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It is shown that, despite spatial dispersion, the quantum field in a medium can be described by a second 
order equation for the vector-potential. A covariant apparatus is developed and the causal Green func­
tion ("propagator") is calculated. Owing to the gyrotropic effect, the latter function has three poles 
and contains a part that is antisymmetric with respect to vector indices. 

1. INTRODUCTION 

THE phenomenological approach to the description of 
quantum electromagnetic processes in a medium was 
first used in the quantum theory of the Cerenkov 
effectll'2 J. Later, Ryazanov£3 ' 4J developed a relativistic 
covariant formalism for an isotropic non-gyrotropic 
medium. Field quantization in a gyrotropic medium at 
rest was used by Karavaev to calculate first-order 
effects (emission of a single photon) £sJ. 

In this article the field is considered covariantly, 
and the main purpose is a consistent realization of the 
quantization and the development of a diagram tech­
nique, i.e., the determination of the causal Green's 
function ("propagator") for the electromagnetic field 
in a gyrotropic medium. This problem is unique in that 
the equation for the field potential in the gyrotropic 
medium contains higher derivatives. As shown in the 
paper, it is possible to get along with simpler second­
order equations, but they admit only of complex solu­
tions. Since, on the other hand, the electromagnetic 
field is neutral, it becomes possible to retain in the 
Fourier expansion of the potential only the positive­
frequency part. During quantization, this leads to non­
local commutation relations (the commutator does not 
vanish for the spacelike intervals). Nonetheless, the 
expressions for the operators of the observable quanti­
ties remain local, and the S-matrix satisfies all the 
necessary requirements. 

From the point of view of the authors, greatest inter­
est in the present paper lies in the theoretical-metho­
dological aspect of the problem. At the same time, the 
formalism developed here makes it possible to calculate 
the probabilities of quantum electromagnetic processes 
in gyrotropic media. 

2. CLASSICAL FIELD IN A GYROTROPIC MEDIUM 

Maxwell's equations for a moving medium are of the 
form 

8F;A 
eiklm 8xl = 0, (2.1) 

8Hik 
---;;;; = 4rrjl, (2.2) 

Here eiklm is a completely antisymmetrical unit tensor 
of fourth rank, ji is the current density, Fik and Hik are 
the field and induction tensors (seel6 J), each of the in­
dices runs through the values 0, 1, 2, 3. We use through­
out the metric 

-ffl" =gil = g'12 = g33 = -1; gih = 0, i =I= k 

and put fl = c = 1. 
The tensors Fik and Hik are connected by 

(2.3) 

{The dielectric tensor Eik lm is antisymmetrical in the 
indices {i, k) and (l, m).) 

If we introduce a vector potential Ak, putting 
aA. 8A; 

F;h = oxi - ox• , 

then Eq. (2.1) is satisfied identically, and Eq. (2.2) takes 
the form 

(2.4) 

The dielectric constant of an optically inactive med­
ium is invariant against the inversion of the spatial co­
ordinate axis. Its components are numbers. On the 
other hand, in the case of a gyrotropic medium, the 
dielectric tensor changes upon inversion, and its com­
ponents contain the gradient operator (see£6 ' 7J ). 

The basis of the subsequent analysis will be the fact 
that for plane waves in a gyrotropic medium at rest the 
relation (2.3) reduces to the equations 

D = eE - ijB, B = 11H, (2.5) 

where t: is the dielectric constant, ll the magnetic 
permeability, f the dimensionless gyrotropy constant 
defined in such a way that fw/2 is the angle of rotation 
of the plane of polarization per unit length (w-cyclic 
frequency). The generalization of (2.3) to the case of 
plane waves in a moving homogeneous and isotropic 
medium can be readily effected by recognizing that 
Eiklm may contain only the following covariant quanti­
ties: the four-velocity of the medium ui, the metric 
tensor gik, and the totally antisymmetric unit fourth­
rank tensor eiklm (e0123 = 1). Then the only expression 
satisfying the symmetry requirement and going over 
into (2.5) for a medium at rest is given by 

eiklm = _.!._[gilgkm _ gimgkl +X (uiulgkm 
2!1 

+ u•umgil _ ukulgim _ uiumgkl)] 

- _!!__ (einlmu u• - eknlmu u') 
2 n n • 

Here K = t:ll - 1. 

(2.6) 

Substituting (2.6) in (2.4), we obtain an equation for 
the potential of the field in the gyrotropic medium. The 
following two circumstances must be noted here. The 
first consists in the fact that after going over to Fourier 
components of the field it is necessary to take into ac­
count the dependence of the parameters of the medium 
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on the frequency (in particular, f Rl aw, where a is of 
the order of atomic dimensions). Second, expression 
(2.6) pertains to the description of the field by complex 
quantitie~, so that a physical meaning attaches to Re Fik 
and ReH1k. 

The vector potential Ak can be subjected, as is well 
known, to an additional Lorentz condition, which in the 
rest system of the medium is given by 

. oAo 
d1v A+ llJ.I fit = 0. 

In covariant notation, this condition takes the form 

~ 8 B) a o !-;;::--+ xu"'u · - A,.= 0, u • - """ uk --. 
"' OXm ox ox /Jxk 

(2.7) 

Taking into account the additional condition (2. 7), the 
equation for the potentials (2.4) can be written, after 
substituting the dielectric tensor (2.6), in the form 

{: [(o:Y+x(u 0:YJ (trim+xuium) 

0 0} + ijeinlmu - u · - A = - 4rrJ'i. 
n oxl ax m 

(2.8) 

We note that in the case ji = 0 this equation can be 
reduced to a somewhat simpler form. Multiplying (2.8) 
by the nonsingular matrix (gik- uiukK/(1 + K)), we ob­
tain 

{_!_[(_!_)2+ x (u. _!__)2
] gR"' + ifeknlmu,_!_u.!_}Am = 0. 

1.1. ux · Ox axz Ox 

Equations (2.8) and (2.9) are not invariant to complex 
conjugation, and in general admit of no "<:harge conju­
gation" transformation, i.e., a substitution of the type 

Am(X}-+ ~ Cmm•A;!;•(x}, 
m' 

where C is some unitary matrix. In this sense, the so­
lutions of Eqs. (2.8) and (2.9) are essentially complex, 
whereas the field itself describes only one type of par­
ticle (photons and antiphotons are identical). These cir­
cumstances should be taken into account during the 
quantization. 

3. LAGRANGIAN FORMALISM 

Equation (2.8) can be obtained from a variational 
principle, by choosing the Lagrangian in the form 

!l' = _ [ ~(gim + xuium) (gkl + xukul) 

if J o:A/ BAm + +-(ein!mu,uk+einkmu,.ul) --........--4n.ji(A;+A; ). 
2 iJxk Ox' 

(3.1) 

In the case of a free field it is possible to obtain 
from (3.1), with aid of a standard procedure, an expres-

Accordingly, the total energy in the rest system is 
given by the integral 

W = ~ wtlJlz = ~ w(J(ux)d'x. 

As noted above, the solutions of Eq. (2.8) or (2.9) are 
essentially complex even in the case of a free field. In 
this connection, it admits of a gauge transformation of 
the first kind. The Lagrangian (3.1) is invariant against 
such a transformation, leading to the appearance of a 
conserving "current-density" four-vector: 

Jk = const · [ : (gim + xuium) (g~l + xukn1) 

-if . J 0 + -(e•nlmuku + einkmu u') A1+-A 
2 " n Oxl m· 

(3.2) 

The "charge density" corresponding to (3.2) has in 
the rest system of the medium the form 

p = uhh,_ = const · [: (gim + xuium) (1 + x)ul 

+~feinlmu ]A;+~A 
2 " a:r m· 

Accordingly, the "total charge" of the field in a 
medium at rest is given by 

Q= ~ph=~ p(J(uz)d4x. (3.3) 

It will be made clear later on that when states with a 
definite circular polarization are considered, the 
"charge" Q, as well as the gauge transformation of the 
first kind itself, can be given a simple geometric mean­
ing. 

4. UNIT VECTORS OF THE CIRCULAR POLARIZA­
TION AND THE MOMENTUM REPRESENTATION 

Let us consider a free field and obtain the solution 
of Eq. (2.9) corresponding to a plane wave: 

A(k, x) = ~(k)eikx. (4.1) 

Substituting (4.1) in (2.9) and putting here and hence­
forth 11 = 1 (which means only renormalization of E and 
f), we obtain 

[k2 +?G(uk)2)6i(k) + if(uk)einlmunkl~m(k) = 0. 

The complex amplitudes ~ (k) can be resolved in 
terms of any system of unit vectors. In this case it is 
natural to choose as these vectors the eigenvectors of 
the helicity operator 8. This matrix can be written in 
the form 

sion for the energy and momentum tensor: where 

TiJ = !l'gi! + [~(gkm + xukum) (gil+ xuiul) 
IL 

if . . ]OAt BAm + -( eknlmuiu,. + e•hnmu,.ul) ---+ h.c. 
2 Ox; Oxl 

The field energy density in the rest system of the med­
ium is the contraction of the tensors Tij and uiuj: 

w = U;U;Ti! 

1 oAt iJAm 
=-(gk"'+xukum){gil-(x+2)u!u~--. --. 

1.1. ax' axz 

(4.2) 

(we note that in the rest system of the ll)edium the vec­
tor vz = (0, k/lkl). The sought unit vectors should satisfy 
the equation 

S6A= NAIDA• 

which in expanded form are given by 

(4.3) 

(4.4) 
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In Eqs. (4.3) and (4.4), the index A numbers the four 
eigenvectors corresponding to the eigenvalues N A (the 
latter are obtained from the condition that the determin­
ant of Eq. (4.4) vanish). We obtain 

Nt..=O, ±1. 

The unit vectors corresponding to NA = 0 are assigned 
the index A = L, S. Then 

SL = iv, 6s = u. (4.5) 

The unit vectors for which NA = ± 1, will be denoted by 
the indices A = ± 1. The unit vectors L 1 can be readily 
constructed by introducing a real unit four-vector 11 
orthogonal to u and v, and arbitrary in all other res­
pects: 

1JU = TJV = 0, 1)2 =VI-= -1. 

It is easy to verify that ~ .± 1 can be written in the form 

k i 
~t = --={eknlmu,. V!t)m =F.iTJA). (4.6) 

1'2 
The circular-polarization unit vectors ~A satisfy the 
following normalization relations: 

SA +St., = dt..6AA•, d±l = dL = -ds = -1. 

In addition, the following equalities hold 

St..+(v) = 6t..(-v) = dt..s-t..(v) 

(the symbol-A denotes± 1 if A=± 1; -A= A if A 
= L, S). 

The general solution of (2.9) can now be written in 
the form of a superposition of plane waves AA (k, x) with 
a given circular polarization: 

A(x)= ~At..(x), At..(x)=~ ~ Ct..(k)AA(k,x)d4k. (4.7) 
A (2rr)" • 

Here 

and CA(k) are scalar amplitudes. 
We note that owing to the orthogonality of the vectors 

~A, the Lagrangian (3 .1) and the "charge" Q (formula 
(3.3)) can be written in the form 

!l'(x)= ~!l'A(x), Q= ~QA, (4.8) 
A A 

where 2A(x) and QA are obtained from (3.1) and (3.3) by 
substituting AA(x) for A(x). 

We now turn to find the general solution. Substituting 
(4.7) in (2.9), we obtain 

(n2 -fNAn-1-x)cA(k)=0 n= lf -q• >0. , r (uk)2 (4.9) 

It follows therefore that c A ""' 0 only if 

NAt ,, J2NA2 

n=nA=-2+ r f+x+-4-. 

The invariant nA is the refractive index of light with 
circular polarization A in the rest system of the med-
ium: 

lkl 
nt..=--, roA>O, 

<tlA 
(4.10) 

where w A is the frequency of the light at the specified 
k and A. Since according to (4.2) and (4.10) we have 

k• = koz -- k• = qz + (uk)Z = (1- nA2)roA2, 

it follows that for the same value of k the frequencies 
ko in an arbitrary reference frame are different for 
different A. The amplitudes CA(k) satisfying (4.9) can 
now be written in the following form: 

(4.11) 

Here w is the frequency in the rest system of the med­
ium 

ro = (uk). (4.12) 

In the rest system of the medium, the argument of 
the o function in (4.11) is given by 

(4.13) 

We emphasize that (4.13) does not reduce to the differ­
ence n_Aw 2 - k2 , for at fixed k and A the solutions of 
(4.9) are ±w±A• and not ±WA· 

Substituting (4.11) in (4.7), and integrating with 
respect to k0 , we obtain, in the rest system of the med­
ium, the following expression for the vector potential of 
the field satisfying Eq. (2.9) [sic!] : 

1 1rd"k . 
A(x)= -- ~=- J -=-(aA(k)St..eikAx+ bA+(k)St..+e-•k-Ax). 

(2rr)'/, A f2iiA l'lkl 

We have introduced here the notation 

CA(kA) 

(2nAnAroA) ''• ' 

5. QUANTIZATION 

Expression (4.14) differs from the normal-mode ex­
pansions usually employed in field theory in two res­
pects: first, in the dependence of the frequency on the 
state of the polarization and, second, in the fact that the 
exponentials in both terms are not complex conjugates 
(kA ""'k_A). Inasmuch as the photons and antiphotons 
are identical, in the quantization of the electromagnetic 
field in vacuum or in a non-gyrotropic medium, one 
usually puts aA = bA- In our case this equality contra­
dicts the translational invariants, and therefore leads to 
an incorrect expression ior the field energy. In exactly 
the same manner, it is impossible to identify a A with 
b-A- In practice this leads to a dependence of the phys­
ically observable quantities on the arbitrary vector 11 
that enters in L 1 (formula (4.6)). From the purely 
theoretical side~ the point is that 2A(x) in (4.8) are in­
variant against independent gauge transformations of the 
first kind 

(5.1) 

where cpA are arbitrary real parameters. 
We note that the transformation (5.1) has a geometri­

cal meaning-this is the rotation of the unit vector ~A (k) 
in the rest system of the medium around k. The genera­
tors and the transformation (5.1) are the "charge" 
operators QA: 

exp {- i ~QA,q;A• }AAexp {i ~ QA'<fA• }= exp {iNAq>A} AA. (5.2) 
A' A' 

It follows from (5.2) that 

(5.3) 
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Relation (5.3) contradicts the equality aA = b-A (at A 
= ±1). 

To avoid the appearance of excessive states (i.e., 
antiphotons), we assume 

(5.4) 

The inequality (5.4) does not contradict the quantization 
postulates connected with the homogeneity of the med­
ium relativistic invariants, and transformation (5.1). 
Her~, however, the commutation relations turn out to be 
nonlocal. 

[Am (x), Am +(x')] =I= 0 np111 (x- x')2 < 0. 

The latter should not worry us, since the observable 
physical quantities are represented by Hermitian opera­
tors for which the operators are local (see Sec. 2). In 
particular, Re Fik = (Fik + Fik)/2 is expressed in terms 
of the operators 

d(x) =A(x) +A+(x), 

which satisfy commutation relations of the ordinary 
type (we note that A(x) is the solution of a fourth- order 
equation obtained by squaring Eq. (2.9). Since it is pre­
cisely A(x) which enters in the Hamiltonian of the inter­
action of the field with the charges, the S matrix will 
have the usual causal properties. 

Thus, we assume 

A(x)=~ ~- 1 ~ d"k aA(k)6A(k)eik""'· (5.5) 
(2n)'l• A "f2iiA "flkl 

The commutation relations for the operators a A (k) are 
given by 

[aA(k), aA•(k')] = 0, [aA+(k), aA•(k')] = aAc5AA•c5(k-k'),(5.6) 

where 

«"±t,L=-<1+?G)as=1. (5.7) 

Relations (5.6) and (5.7) are not compatible with the 
additional condition (2. 7), if it is stipulated that the 
latter be satisfied for the field operators. Just as in the 
case of field quantization in a vacuum, the way out of 
the situation is to require satisfaction of Eq. (2. 7) in the 
mean for all the physical states of the free field. Under 
this condition, the longitudinal and scalar photons make 
no contribution to the field energy, the expression for 
which in the rest system of the medium is 

W = ~ WAaA+(k)aA(k). 

The expression for the ''charge'' of the field is 

QA = NA~ aA+(k)aA(k). 

" 
Thus, conservation of the "charge" denotes conserva-
tion of the helicity of the field. 

On the basis of (5.5)-(5.7), we can obtain the connec­
tion between the operators .4(x) in different space-world 
points x and x', i.e., the causal Green's function 
DC ( ')· 

ij X- X · D;;<(x _ x') ""'i(OjT(d1(x)d;(x')) IO), 

D .. <(x)=-1- S D·-'(k)eikxd•k 
'' (2n) 4 '' ' 

nA aA6A;SA;+ (5 8) 
D;{(k)=-~ iiA k2-(1-nA2)w2 -i0 . 

A 

(we recall that w is an invariant quantity defined by 

formula (4.12) and equal to the frequency in the rest 
system of the medium). 

Owing to the fact that nA ;" n_A for A = ± 1, the 
Green's function (5.8) is not symmetrical in the indices 
i and j. We put 

D1{(k) = S;;(k) + P;;(k), (5.9) 

where 

(5.10) 

The symmetrical and antisymmetrical parts of the 
Green's function can be written, with the aid of the ex­
plicit expressions for ~A (formulas (4.5) and (4.6)) in 
the following form: 

where 

S;;(k) = St (k2)g;; + Sz(k2)'11(YJ + Sa(k2)u;u;, 

P;;(k) = P(k2)e;;lmul.vm, 

k2 + l«J)2 

St (k2) =· D+(k2)D-(k2) ' 

fw2(k2+ w2) 
Sz(k2) = D+(k2)D-(k2)Do(k2) ' 

- ?Gk"-+(f- 2?G2)k2w2-(f+ x3)w• 
Sa(k2) (1 + ?G)D+(k2)D-(k2)D0 (k2) 

if k2 -(?G+2)w 2 

P(k2) =- 2n+ D+(k2)D-(k2 ) ' 

D±(k2) = k2 + (n±z- 1) wz- iO, 

(5.11) 

(5.12) 

D0 (k2) = k2+?Gwz- 10. (5.13) 
It is seen from (5.9)-(5.13) that the Green's function 

has three different poles; two of them correspond to 
transverse photons (A = ± 1) and one to longitudinal and 
scalar photons. In this case, as expected, the antisym­
metrical part of Pij (k) has poles corresponding only to 
transverse photons. 

Formulas (5.9)-(5.13) make it possible to calculate 
the amplitudes of the different quantum processes in any 
order of perturbation theory. Of course, their use is 
limited to the region of applicability of the phenomeno­
logical description of the medium, i.e., to processes 
caused by sufficiently soft photons. We note that the 
gyrotropy effect increases the number of phenomena 
that can be of interest from the experimental point of 
view. 
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