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Volume collective excitations of nuclear matter are investigated by taking into account the electromag­
netic interaction between nucleons. It is shown that electromagnetic interaction leads to a coupling be­
tween density oscillations and charge oscillations and significantly modifies the collective excitation 
spectrum in the long-wave region. 

1. INTRODUCTION 

CoLLECTIVE excitations of nuclei can be connected, 
as is well known, both with changes of the form of the 
surface of the nucleus and with oscillations of all the 
nuclear particles, i.e., they can have a volume charac­
ter. If the nucleus is sufficiently heavy, then it is pos­
sible to disregard surface effects in the analysis of its 
volume oscillations, and these oscillations can be 
treated as oscillations of the nuclear matter (abbrevi­
ated NM). 

In principle, four types of volume collective excita­
tions of NM are possible, [1• 21 in accordance with the fact 
that there are four different (spin and charge) states of 
the nucleon. Using the terminology adopted in Fermi­
liquid theory, [31 we can speak of four types of high-fre­
quency (zero) sound in NM: density waves, spin waves, 
isospin waves, and coupled spin-isospin waves (we shall 
designate them by 0, s, i, and si, respectively). These 
excitations determine, in particular, the fine structure 
of the giant resonance, with the i-excitation correspond­
ing to Goldhaber-Teller oscillations. [4• 51 

In the region of low-lying excitations, i.e., for suffi­
ciently long waves[ volume oscillations are character­
ized, as shown in 11 and in [21 , by a linear dispersion 
law: 

ro,. = s,.k (a= 0, s, i, si), (1) 

where wa is the frequency of the a oscillation, k is its 
wave vector, and sa is the velocity of zero sound of 
type a (the minimum value of k is of the order of R-\ 
where R is the dimensions of the nuclear system). In 
the foregoing formula, only purely nuclear forces were 
taken into account. 

It is shown in the present paper that if electric forces 
are taken into account besides the nuclear forces, then 
the dispersion law (1) for density waves and for isospin 
waves may undergo appreciable modification, for the 
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Spectra of coupled oscillations of 
the density and of the charge density 
at various ratios between the ampli­
tudes p<a> : a-F<•> > 0, p(i) > 0; 
b-F<•>p(i) < 0 p(+) > O·.., _p(o)p(i> 
< 0, p(+) < 0; d-F(o) < 0, p(i) < 0. 

The dashed line corresponds to 
w =kv0 • 

Coulomb interaction gives rise to a coupling between the 
density oscillations and the charge-density oscillations. 
The Coulomb interaction also makes it possible for os­
cillations to exist in those cases when oscillations of 
type 0 and i could not propagate without allowance for 
the electric forces. 

The Coulomb interact.ion is essentially made up of 0 
and i-type oscillations only in the region of sufficiently 
long waves. For the existence of such waves, the dimen­
sions of the nuclear system should satisfy the condition 
R ~ 4 x 10-13 em. 

The dependence of the frequencies of the coupled den­
sity oscillations and charge-density oscillations on the 
wave vector at different relations between the quantities 
F <o> and F<il is schematically represented in the figure 
(the quantities F<o> and F<i> are determined by equation 
(10)). 

2. KINETIC EQUATION 

We shall describe the state of the NM by a distribu­
tion function of quasiparticles with respect to the mo­
menta and coordinates n (p, r, t), which is simultane­
ously the statistical matrix in the spin and charge vari­
ables. The unexcited state of the NM corresponds in 
this case to the equilibrium distribution function 

no(P) =8(1;-ep), 

where Ep is the energy of the quasiparticle with momen­
tum p, t is the endpoint energy, and 8(x) = % (1 +sign x). 

At small deviations from equilibrium, the distribution 
function of the quasiparticles satisfies the equation 

( a asp fJ au a ) 
iJt +ap- lJr -o; 8p n(p,r,t)=O, (2) 

where U = U (p, r, t) is the potential energy of the quasi­
particle. 

If we confine ourselves to allowance for purely nu­
clear forces, then the change of the potential energy, 
occurring when the distribution function deviates from 
the equilibrium value, is given by 

tPp' 
llU(p,r,t)=Spa'<' ~ .o/"'(p,p')l!n(p',r,t) (2nli)•' (3) 

where on = n- n0 and .sr(p, p') is a function characteriz­
ing the interaction of two quasiparticles with momenta 
p and p' (it is a matrix with respect to the spin (a) and 
isospin (T) quantum numbers of these quasiparticles). 
Substitution of expression (3) for the potential energy 
into equation (2) leads to the well known Landau-SHin 
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equation [3•8l 

( 8 8ep a ) 8t+op fJr n(p,r,t) 

ono(P) u r aap' 
--8p Spa,.,,-8 J f!T{p,p')n(p',r,t)'---=0. 

r (2:nli)• 
(4) 

We now take into account the electromagnetic inter­
action between the nucleons. This interaction leads to 
two effects: first, to electromagnetic splitting of the 
quasiparticle masses (more accurately, to a dependence 
of the quasiparticle energy on the isospin variable) and, 
second, to an additional potential energy of the charged 
quasiparticles: 

1+-ca 
u<•>(r,t)= e-2-qJ{r, t}, (5) 

where cp(r, t) is the potential of the electric field con­
nected with the distribution function of the quasiparti­
cles by the Poisson equation 

S 1 +-ca d"p 
11qJ(r,t)= -4neSpa< --n(p,r,t) ---, 

2 (2nli) 3 
(6), 

and T 3 is a Pauli matrix (since the ratio of the velocity 
of the nucleon in the nucleus to the velocity of light is 
small, no account is taken of magnetic forces in for­
mula (5)). 

The first of these effects is small-the relative elec­
tromagnetic splitting of the quasiparticle masses is of 
the same order of magnitude as the fine structure con­
stant, and we shall not take into account this effect. On 
the other hand, the second effect can be quite apprecia­
ble, for in the region of small momentum transfers the 
amplitude of the Coulomb scattering may become com­
parable with or even exceed the amplitude of the purely 
nuclear scattering. Therefore the additional potential 
energy due to the Coulomb interaction of the quasipar­
ticles leads to a significant change of the dispersion 
laws of the NM oscillations in the long-wave region. 

Returning to relation (3 ), we represent the matrix 
fT(p, p') in the form 

f!T = f!T<O> + f!T<•>(a, a')+ fT(iJn' + &-\•i>(a, a')n', (7) 

where IT<o> and ~F<i> are scalar functions of the momenta 
p and p', while IT<s> and g:-<si> are functions of the mo­
menta, which are simultaneously matrices in spin space. 

Recognizing that at low excitation energies, liw << ?;, 
the fluctuations of the distribution function are possible 
only near the Fermi surface, we can represent on in the 
form 

lin= ll (ep- ~){ v<0> + av<•> + Tvlil + O'"'tvv~S.:> }, (8) 

where v<a> = v<a>(n, r, t) are certain functions of the 
coordinates, of the time, and of the vector n = pjp. 

Substituting (3) and (5) in (2 ), we can easily verify 
that the electric forces ~nter only in the equations for 
the quantities v <o> and ~~~1). On the other hand, the equa­
tions for the remaining quantities v< a> (namely for the 
quantities v<s>, v<si>, vfi> and v&i>) are not affected at 
all by the Coulomb interaction. We call attention to the 
fact that without allowance for the electromagnetic in­
teraction the i-sound was triply degenerate, owing to 
the isotopic invariance of the nuclear forces; when the 
electric forces are taken into account, this degeneracy 
is partially lifted, since the electric forces separate 
the 3 axis in isotopic space. 

3. OSCILLATION SPECTRA 

Let us determine now the NM oscillation spectra. 
Putting 

:vl"'>(n, r, t) = v<"'>(n)exp{ikr-ioot} 

and using relations (2), (3), (5), and (8), we obtain the 
following equations for the quantities v <o> and ~~~il: 

S d~' (oo- kvo) v<0>(n)- kv0 4;-- {(F<0> +F<•>) v<0>(n')+F<•>v~0 (n')} = 0, 

(I) s do' {oo- kvo)va (n)- kv0 4; {(F<Il +F<•>) v~i) (n')+F<•>v<Dl(n')} = 0, (9) 

where v0 is the limiting velocity of the quasiparticles, 

2pom" 
F<"'> ""' F<"'> (cos x> = 1121i3 tr<"'> (p, p') I P=P'=P" 

2pom" e2 ( ) j'(e).,j'(<l(k}= --- 10 
· nli3 k2 ' 

Po is the limiting momentum, m* = p0 /v0 is the effective 
mass of the quasiparticle, x is the angle between vec­
tors p and p', and do' is the solid-angle element of the 
vector n'. As to the equations for the remaining quanti­
ties v<a>, these, as noted above, have the same form as 
without allowance for the electric forces. Thus, allow­
ance for the Coulomb interaction does not change the 
character of the spin sound, the spin-isospin sound, and 
two (out of three) branches of the isotopic sound; we 
shall therefore not consider these oscillations. 

Going over to the .study of the oscillations of the 
quantities v<o> and ~~~1), we assume for simplicity that 

(0) (') F and F 1 do not depend on the angle x . Equations 
(9) can then be reduced to the form 

v!OJ{1 + w(F<q) +F<•>)}+'Ils00 wF<•>= 0, 

'IJ(O>wF<•> + <J~il {1 + w(F<il +F<•>)} = 0, (11) 

where 

ao 1 1 ~az <~~<"'> = S v<"'>(n) '-- , w""' W{TJ) =- S . (12) 
...,. 2 _1~-TJ+lO 

and 1] = wjkv0 • Equating the determinant of the system 
(11) to 0, we obtain the dispersion equation for the os­
cillations in question: 

{1 + w(F<O> +F<c>)}{f + w(F<O + F<•l)}- w2F<e)ll = 0. (13) 

If I w I< kv0 then, according to (12), the function w 
has an imaginary part; solving in this case the disper­
sion equation (13), we obtain complex expressions for 
the frequencies corresponding to rapidly damped oscil­
lations. The rapid damping of the oscillations with 
phase velocities wjk < v0 is obviously due to the reso­
nant absorption of these oscillations by the quasipar­
ticles, the velocity of which is equal to the phase veloc­
ity of the oscillations. 

When I w I > kv 0, the function w is real and has the 
form 

W(TJ}=t-_TI_In! TJ+f I· 
2 TJ-1 

In this case equation (13) can have real solutions corre­
sponding to undamped oscillations. 

At large values of the wave vector k, the quantity 
F<c>(k) is small, and equation (13) breaks up into two 
equations: 
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F<O>w(TJ) + 1 = 0, F'(ilw(TJ) + 1 = 0. (14) 

These equations have solutions with 7J > 1, correspond­
ing to undamped a oscillations if F<a> > 0 (a = 0, i). 

At small values of. k, k ::::; kc, where k~ = e'\>0m*F_1i_3 

and F = min{F<o>, FO>}, it is necessary to take F<c> into 
account. The two branches of the oscillations then be­
come entangled, and since F<c> depends on the wave vec­
tor k, the dispersion law for the oscillations is no longer 
linear. The dependence of the oscillation frequencies on 
the wave vector is determined, in accordance with (13), 
by the equations 

F1 (k)w(TJ) + 1 = 0, F2 (k)w(TJ) + 1 = 0, (15) 

where 
F<OlF(il + 2F<+>F<c> ( k) 

Ft,z(k) = (16) Ji'(+) + p(cl(k) ± yF<-'!2 + p(c)2(k) 

and F<±> = ~2 (F<o> ± F<i>). These equations have the 
same structure as equations (14), and the role of the 
amplitudes F<a> is played by the effective amplitudes 
F 1, 2(k), which depend on the wave vector k. 

At small values of k, the effective amplitudes are 
given by 

Fti[k) = F<+>, F2 (k) = 2F<c>(k). (17) 

The first equation of (15) corresponds to an oscillation 
with a linear dispersion law, while the second corre­
sponds to an oscUlation with frequency w = wp, where 
wp = 47Te'1lp/m * and np is the proton density. When k 
- 0, the second oscillation is a plasma (Langmuir) os­
cillation of the proton component of the NM. 

The condition for the existence of undamped oscilla­
tions when account is taken of the Coulomb interaction 
is that the effective amplitudes F 1 and F 2 be positive. 
In the long-wave region this condition can obviously be 
satisfied also at negative values of one or both quanti­
ties F<o> and F<o. In particular, according to equations 
(15) and (17), at small values of k there always exists 
an undamped plasma branch; if at the same time F<+J 
> 0, then the oscUlation with the linear dispersion law 
is likewise undamped. 

Depending on the signs of the quantities F <o>, F<il, 
and F <+>, four different variants of the spectra of the 

coupled oscillations of the density and of the charge 
density are possible (see the figure). The point k0 in 
the figure corresponds to the vanishing of the effective 
amplitude, and when k > k0 the corresponding oscilla­
tion attenuates rapidly. 

According to (10) and (16), the influence of the Cou­
lomb interaction on the oscillation spectrum is deter­
mined by the parameter 

F<cl 4J'le2n 
~""'min {F<0>,F(i)} ~ ·-~, 

where ~ is the end-point energy of the nucleons and n 
is their density. The minimum value of k is obviously 
of the order of magnitude of R-\ where R is the dimen­
sions of the nuclear system. We note that t ~ fi2/r~M, 
where M is the mass of the nucleon and r 0 is the aver­
age distance between nucleons, so that we obtain for the 
parameter ~ a maximum value 

~max = ~ !!...( !!...)2 
, 

lie rc r0 

where rc = fi/Mc is the Compton wavelength of the nu­
cleon. Thus, the Coulomb interaction can greatly alter 
the character of the 0 and i-oscillations of the NM, if the 
dimensions of the nuclear system satisfy the condition 

V--;:;:;-· 
R';z -- ~ 4·10-13 cm. 
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