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Laser frequency mixing is considered for semiconductors with a narrow forbidden band. It is shown 
that near the threshold for two-photon production of a real electron-hole pair, the frequency mixing 
probability grows as lln~ 12 when there is degeneracy of the conduction electrons, and as I~ r1 if the 
transitions take place between Landau levels in a magnetic field (~ is the energy above threshold). 

THE power of laser beams is sufficient for the obser
vation of optical nonlinearity of solids. Patel et al.L11 
have observed mixing of the frequencies (MF) w 1 = 1. 77 
X1014 s-1 and w 2 = 1.95 x 1014 s-1 of a C02 laser in the 
processes (2w1- w2, 2w1- w.J and (2w2- w1, 2wa 
-wJ, i.e., absorption of two photons from one beam 
with subsequent stimulated emission of a photon of 
another beam and a photon carrying the remainder of 
the energy. The initial and final states of the crystal 
coincide, so that the processes are coherent. The ex
periments inllJ were carried out on crystals of InAs, 
InSb, GaAs, and PbTe. A strong dependence of output 
power at the frequency 2 w 1 - w 2 on the concentration of 
conduction electrons was noted. Wolff and Pearson LaJ 
carried out a theoretical treatment, ascribing the prin
cipal role in the nonlinearity to the conduction elec
trons, and the nonlinearity itself was explained by a non
parabolic dispersion law in the conduction band. The 
emission of the electron was treated in L21 as the radia
tion of a classical charged particle moving under the 
influence of an alternating field, and the specifics of the 
semiconductor enter via the dispersion law. 

The classical treatment is appropriate if the energy 
of the quantum is small compared to the energy of the 
interband transitions. If this condition is not fulfilled, 
it is impossible to express the magnitude of the non
linearity solely in terms of the dispersion law of the 
conduction band. 

The substances investigated in lll differ strongly with 
respect to the width of the forbidden band: Eg > 1 eV 
for GaAs, Eg = 0.19 eV for PbTe, L3 J and Eg ~ 0.2 to 
0.3 eV for InSb and InAs. The energy of the quanta is 
flw1 = 0.117 eV and1lw 2 = 0.129 eV. It follows from this 
that in PbTe, InSb, and InAs the nonlinearity must be 
treated by quantum methods with account taken of the 
specific band structure. 

Calculation of the probability of MF in the general 
case requires knowledge of the wave functions far from 
the band extrema. However, the favorable relation of the 
parameters-the closeness of the widths of the forbid
den bands in PbTe, InSb, and InAs and twice the energy 
of the quanta obtainable from the C02 laser -allows us 
to pose the problem of the peculiarities of the probabil
ity of MF at the threshold for two-photon creation of a 
real electron-hole pair. In this, the form and magnitude 
of the peculiarity is determined by integration in the 
matrix element over the momentum of the virtual pair 
near the extrema of the conduction and valence bands, 

i.e., in that region of the Brillouin zone that is well 
known in many semiconductors. 

As is known, the Hamiltonian of the electron-photon 
interaction in the nonrelativistic case is the sum of two 
terms, one of which is linear in the vector potential of 
the photon and the other quadratic. The process of in
terest to us is of fourth order in the electron-photon 
interaction and is manifested as the scattering of light 
by light. There are three forms of diagrams that give 
a contribution to the matrix element of the process M: 

'11 ><( 
/ a '- b ',, c 

FIG. 1 

Of importance to us are those diagrams which, by 
breaking two electron lines, can be divided into a dia
gram pertaining to two-photon creation of a real pair 
and one belonging to its two-photon annihilation. Since 
the term that is quadratic in the vector potential in the 
interaction Hamiltonian depends weakly on the coordin
ates due to the smallness of the photon wave vector, its 
contribution to the probability of pair creation is negli
gibly small, and so diagrams of the type b and c in 
Fig. 1 should be eliminated. 

We assume that the two photons are identical; hence 
for a given direction of going around the electron loop 
there are in all three different diagrams of type a. Of 
these, two diagrams, which involve transposition of the 
final photons, give a contribution to the probability of 
MF of interest to us: 

a b 
FIG. 2 

Since we shall consider only these two diagrams and 
ignore the remaining diagrams of fourth-order pertur
bation theory, the expressions obtained below are only 
those parts of the general gauge-invariant expressions 
which are important near resonance. This explains the 
absence of gauge-invariance in our final results. 

The probability per unit time w of creating a photon 
with frequency W3 = 2 w1- wa and a given polarization 
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is expressed in terms of the matrix element Min cus
tomary fashion 141: 

21! d3ka IMI 2 
w = -li ~ --~ 6(21iwt -fiwz- cokafi){(21t)3 6(2k,- kz- ka)]Z, 

(21!) 3 21!wa (1) 

where c0 is the velocity of light in the crystal. We shall 
assume the sample size to be sufficiently small and 
neglect the nonparallelism of the laser rays and the 
dispersion of light in the semiconductor. Then, integrat
ing over k3 as in [51 , we obtain 

£2S 
w = --IMI 2• (2) 

2cofi3 wi 

Here L is the length of the crystal in the direction of 
light propagation, and S is the cross section of the reg
ion in which MF takes place. 

CONCENTRATION DEPENDENCE OF THE PROBABIL
ITY OF FREQUENCY MIXING 

We shall carry out the calculation for the example of 
a semiconductor with the band structure of PbTe. As 
pointed out in £3J, in PbTe the band extrema are located 
on the edge of the Brillouin zone on the [111] axes, and 
the bands are described by an equation that differs from 
the Dirac equation by the anisotropy of the effective 
masses. Aronov and Pikus [aJ show that a coordinate 
transformation can bring the equation for each minimum 
to the Dirac form with replacement of the velocity of 
light by s = (f.g/2m) 112, where m = (mumi.) 1f2 is the mass 
of the density of states, which enters in the equation as 
the electron mass; m 11 and m1 are the principal values 
of the effective mass tensor. The total matrix element 
is the sum of four matrix elements for different minima. 
The term in the total matrix element which corresponds 
to a given diagram and given minimum is obtained from 
the expression pertaining to this same diagram in quan
tum electrodynamics, 141 after the following operations: 
1) deletion everywhere of the photon momentum com
pared to the electron momentum; 2) replacement every
where of the velocity of light by s and the mass by m; 
3) replacement of the scalar products of the vector 
potentials by their combination with the inverse effec
tive mass tensor mij for a given minimum according to 
the rule A· B - Ai (m/mij)Bj; 4) if the conduction band 
is filled with electrons up to the Fermi level f.F, inte
gration over the modulus of momentum is carried out 
between the limits (p~, oo), where PF 
= [2mf.F(1 + f.F/f.g)]1 2. 

These rules are easily obtained with the aid of the 
results of[31 after writing out the expression for the 
S-matrix. We give the part of the matrix element that 
corresponds to diagram a of Fig. 2: 

- I d'p 
Ma = e')'4ll J (2n)' 

IPI>p, 

X Sp {AG(p)AG(p- k1);G(p + k1 - k2 )BG(p + ki)}. (3) 

Here we take s =fl. = 1 and use the notation of[41 ; A and 
B are the vector potentials of the laser fields, e is the 
polarization vector of the emitted photon. Calculation 
of the trace is facilitated if it is taken into account that 
A, B, and e do not have temporal components and the 
spatial components of the 4-momentum of the photon 
are eliminated. To simplify the angular functions, we 

take the polarizations of all photons to be identical and 
linear. In view of the fact that [41 

p+m 
G(p)=---~-.-, 11-++0, 

p•-m•+tll 
(4) 

the necessary traces, summed over the minima, can be 
obtained from the general expression 

• 
~ Sp{~(P+ m)it(Pt +m)~(p2 +m)ii (Pa +m)} 

Cl=l 

= 16/o <D (8){ m• + m• (PP• + PtPa)- (m' +'f. P2) (PPt 
+ PtPz + P2Pa +PaP)+ 3{(pp,) (PzPa) + (PtPz) (PPa) (5) 

-(ppz) (PtPa)] + 8/am2P2 + 8/sP4}. 

where n is the unit polarization vector; p, P1, P2, Pa are 
4-vectors with spatial component p and different tem
poral components. The scalar product of the 4-vectors 
a and b is written in the form 

ab""' (ab) = aabo- ab. 

The function <P(8) determines the dependence of the 
matrix element on the direction of n relative to the 
crystal axes: 

<D (e)= ( 2m +_I!! )' + 8 ( -~-~ Y( 1 - ~ cos• ui) , 
m.L mu m.L mu i-t 

(A) 

(6) 

where the ei are the angles between nand the fourfold 
axes. In calculating Eq. (5), an average over the direc
tions of p was made to bring out the angular dependence 
explicitly. 

From (3) and (4) it is seen that the integral in (3) 
diverges logarithmically at the upper limit. This indi
cates the inadequacy of the two -band approximation for 
calculating the probability of MF. We are interested, 
however, in the case when the integral diverges at the 
lower limit of integration over the modulus of p. This 
occurs at 2flw1 = f.g + f.F (f.F is the Fermi energy), i.e., 
at the threshold of creation of a real electron-hole pair. 
Writing out an expression for Mb analogous to (3), using 
(5), and calculating the part of M logarithmically diverg
ing at the lower limit with the assumption f.F < f.g, 
which is almost always true, we obtain the final expres-
sion 

( EF )"I 1 Eg + BF- 21iw, \2 (7) 
X£il2 (8) -- 1 n , 

. Eg Bg 

where E1 and E2 are the amplitudes of the laser fields 
at frequencies w1 and w2• In the calculations, we take 
2flw1 = f.g everywhere except in the logarithm. The 
logarithm is real for positive values of the argument, 
and for negative values it acquires the addition of il!"; 
hence at the threshold w goes to infinity as ln2lxl and 
undergoes a finite jump. The magnitude of the singular
ity of (7) compared to the smooth part of w is given, in 
order of magnitude, by the last two factors in (7). Since 
the inequality f. F < f.g holds up to concentrations of 
"'1018 , the singularity of (7) should be considered weak. 
The concentration dependence, according to our calcula
tion, is not monotonic, thus differing from u, 21 . The 
angular dependence of (7) and (6) shows that near thres
hold the maximum and minimum of w are attained at 
polarizations respectively along the three- and fourfold 
axes. Since usually mu > m1, the maximum and mini
mum values of w can differ by not more than 49/9 
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= 5.4 times. For PbTe, where m 11/m1 Rj 11, they differ 
by a factor of 4. 

DEPENDENCE OF THE PROBABILITY OF FREQUENCY 
MIXING IN A MAGNETIC FIELD 

We shall carry out the calculation for a model semi
conductor in which the conduction and valence bands are 
isotropic and are described by ·the Dirac equation 

(p-eAH+m)'IJ=O; a=alff-ay (li=s=1). (8) 

We represent the matrix yiJ. in the form 

(o a) ·o 1) 
v = a 0 • cr = (1 0 • 

a'=(~ -~). (9) 

The magnetic field H = cH '/ s (c is the velocity of light) 
is directed along the z axis, and its vector potential 
AH = (O, H'x, 0). Solving the squared Dirac equation, we 
find the four orthonormal solutions: 

(J.l. = ± 1). (10) 

Here n is a two-dimensional volume (y, z), 

~ = (eH')1f2(x-py/eH'), . 11 . o) 
(p-eAH+m)v<nl(~)BI' 0 1 0P>±(~) ~ (2 {J>:±p.m))''• ; B,~ (:, ' B.,~\: (il) 

v(n)(~) is the n-th normalized function of the harmonic 
oscillator, Po= [m2 + p~ + eH'(2n -IJ. + HY12 , and we 
use the convention that the sign before Po in p coincides 
with the subscript + or -of the wave function, so that 
later in calculations of the matrix elements it must 
always be remembered to which wave function the 
operator p belongs. Using (10) and (11) we write the 
Green function in mixed variables 

i -Jt , i -a , 
G· (x x' ) _ ~ [ ¢pnJ4+(6)1!'pn~ + ¢pn~-(6)¢pnJ4-(6 )_] . 

•k , , Pv• Pzo ro - 00 _Po+ i6 00 +Po- t(l ' 

"!4 (12) 
here, as usual, ~ = ljJ*y 0 • Equation (12) was obtained 
assuming the absence of conduction electrons. Since the 
energy of the electron is independent of p and we 
neglect the momentum of the photon, it foltows that in 
calculating the S-matrix we can at once complete the 
integration over Py taking into account that the region of 
integration is eH' (region of integration over x). The 
rules for writing down the contribution to the matrix 
element M from diagrams of the types a and b in Fig. 2 
are changed as follows: the indices x, x', x", x"' are 
assigned to the four vertices of the diagram; in place of 
the functions G(p) are substituted G(x, x ', pz, w) = G(x, x', 0, Pz, w) (see Eq. (12)); the integration goes 
over x, x', x", x'", w, and Pz; all expressions are multi
plied by eH'/2w. Diagram a, for example, gives the 
following contribution to the matrix element: 

M .- eH' s dro C dp, s d d-'d "d-'"S {A-G , ) a=e2'}'4:rr·- - J-- X X X X p (X,X,p,,ro 
2:rt 2:rt 2:rr 

xAG(x',x'',p, oo- 6it)iG(x",x"',p,, ro +rot- oo 2)BG(x"',x,p,ro +rot)}. 

(13) 
In contrast to the preceding section, finding the trace 
now rec;~.uires cumbersome calculations and leads in the 

general case to cumbersome results. From (13) and 
(12) it is seen that it is necessary, first of all, to have 
a convenient expression for the matrix element: .. .. 
S i.(6)A•~v·(6)dx = S q>v(x)[(p- eAH + m)A (p- eAH + m)]q;v•(x)dx, 

(14) 
where "and 1' 1 symbolize all quantum numbers, the 
definition of qJ"(x) is obvious, and as already indicated 
the sign of Po in p is the same as the index + or - of the 
closest function. The operator within the square 
brackets is matricized in the vectors BIJ., so that only 
the left upper matrix (2 X 2) is important in it. 

We limit ourselves to the calculation of the singular
ity in the probability of MF when 21iw 1 is close to the 
energy of an allowed real transition between two Landau 
levels. As in the preceding section, the singularity is 
obtained upon integration of the resonant energy denom
inator near Pz = 0; hence, we may neglect Pz in the re
maining places. Assuming that the light propagates 
along the magnetic field (Az = 0), we introduce the nota
tion 2A+ =Ax+ iAy and 2A- =Ax- iAy. The operators 
acting on the oscillator functions in (14) we shall write 
in terms of the creation operator a+ and annihilation 
operator a with nonzero matrix elements a~n _ 1 = au_ 10 

= (2n) 112 • Then the operator in brackets in (14) becomes 

t'/eH'{(e+m 0 )A-a-(e'+m 0 )A+a+}, (15) 
0 e'+m 0 s+m 

where E is p0 taken with the proper sign, E pertains to 
the left and E' to the right function. The operator (15) 
is diagonal in 1J., so that contributions to (13) from 
states with 1J. = ±1 are additive. 

We choose the polarization of the rays to be the same 
and circular, so that A+ appears for absorption of a 
photon, and A- for emission. In expressions of the type 
(13) it is convenient to divide the products of the vector 
potentials and G into factors A+ G, GB-, G, A+ GB-
(for 1J. = 1) orB- G, GA\ G, B- GA+ (for 1J. = -1) and to 
transform, with the aid of (15), from the x-representa
tion to the n-representation. The nonzero matrix ele
ments (IJ. = 1) are 

(A.+G) __ i V2eH' (n + 1) A+ 
n+l. n- w•-~ .. + i6 • 

(Gir) = i V2eH' ( n + 1) 11 
n, n+l w•-~n + i6 ' 

G w-m (A+Gir) = 2neH'(w+~). 
nn = 2neH' (w2 - P':.on + i6) ' nn w2-P,2 +16 

o,n-1 ( 16) 

Here Pon = (m2 + p~ + 2neH')112 • We shall not write out 
the matrix elements for 1J. = -1. Using (16) and analog
ous relations for 1J. = -1, we write the integral in (13) in 
the form 

X.{(oo2 - Pon2)[(w- Olt) 2 - p~, n-tH(ro + Wt- w.)•- Pon"l 

X[(w + rot) 2 - p:, n+t]}-t. (17) 

The imaginary additions in the denominators are im
plicit. The corresponding integral for Mt> differs from 
(17) by the replacement of w 1- w2 in the third denomina
tor for wa- W1• 

A singularity in w appears at 2 w 1 = Po n _1 + Po n + 1 
' ' (pz = 0). To determine it, it is necessary to deduct w in 
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the left pole of the second denominator of (17) and calcu
late the integral over Pz, keeping in mind that the prin
cipal contribution is given by the integration of the last 
denominator close to Pz = 0. We present the final ex
pression: 

w = __!!:!___ ~ ( ~- )' (~ )' ( eEt )~ ( eE2 )' ( liooo )~ n'eg 
12c\n: mco lioo2 liooa lioo1 hoo 2 --;;; l21ioo1- En-t- en+tl ' 

(18) 
where wo = eHjmc is the cyclotron frequency En 
= [{Eg/4) + nflwoEgY12 , and everywhere, exce~t in the 
resonant denominator, 2flw1 = Eg· Although the fourth 
power of the ratio 1lwo/Eg e~ters in (18) (Eg for PbTe, 
measured in Oersteds, ~ 10 ), this factor can be effec
tively compensated near resonance, since smearing of 
the resonance occurs only as a result of electron colli
sions and equals 11/T << Eg, where T is the mean free 
path time. 

We know of experimental data on MF in a magnetic 
field. Van Tran et al. rsJ observed a tripling of frequency 
in a magnetic field in InSb. Since frequency tripling is 
a process analogous to MF, we may be confident that 
the resonant dependence observed inlsJ ought to be just 
as clearly manifested in MF also. 

The author thanks E. I. Rashba and Z. Z. Gribnikov 
for a discussion of the results of this work. 
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