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General properties of domain structures in magnetic and ferroelectric materials are discussed. Condi­
tions for the coexistence of phases are found which are less restrictive than those usually assumed. It 
is explained how the problem of the exit of domains to the surface can be correctly stated. It is shown 
that near the surface of the specimen, the boundaries of ferromagnetic and ferroelectric domains may 
in general be curved. The distribution of magnetic field near the surface is found for a uniaxial ferro­
magnet with closure domains. 

1. INTRODUCTION 

IT is well known that in ferromagnets a domain struc­
ture can be formed: that is, a stratification of the spe­
cimen into regions of coexisting phases with different 
values of the magnetic moment M (see, for example, [11 ). 

A similar phenomenon occurs in ferroelectrics, and also 
in superconductors (the intermediate state). Recently 
the existence of domain structure has been detected in 
nonferromagnetic metals under the conditions of the 
de Haas-van Alphen effect. [21 The simplest domain 
structures are those in ellipsoidal bodies, in thin plane­
parallel plates, and in cylindrical specimens of elliptic 
cross section. If the external field is uniform, the do­
mains in specimens of the shape mentioned form a sys­
tem of periodically alternating, plane-parallel layers, 
whose thickness is small in comparison with the dimen­
sions of the specimen. After averaging over the domain 
structure, the values of the magnetic field Hand induc­
tion B (or of the electric field E and induction D) inside 
such a specimen are uniform. These quantities are con­
nected with the external field H0 (or Eo) by the relations 

Ilo; = (6ih- n;h) (!h) + nil, (B"), 
Eo;= (o;k- n;k) (Ek) + n;h(Dh~· 

(1) 
(1') 

Here the angular brackets denote an average over 
the domain structure, and nik is the tensor of demag­
netizing (depolarizing) coefficients. The stratification 
into domains leads to a decrease of the thermodynamic 
potential; the decrease is proportional to the volume of 
the specimen. 

The problem of the domain shape for thermodynamic 
equilibrium was first considered in the well-known work 
of Landau and Lifshitz. [aJ They showed, in particular, 
that the dimensions of the plane-parallel layers are de­
termined by the condition that the sum of two energies 
be a minimum: the energy of surface tension on the 
boundaries separating the phases, and the energy of 
exit of the domains to the surface. The latter arises 
because of distortion of the domain structure near the 
surface of the specimen, at distances of the order of the 
domain width. In the case of a plane-parallel plate of 
thickness l, the energy of exit of the domains to the sur­
face, per unit area of the plate, is proportional to the 
domain width a and independent of l, whereas the sur­
face-tension energy is proportional to lja. Therefore 

the domain width is proportional to ff. 
In the following sections, the general properties of 

domain structures are discussed, and in particular the 
conditions for coexistence of phases. 

At a boundary between phases there must be continu­
ity of the tangential component of the magnetic field Ht. 
of the normal component of the magnetic induction Bn, 
and of the thermodynamic potential (see Sec. 2) 

H 

ll>'(H,,Bn) = - 4J_ ~ BdH + _!_IlnBn. 
n 0 4:rt 

It has hitherto been supposed that at the boundaries 
separating phases, there was continuity not only of Ht 
but also of Hn. 11 Actually, the complete set of boundary 
conditions (Ht = const, Bn = const, i>'(Ht, Bn) = const) 
permits a discontinuity of Hn at the surface of separa­
tion. 

Very important is the fact that far within a specimen 
of ellipsoidal form, in an arbitrary uniform external 
field H0 (and for H0 = 0 even in a specimen of arbitrary 
form), there is continuity not only of Ht and of Bn, but 
also of Hn, so that coexisting phases have equal thermo­
dynamic potentials 

H 

- 1 i 
II>=-~ J BdH. 

4n" 

This result is not new, but it has been obtained with al­
lowance for the possibility of a discontinuity of Hn, from 
the condition of minimization of the total thermodynamic 
potential 

H(x) 

dl=-J_~ri•x ~BdH 
4n 0 

(see Sec. 3). A similar situation occurs in ferroelec­
trics. 

The possibility of a discontinuity of Hn is important 
in the problem of exit of domains to the surface and, in 
particular, in the theory of the so-called closure do-

llJn the theory of domain structures, the condition of continuity of 
Hn is often formulated as the condition of absence of surface magnetic 
charges. The term "magnetic charge" is obsolete and long out of use in 
other areas of physics. We also shall not use it. 
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mains in a uniaxial ferromagnet (see Sec. 4). The usu­
ally used conditions of magnetic-flux closure are incom­
patible with the thermodynamic boundary condition 
4>f(Ht, Bn) = 4>~(Ht, Bn). Actually the flux is not com­
pletely closed, and near the surface of the specimen 
there appears a magnetic field H * 0, which orients 
the magnetization M in the closure domains almost 
perpendicular to the easy axis. It is shown also that 
near the surface of the specimen, the boundaries of 
the ferromagnetic and ferroelectric domains may in 
general be curved. 

2. CONDITIONS FOR COEXISTENCE OF PHASES 

As an illustration, we shall consider the model of a 
uniaxial ferromagnet described in the book of Landau 
and Lifshitz. [1J In this model, the thermodynamic po­
tential of unit volume of the ferromagnet is 

H 

- 1 H2 

Ill =ll>o(M)-- ~ BdH = ll>o(M)- MH -8. (2) 
4rr 0 rr 

The integral in formula (2) is calculated at a fixed 
value of the magnetic moment M, which must then be 
found by minimization of ~ at given H, that is from the 
equation (a~jaM)H = 0. The thermodynamic potential 
thus determined possesses the necessary property 

.J<iJ B H 
----= --=----M(H), 
oH 4rr 4n 

(3) 

where the differentiation is carried out with allowance 
for the dependence of M on H. 

The quantity 4> 0(M) is basically of exchange origin 
and in first approximation is isotropic. Anisotropy oc­
curs only when relativistic interactions are taken into 
account: 

<l>o(M) =<Do( IMI) + Uan. (4) 

The magnetic-anisotropy energy in the model consid­
ered is 

(5) 

where <p is the angle of inclination of the magnetic mo­
ment to the axis of easy magnetization (the z axis; Mz 
= M cos <p ). In the plane perpendicular to this axis, there 
is no anisotropy in the present approximation. 

The relativistic origin of the anisotropy energy ex­
presses itself in the fact that it is proportional to M2 • 

The constant (3 is in general by no means small. It can, 
in particular, be much greater than unity. The contrary 
case is also possible. The absolute value M of the mag­
netic moment may be considered invariant. In this case 
4> 0 (I M I) is a constant, unimportant in the thermodynam­
ics, and we shall disregard it hereafter. 

On minimizing'¥ at given H, we obtain the equation 
that determines the orientation of the magnetic moment: 

~M sin <p cos<p = -H, sin <p + Hxcos<p; (6) 

the magnetic field H is located in the xz plane. 
In the £ase H~3 + H~3 < (f3M)213 , the thermodynamic 

potential 4> as a function of the angle <p has two minima, 
one of which corresponds to an absolutely stable and the 
other to a metastable state. Thus in this case two differ­
ent values of M are possible for the same H. In the 
range Hi'3 + Hi'3 > ((3M)2 / 3 , metastable states are impos-

sible, and consequently the direction of the magnetic 
moment M at given H is determined uniquely. 

If the magnetic field H is perpendicular to the axis 
of easy magnetization (Hz = 0) and less in absolute value 
than (3M, then two equally stable states are possible 
(Mz 1 = - Mz 2 ; Mx1 = Mx2 ; yy1 ~ My2 ), with identical 
thermodynamic potentials 4> 1 = 4> 2 • This means that in 
a field perpendicular to the axis of easy magnetization, 
coexistence of phases is possible. The boundary sepa­
rating the phases must then be parallel to the axis of 
easy magnetization (this follows from the conditions of 
continuity of the components of the magnetic field H 
tangential to the separating boundary and of the normal 
component of the magnetic induction B). The orientation 
of the separation boundary in the plane perpendicular to 
the axis of easy magnetization can be arbitrary and is 
in no way related to the orientation of the magnetic field 
H. 

Thus on the boundary separating the phases, besides 
the electrodynamic conditions Ht = const and Bn = const, 
a thermodynamic condition for coexistence of phases 
must be satisfied. In the case of phase coexistence con­
sidered above, the complete system of boundary condi­
tions can be written in the following form: 

(7) 

Instead of the conditions Hn1 = Hn2 and ~ 1 = ~ 2, it is pos­
sible to require that the boundary separating the phases 
shall be parallel to the axis of easy magnetization, and 
the magnetic field H perpendicular to this axis. These 
two conditions follow from the system of equations (7). 
On the other hand, they together with the electrodynamic 
conditions H11 = Htz and Bn1 = Bnz are equivalent to the 
system (7). The system (7) contains five relations, of 
which only three are purely electrodynamic. The two 
additional conditions (Hn1 = Hn2 and ~ 1 = ~2) are ex­
tremely restrictive, so that the problem of the strati­
fication of a specimen of arbitrary form into domains 
in general has no solution, if we require that the rela­
tions (7) shall be satisfied on the separation boundaries. 
We shall elucidate this by the following example. 

If we fix the position of the boundaries, it is possible 
to solve the problem of the distribution of the magnetic 
field in a system of contiguous magnets, if we do not re­
quire fulfillment on the boundary of any boundary condi­
tions other than the electrodynamic. In order that the 
two additional conditions may be satisfied on the bounda­
ries, it is necessary that the function z = z(x, y) deter­
mining the position of the boundaries shall satisfy the 
two equations 

Hni(x, y, z(x, y)) = Hn2(x, y, z(x, y)), 

d>;(x, y, z(x, y)) = CD2(x, y, z(x, y)), (8) 

which is in general impossible. In the case of supercon­
ductors, by an analogous method, only the single equa­
tion 

H(x, y, z(x, y)) =He= const. 

is obtained. 
A solution of this problem, satisfying the five bound­

ary conditions (7), exists in the case of a plane-parallel 
ferromagnetic plate cut perpendicular to the axis of 
easy magnetization, in the absence of an external field 
(H = 0). [1J The existence of a solution in this case is 
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accidental; one of the boundary conditions, namely the 
parallelism of the separation boundary to the axis of 
easy magnetization, is fulfilled because of the symme­
try of the problem. 

Such a situation (absence of a solution satisfying the 
five boundary conditions (7)) has already been encoun­
tered in the theor~ of domain structure of nonferro­
magnetic metals. 41 It was established that actually, on 
the boundaries separating the phases, besides the three 
electrodynamic boundary conditions, only one thermody­
namic condition needs to be satisfied, and not two, as in 
(7). The same is true in ferromagnets also. The deri­
vation presented below of the condition for coexistence 
of phases is not dependent on the specific nature of the 
ferromagnet and is valid also for other cases of coex­
istence of magnetic phases, for example for nonferro­
magnetic metals. 

The continuity of Ht and Bn on the boundary separat­
ing the phases plays the same role in our case as does 
the equality of the temperature and pressure in a liquid­
vapor system. It is natural that equilibrium should re­
quire equality of thermodynamic potentials in the vari­
ables Ht and Bn. Such a thermodynamic potential is the 
potential 

(9) 

For given Ht and Bn, it has a minimum at equilibrium. 
Since we are not taking account of magnetostriction, 

we may speak of equality of the thermodynamic poten­
tials of unit volume rather than of unit mass. Thus the 
condition for phase equilibrium has the form 

H 

Ill'=-~~ BdH + HnBn. (10) 
4n 0 4n 

The equality il>~ = il>~ means that the boundary is in a 
position of neutral equilibrium with respect to a shift 
in the direction parallel to it. Such an equilibrium con­
dition was obtained earlier for nonferromagnetic met­
als. [41 For ferroelectrics, the analogous condition has 
the form 

E 

~ DdE- DnEn = const. 
0 

(11) 

In the case of coexistence of the superconducting and 
normal phases, the boundary condition obtained gives 
nothing new, since in the superconducting phase B = 0. 
The problem of the intermediate state differs essen­
tially from other problems of the theory of domain 
structures. In the superconducting phase it is generally 
convenient not to introduce the vector H (see [11). With 
such a mode of description, boundary conditions are im­
posed only in the normal phase, in which H =B. On the 
boundary with the superconductor, Hn = 0 (electrody­
namic condition) and H = He = const (thermodynamic 
condition). The problem of the intermediate state was 
solved by Landau (see, for example, [11). 

The equilibrium equations (10) permit, as a special 
case, the coexistence of phases described by the rela­
tions (7). In nonferromagnetic metals this is possible 
when Bn = 0; but in the model of a uniaxial ferromagnet 
considered above, it is possible only when the boundary 
separating the phases is parallel to the axis of easy 
magnetization. 

If 

FIG. I 

We shall now discuss in more detail the conditions 
for coexistence of phases in ferromagnets. We shall 
consider first the case {3 = co. In this case, the aniso­
tropy energy is zero, and 

"''=-MH -Jl2+ HnBn M M M ..... • z 8n 4n ' zt=- zz= . 

Let the separating boundary make an angle a with the 
z axis, and let the y axis be chosen in the plane of the 
boundary (Fig. 1). · 

By taking into account that 

H2 HnBn H,Z Bn2 -(4l1Mn} 2 

- 8n +~= -g;-+ 8n ' 

it is easy to see that this quantity is the same on both 
sides of the separating boundary. Therefore the condi­
tion il>~ = il>~ takes the form Mz1Hz 1 = MzJfzz• whence 
it follows that 

(12) 

Since Hz = Ht<x,z>cos a - (Bn- 41TMn)sin a, where 
Ht<x,z> is the projection of Ht on the xz plane, this con­
dition is equivalent to the following: 

Ht(x,z) = Bn tga (~ = oo). (13) 

Either of these two relations ((12) or (13)) can be used 
as the thermodynamic boundary condition. 

Thus if the separating boundary is inclined to the 
axis of easy magnetization, then on this boundary Hz1 
and Hza do not vanish and Hx1 * Hxz. The converse as­
sertion is also correct. It can be shown that in a ferro­
magnetic plate with {3 = co, cut perpendicular to the easy 
axis, in an external field H0 * 0 parallel to this axis, the 
domain boundaries near the surface of the specimen 
must curve in the same way as in superconductors 
(see [11). The distortion is of the order of H0 /41TM 
(there are no other parameters in the problem, since 
{3 = co). 

A ferromagnet with {3 = co has a great resemblance 
to ferroelectrics, in which the direction and magnitude 
of the polarization vector P do not change even in a very 
strong field. In a uniaxial ferroelectric, the thermody­
namic boundary condition has the form 

Ezt +Ez2 = 0, 
or 

Et(x,z) = Dn tga. 

(12') 

(13') 

The boundaries of ferroelectric domains may also curve 
on exit to the surface. 

We shall now consider a ferromagnet with extremely 
small anisotropy ({3- 0), in which the magnetization M 
in the presence of a magnetic field H is oriented along 
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H. In the absence of a field, M may be directed arbitrar­
ily; that is, not necessarily along the axis of easy mag­
netization. This means that actually the magnetic mo­
ment M is oriented by an infinitely small field H ~ {3M. 
In the isotropic case 

, H2 HnBn 
<I> =-1JfH--+--. 

8n 4n 

By taking into account that Bn = Hn + 41TMHn/H, we 
transform 4>' to the form 

B, = Hn + 4n1J!Hn I H, 

H,2 H2 H12 

«<>'=-Mn+sn-4n· 

On equating 4> ~ and 4>~, we get 

H1H2 (H1 - H 2 ) (Ht + II2 ) = MII,2 (1Iz -II1), 

whence it follows that H1 = H2 • This equation is com­
patible with the conditions Htt = Htz and Bn1 = Bn2 only 
in case Hm = Hna· If H1 and H2 do not vanish, then the 
conditions obtained lead to the equality M1 = M2 and do 
not correspond to phase equilibrium. The latter is pos­
sible only in case 

(14) 

The orientation of the separating boundary may then be 
arbitrary. The magnetizations M1 and M2 may be in­
clined to the surface at an arbitrary angle a (Fig. 2). 
The inclination of M to the axis of easy magnetization 
means, as already indicated, that the magnetization is 
oriented by an infinitely small field H ~ {3M. 

The equilibrium condition obtained differs from that 
which would be obtained from (7) by setting {3 - 0 only 
by the fact that the separation boundary can be inclined 
to the axis of easy magnetization. 

We shall present without derivation the boundary con­
dition for arbitrary {3, but for small angles of inclination 
a of the boundary (see Fig. 2), obtained by taking account 
of terms of order a 2• It has the form 

liz!+ IIz2 = 0, (a-+ 0), (15) 

that is, the same as in the case {3 = oo (see u21 ), except 
that now it is correct only to the second order in a. 

We shall now consider the problem of the transition 
layer between domains, assuming that the width of this 
layer is large in comparison with the distance between 
atoms (such a situation occurs in all cases of the coex­
istence of magnetic phases). It will be shown, in par­
ticular, that the problem of the transition layer has a 
solution only when the condition (10) for coexistence of 
phases is satisfied. This problem is one-dimensional, 
and in consequence of Maxwell's equations the values 
of Ht and Bn do not change in the transition layer. The 
values of Bt and Hn may change in the direction perpen­
dicular to the separation boundary (along the ~ axis). 

FIG. 2 

Far from the separation boundary (for ~ - ± oo ), they 
must approach the asymptotic values B{' and .H~. The 
orientation of the separation boundary with respect to 
the crystallographic axes we here consider arbitrary. 

The thermodynamic potential in the case considered 
is a functional of the distribution Bt(~) and Hn(~): 

(16) 

The specific form of this functional will not be needed. 
We introduce also the thermodynamic potentials 

- 1 ~ 
(I= (I+-· ~ d~H(6)B(!;) 

4n -oo 
(17) 

- 1 00 

lll'=lll+- S d!;Hn(!;)Bn(!;}. 
411 -00 

(18) 

~ The values of Bn and Ht are related to the potentials 
4> and 4> as follows: 

Bn(s) 1411 = -(lliillllHn(s))H,<~> 

H, (s) I 4n = (lieD I llBt(s) hnm· 
(19) 

It is easy to see that these equations are the Euler­
Lagrange equations for the functional 4>' under the ad­
ditional conditions Bn = const and Ht = const. If there 
is a functional relation between Bt(~) and Hn(~), then 
one of these equations is a consequence of the other 
two. In order that the functional 4>' may have an ex­
tremum, it is necessary that the integrand in (18) take 
the same values for ~ - ± oo. Thus we again obtain the 
condition for coexistence of phases 4>~(Ht. Bn) 
= 4>;(Ht> Bn)· 

The investigation made shows that the structure of 
the transition layer can be found by minimization of 
the thermodynamic potential 4>'. If phases coexist with 
different thermodynamic potentials '4> 1 and '4> 2, then the 
surface tension on the separating boundaD' is expressed 
in terms of the thermodynamic potential 4>: 

~ 

Ll = ~ dS{cD {B,(;), Hn(s)}- CD(s =±co)], (20) 

where~(~= ± 00 ) = ~1 = ~2• 
In ferroelectrics far from the Curie point, the change 

of Dt and En in the boundary separating the phases oc­
curs over distances of the order of interatomic dis­
tances. In this case, the above statement of the problem 
of the transition layer for ferroelectrics has no meaning. 

3. INTERNAL PROPERTIES OF DOMAIN STRUCTURES 

If we neglect the thin surface layer in which there is 
a distortion of the domain structure, then in specimens 
of ellipsoidal form the separation boundaries between 
domains may be considered plane, and the orientation 
of all the separation boundaries the same. The volume 
properties of domain structures are characterized in 
addition by the values of Ht and Bn and the concentra­
tions of the phases c1 and c2 (c1 + c 2 = 1). These quanti­
ties satisfy the three equations (1), where (H) = c1H1 

+ c2H2 and (B) = C 1B1 + caB2 , and the condition for co­
existence of phases (10); that is, the number of equa­
tions is less by two than the number of parameters that 
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determine the properties of the domain structure. These 
parameters must be found from the condition that the 
total thermodynamic potential of unit volume 

H, 

din (H0) = din (H0 = 0)- ~ (M) dH0 • (21) 
0 

shall be a minimum. 
a) We consider first a ferromagnetic ellipsoid in the 

absence of an external field (H0 = 0). It is easily shown 
that if H0 = 0, that is if the external currents j vanish, 
then the thermodynamic potentials 

H~x) 

<b = - fn ~d3x ~ BdH and C1> = cii + in ~ d3xH (x) 8 (x) 
0 

coincide, independently of the nature and geometry of 
the specimen. In fact, H · B = div [A xH] +A curl H, 
where A is the vector potential. The second term in 
this expression vanishes, since j = 0, and consequently 
the integral of H · B reduces to the integral of a diverg­
ence. 

An analogous situation occurs in ferroelectrics if 
E0 = 0; that is, if the external charges and charges on 
conductors vanish. In this case E • D = - div (cpD) 
+ cp divD (cp =scalar potential), wherein divD = 0 and 
on the surfaces of conductors Dn = 0. 

The thermodynamic potential <I> in a ferromagnet is 
equal to Uan + H2/87T. It is obvious that when H0 = 0, the 
minimum of the thermodynamic potential is attained 
when, far inside the specimen, H = 0, M1 = - M2 (then 
Uan = 0), and c1 = c2 ; that is, when the boundary condi­
tions (10) are satisfied. This result is independent of 
the model. 

Analogous statements are valid also for ferroelec­
trics. 

b) We consider, further, a uniaxial ferromagnet with 
{3 = oo in an arbitrary external field H0 * 0. We fix the 
position of a boundary, which is determined by two pa­
rameters: the angle 0! and the direction of the x axis 
in the plane perpendicular to the axis of easy magneti­
zation (see Fig. 1). From the conditions Hh = Hb and 
Bn1 = Bn2 we obtain 

Hyt = Hy2= lly, 
(llzt -1!,2 )cos a= (Hx2 - Hxt )sin a, (22) 

(Hzt -ll,2)sin a= (Hxt- Hx2)cos a- 8nM sin a. 

On taking into account that Hz1 + Hz 2 = 0 (see (12)), we 
find 

Hzt = -H,2 = -4nMsin2 a, 

Hx1 -H:a = 4nMsin2a. 

(23) 

(24) 

It is convenient to rewrite equations (1) in the follow­
ing form: 

or in expanded form 

lloz = 4n(n.,- sin2 a)(M,), 
H0x = CtHxt + c2Hx2 + 4nnxz<M,), 

Hoy= Hy + 4nnyz<M,). 

(25) 

(26) 

In the first of these relations, use has been made of the 
facts that (Hz) = - 47TM(c1- c2 ) sin2 0! and that (Mz) 
= M(c1- c2). For a given position of the separation 

boundary, a domain structure is possible only if 

Ho. 
-4:rrM< <4:rrM. 

nzz- sin2 a 
(27) 

If the external field H0 = 0, then (Mz) = 0, that is 
c1 = c2 = Y2 , and it follows from the relations (24) and 
(26) that 

Hy = 0, llxt = -Hx2 = 2nM sin 2a. (28) 

A simple calculation leads to the following formula for 
($) when H9 = 0: 

- - - H• 2 M" . 2 (lll)H,-o = lll1 = !1>2 =-M,H,- Bit = n sm a. (29) 

The total thermodynamic potential at H0 * 0 is easily 
calculated by means of the first of the relations (26). 
It is 

- llo 2 
<Dn = 2nM2sin2a- ' (30) 

8:rt(nu- sin2a) 

and, for given orientation of the boundaries, depends 
only on H0z; this is a result of the fact that in the model 
considered, Mx = My = 0. The coefficient nzz depends 
on the ratio of the ellipsoid semiaxes and on the orien­
tation of the axis of easy magnetization with respect to 
the ellipsoid. It can vary over the ran~e 0 < nzz < 1. 

The total thermodynamic potential iPn, considered 
as a function of sin2 0! in the region 

I . 2 I< IHo.l 0-- . 2 -- 1 n., - sm a 4nM , """" sm a """" , 

attains its smallest value when sin2 0! = 0. This means 
that in the interior of the specimen the boundary condi­
tions (7) are fulfilled on the boundaries that separate 
the phases. 

Similar properties are possessed by the model of a 
uniaxial ferroelectric mentioned above, if the external 
field E0 is given; that is, if the charges that produce 
this field are given. In this case there must be a mini­
mum of the thermodynamic potential <I>n (see [11): 

E, 

a>,.= (!I> (Eo = 0)) - ~ (P) dE0 , 

0 

E' ED E' 
a> = - PE - 8i"" + ""4it = 8i"" . 

We are supposing that Pz = ±P = canst, so that the for­
mulas for E and ( P) are analogous to the corresponding 
formulas for Hand (M). It is easy to see that the ther­
modynamic potential <I>n is equal to 

Eo.2 
<I>n = 2:rrJl2 sin2 a - 8 ( . 2 ) n nzz- Sin a 

(30') 

and has a minimum at 0! = 0. 
c) We shall show further that in the general case also, 

that is in an arbitrary external field H0 and independently 
of the model, the conditions (7) for coexistence of phases 
require an extremum of the total thermodynamic poten­
tial $n (we at first neglect surface effects). 

We shall start from the following expression for $n, 
which is equivalent to (21): 

- - H~ 1 i I 
<Dn= (!11)+·----J (H2-H02)dV. 

8:rr 8:rrV V' 

(31) 

Here V is the volume of the specimen, and dV' is an 
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element of volume of the space outside the body. The 
quantity H- H0 is the field produced by the magnetic 
moment of the eUipsoid. The term expressed as an 
integral, which we shall designate by cp, of course de­
pends only on H0, (M), and the parameters of the el­
lipsoid: cp = cp((M), H0). 

The field H - H0 decreases slowly at infinity (as 
1/r3 ), and the integral of the product H0 (H- H0 ) con­
verges only as the result of an averaging over angles. 
It then depends on the manner of approach of the limits 
of integration to Infinity. It would be possible to calcu­
late cp ( (M), H0 ) by giving the field H0(x) in such a form 
that at infinity H0(x) - 0. Only such a case has physical 
meaning. Under these conditions, H0(x) must satisfy the 
equation div H0(x) = 0. It would be possible to calculate 
analogously the corresponding integral for ferroelec­
trics, by requiring that curl E0 (x) = 0. Of course a dif­
ferent dependence of the integral on the external field 
and the moment is obtained for magnets and for ferro­
electrics (see below). We shall, however, circumvent 
the above-mentioned difficulty by calculating the inte­
gral by another method. 

We represent the thermodynamic potential of a fer­
romagnet with {3 " oo in the uniform state (without do­
mains) in the form 

(j)~nif=-MH0 -(MH+ H"s ,), +cp(M,Ho=O), (32) 
\ :J1 H0 =0 

where for H0 = 0 we have Hi = - 47TnikMk. It follows 
from (31) that 

-unif ( H'\ Ho2 
<Dn =- MH+-8 1 +-8-+cp(M,H0), 

";H,;<o " 
(33) 

where Hi = Hoi- 47TnikMk. On comparing {32) and (33), 
we get after simple calculations 

cp(M, H0) =-ni,HoiM,+cp(M, Ho=O). (34) 

We now use th1e fact that if in formula (26) for the 
thermodynamic potential of a domain structure we set 
a = 0 and H0z = 47TMnzz, we get the thermodynamic po­
tential of the uniform state, <I>~if = - 27TnikMiMk. On 
comparing this quantity with (32), where it is also nec­
essary to set H0z = 47TMnzz, we find cp (M, H0 ). Finally 
we get 

We shall now determine, in a linear approximation, 
the change of ~n in the case in which the conditions for 
coexistence of phases differ insignificantly from the 
condition (7) (this means a small change of all quantities, 
including (Hi), (Mi ), the orientation of the separation 
boundary, etc. at given H0). By means of the relations 
(25) it is easy to show that 

llQJ = -ni,(Hi)ll(M,) +(<Hi)- Hoi)ll(M;). 

Making use of (1 )" we get 

ll<p = -n;,(B;)Il(M,). 

It follows from (25) that 

Therefore the change of ~n can be expressed in the form 

- - 1 1 
ll<Dn = 6 (<D)+ 4n (B)6 (H)= 4n((B) 6 (IV- (BI\H>). (36) 

In the second term ( (BoH) ), the average is carried 
out with the concentrations of the zero-order approxi­
mation, since in this approximation ~1 = ~2 • 

We shall denote by Ht and Hn the components of the 
magnetic field (and similarly for the induction) tangen­
tial and normal to the separation boundary of the zero­
order approximation. Then it is obvious that (BnoHn) 
= Bno (Hn)· On the other hand, the projections 6Ht' 1 

and oHt' 2 on the new separation boundary coincide. All 
that differ from each other are the projections bHn1 ' 

and oHn2 ', and these may be disregarded in the calcula­
tion of 6Ht1 and oHh, since the angle between these sep­
aration boundaries is small. Thus in the linear approx­
imation, 6Htt = 6Ht2 • Consequently, (~oH) = (B) 6 (H); 
that is, in the linear approximation o<I>n = 0. This means 
that the total thermodynamic potential has an extremum 
if the conditions (7) for coexistence of phases are satis­
fied. 

We cannot show in general that this extremum is a 
minimum. This assertion has been tested in a few spe­
cial cases. Besides the examples considered above, 
this property is possessed by the isotropic model of a 
nonferromagnetic metal in the case investigated in [4 J: 
a plate in an external field perpendicular to it. 

It is evident from formula (36) that all structures 
satisfying the conditions (7) have the same thermody­
namic potential ~n· Equations (1) and (7) allow a one­
parameter family of structures. The actual orientation 
of the separation boundaries, like the width of the lay­
ers, is determined by the condition that the sum of the 
energy of exit of domains to the surface and the energy 
of surface tension on the boundaries separating the 
phases shall be a minimum. 

In ferroelectrics in a given external field E0 , there 
must be a minimum of the thermodynamic potential 

tDn = + ~ d'x [ (lJ (x)- ~~ J = <lln (E 0= 0)- ~· (P)dEo, (37) 
0 

where 

E 

lD =--- DdE +-. 1 ~ ED 
4n 4;t (38) 

0 

In the case of an ellipsoidal specimen, this can be re­
duced to a form analogous to (35). 

On comparing the formulas for the thermodynamic 
potential of a ferroelectric with P = const, we get 

(. E' ) ( E' ) E02 
---sit E,~o +ql (P, Eo= 0)-PEo = ,---sit E,;<o- ---sit+ QJ (P, E 0), 

whence 

<p(P, Eo) = Ql(P, Eo= 0) + ni,EoiP,- PEo. (39) 

The integral cp (P, E0 = O) converges and is indepen­
dent of the method of approaching the limit. Therefore 
it can be obtained from the corresponding formula for 
magnets by a change of sign and the substitution M- P. 
We finally get 

Eo2 
<lln = (<ll)- ---- + nihEoi (P,)- (P) Eo+ 2:rt (nih- nu nlk)(Pi) (P,). 

8n 
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The change of ci>n has the form 

1 
ll<lln = llct(<llt- <1!2)+ 4;((EilD)- (E) II (D)). 

latter fact follows from the condition of continuity of 
Ht. We here neglect possible movement of the separa­

(41) tion boundaries, requiring fulfillment of the boundary 
conditions on motionless boundaries. 

Here use has been made of 

1 
II (<II)= llct(<llt- <11•)+4"; (EilD). 

If in the zero-order approximation E1 = E2 = E and 
~1 = ~2, then since 

1 
(!It- <1!2 = -E(Dt- D2) and llD = llct(Dt- D2)+ (liD), 

4rc 

the quantity 15ci>n vanishes; that is, ci>n has an extremum. 
Just as in magnets, in the approximation considered the 
orientation of the separation boundaries remains unde­
termined. 

4. CLOSURE DOMAINS IN A UNIAXIAL FERROMAGNET 

In this section, a study is made of the domain struc­
ture in a ferromagnetic plate whose plane is perpendicu­
lar to the axis of easy magnetization. For simplicity, we 
consider only the case H0 = 0. We shall consider the 
anisotropy of the ferromagnet to be small (j3 « 1). As 
is well known, in this case so-called closure domains 
are formed near the surface of the plate. [1 • 31 In the 
limit {3 - 0, the structure near the surface has the form 
depicted in Fig. 3, and the magnetic field H vanishes 
both inside and outside the plate. On the boundaries of 
the closure domains, the conditions (10) for coexistence 
of phases are satisfied (see (14) and Fig. 2), but the 
more rigid conditions (7) are not satisfied. The latter 
fact is obvious, since the separation boundaries form 
an angle of w/4 with the axis of easy magnetization. 

In [1• 31 it is assumed that at sufficiently small but 
finite {3 ({3 < f3k ~ 1), this structure is unchanged, and, 
in particular, Has before vanishes, while Min the clo­
sure domains is perpendicular to the axis of easy mag­
netization. Such a state of a closure domain is abso­
lutely unstable, since it corresponds to a maximum and 
not a minimum of the thermodynamic potential when H 
= 0. Furthermore, on the separation boundaries the con­
ditions (10) for coexistence of phases are not satisfied, 
and the problem of the transition layer has no solution 
corresponding to a transition from a stable to an abso­
lutely unstable state. From our point of view, the pic­
ture proposed in [1• 31 is impossible. It will be shown be­
low that for small but finite {3, there exists in the closure 
domains and in adjoining regions a magnetic field H, 
which, in particular, orients the magnetic moment per­
pendicular to the axis of easy magnetization. 

It is obvious that in the first order in {3, the field H 
in the closure domains is perpendicular to the axis of 
easy magnetization, parallel to the magnetic moment, 
and equal to ±{3M. On the boundaries of the triangles 
in the regions I and II {Fig. 3), the field is antiparallel 
to the magnetic moment M and is equal to ±{3M. The 

FIG. 3 

Knowing the field in the closure domains, we can 
easily find the field outside the specimen. It must sat­
isfy the boundary condition 

If,•> {-~Mfor -a<x<O 
x (x, z = O) = ~M for 0 < x < a = 

=~fl_A!~_1 __ sin (2n_+1)nx _ 

n n=O 2n+ 1 a 
(42) 

The solution of this problem has the form 

H(•) 4pM ~ 1 { (2n + 1)nz } . (2n + 1)rcx 
x =--~~2 +i exp --,-- sm , 

~ n=O n a a 
(43) 

n;•>= _ 4pM ~--1-exp{ (2n + 1)nz }cos (2n + 1):nz . 
n n=o 2n + 1 a a 

The presence at z = 0 of a component H~e> perpen­
dicular to the surface leads to a small (of order {3) in­
clination of the magnetic moment near the surface to 
the x axis. 

We pass on to the calculation of the field in regions I 
and II. It is obvious that, by virtue of the symmetry of 
the problem, the boundaries between these regions do 
not curve. For z- 0 the field H must approach zero. 
By virtue of Maxwell's equations, the component Hx at 
finite z must be nonzero (but small). From equation (6) 
it is easy to obtain the dependence of M on H for small 
Hx but finite Hz: 

M<t> ~ MH., M<•> ~ MH., M!,t> ~ _ M,(2i ~ M. (44) 
X pM + H, , X ~ flM- H,, 

Maxwell's equations in this case have the form 

~= iJH., iJH, _!____[( 4rcM ) ] _ 
iJx iJz ' {)z + iJx 1 + ~M ± H, H., - 0-

After the substitution 

H, = pMV, Hx = W"M(1 ± V)U 

they transform to the following: 

(45) 

(46) 

iJV - iJ -iJV iJ 
-=W-[(1± V)U], l'P-+- {(4n+ f\(1 ± V)]U} =0. 

iJx {)z iJz iJx (47) 

In the closure domains the relations analogous to 
(44)-(47) have the form 

MH, 
M, =- pM ±H.,' Mx ~ =FM, (44') 

an.,= an •. an.,+_!___[( 1 - 4nM )n.]· =O, (45,) 
iJz iJx iJx iJz _ flM ± H: 

H., =!fiMV', H, = W'•M(1 ± V')U', {46') 
iJV' - iJ -oV' iJ 
- = l'fl-((1 ± V') U1, l'fl-=- {(4n- f\(1 ± V')]U'}. 

{)z iJx iJx {)z (47') 

In the limit {3 - 0 the equations (47) and (47') admit the 
solution V' = ±1, U' = 0; V = ±1, U = 0 in the triangular 
parts of domains I and II and V = U = 0 outside these 
triangles. Thus in the closure domains and in the trian­
gular parts of domains I and II, the field is practically 
uniform and equal to ±{3M. Below, the field rapidly de­
creases to zero. The transition occurs in a narrow 
layer of width 15z ~ .f{Ja near the dotted line connecting 
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the vertices of the triangles in Fig. 3. The field H in 
domains I and II does not exceed the limits of metasta­
bility. In the closure domains, near the lower vertices 
of the triangles, at distances liz~ ..f{'Ja, the direction of 
magnetization may deviate significantly from the x axis; 
this leads to a pronounced curving of the separation 
boundaries in the transition region. This region makes 
a small contribution to the energy of exit of the domains 
to the surface. 

The region outside the specimen makes a contribu­
tion to the exit energy that is proportional to {32 and may 
be neglected. The energy density in the closure domains 
is equal to the sum of the anisotropy energy f3M'?-'2 and 
the energy - MH = -{3M2 (we neglect the term - H'181r). 
This sum is negative. 

In regions I and II, the anisotropy energy is insignifi­
cant, while - MH is equal either to {3M2 or to zero. The 
regions in which - MH = {3M2 have the same volume as 
the closure domains. Thus in the approximation adopted, 
the exit energy coincides with the anisotropy energy, as 
was assumed in [1• 3 J. Per unit area of the plate (with al­
lowance for the two sides of the plate), the energy of 
exit of domains to the surface is 

Eexit = 1/i~M2a. (48) 

This result can be obtained by another method, by 
using the fact that in the case H0 = 0 the thermodynamic 
potential i is (see Sec. 3, Item a) 

d)=iJI= S d3x(Uan+IP/8:rt). 

In the limit {3 - 0, the second term makes a small 
contribution to the exit energy (~(32). The latter is de­
termined by the anisotropy energy alone, as is also re­
flected in formula (48). This statement is correct also 
in the case in which the axis of easy magnetization is 
inclined to the surface of the plate (this case also was 
considered by Landau and Lifshitz[3J). 

When a current j flows in the direction perpendicular 
to the layers, the boundaries of the layers should move[4 J 

with speed v = jjn I e I (here e is the charge of the elec­
tron, and n is the difference between the numbers of 
electrons and of holes; it is assumed that n * 0). 

The author is grateful to I. E. Dzyaloshinskil for dis­
cussion of the results obtained. 
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