decay into two a par­
ticles. Using the experimental data on the widths r 1 and 
r 2 and the energy difference Q = E1- E2 , quoted inr4J, 

we obtain with the help of (7) 

I (•Be,'I'Be2) I= v~;~~~-~ 0.3. 

It is the nonorthogonality of the states 8Bei and 8Be: 
which makes it impossible to describe the decay spec­
trum for the process 8 Be* - 2a by a sum of two Breit­
Wigner terms; it leads to the appearance of an inter­
ference term, which has been observed experimentally. 2 > 

8. We note, in conclusion, that the state which is 
formed after the excitation of the system is a super­
position 

(41) 

where f1 and f2 are certain constants. We choose the 
normalization such that ( lj! II/!) = a, where a is the total 
cross section for the process. Then 

a= lh I'+ If, I'+ 2Re (h'M"tJliJIJl,)). (42) 

It should be emphasized in particular, that if 11/J 1) and 
l</! 2 ) are nonorthogonal, the quantities f1 and f2 do not 
coincide with the S matrix elements F1 and F 2 corre­
sponding to the transition from some initial state j<P) to 
the states l</!1) and l</! 2 ). Indeed, 

F, = (tiJ,ISJtD> = (tJl,ltJl) = h + MtiJ,I"¢2), 
(43) 

Solving this system of equations, we obtain the relations 

F,-(¢1 I¢,)F, 
/2=- . 

1 -I< ¢,1 ¢,> I' (44) 

For (</!11</! 2 ) = 0 we have f1 = F1 and f2 = Fz, as was to 
be expected.31 

2 lThe states 8 Be 1 * and 8 Be2 * are superpositions of states with 
isospin T = 0 and I, which can be written in the form 

b b' 
'Be,• = ai'PT~o> + -i'I''T~l>, 8Be? =- -I'I'T~o> + ai'I'T~l>, 

a a 

where a is a real number, and c; is in the present case necessarily a com­
plex number [cf. formulas (14 to 16, 19)). This was apparently over­
looked by the authors of [4]. For real values of the coefficients the 
above-given superpositions would evidently be orthogonal. 

3)L. I. Lapidus and R. M. Ryndin have independently arrived at 
analogous results. 

Let us now consider the distribution over the ener­
gies (more precisely, the effective masses) of the decay 
products of the decay l</!1), l</! 2)- jm). It has the fol­
lowing form: 

fz I Aim A2m I' {45) 
dam= Zn f, e- g, + if,/2 + f, e -1.5, + ii',/2 de, 

where A1m, A2m are the amplitudes for the decays 

l</!1)- lm), 11/Jz)- lm), respectively; E1 and Ez, r1 and 
r 2 are the energies and the widths of the states 11/J 1) and 
J</! 2), and the quantities f1 and f2 satisfies the relations 
(41) to (44). 

In the summation over the final states (for example, 
the integration over the angles) the interference term 
in (45) vanishes if l</! 1) and l</! 2 ) are orthogonal; if the 
states 11/J 1) and l</! 2) are not orthogonal, the interference 
term in the expression :0 dam is always different from 
zero. m 

The total cross section for the formation of the states 

ll/11) and 1</!z) is a= :0 jdam· Using (6) and (7), we 
m 

arrive at (42), as was to be expected. 
The authors express their deep gratitude to L. I. 
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