
SOVIET PHYSICS J ETP VOLUME 29, NUMBER 6 DECEMBER 1969 

QUANTUM THEORY OF DEFECTS IN CRYSTALS 

A. F. ANDREEV and I. M. LIFSHITZ 

Institute of Physical Problems, U.S.S.R. Academy of Sciences 

Submitted January 15, 1969 

Zh. Eksp. Teor. Fiz. 56, 2057-2068 (June, 1969) 

At sufficiently low temperatures localized defects or impurities change into excitations that move 
practically freely through a crystal. As a result instead of the ordinary diffusion of defects, there 
arises a flow of a liquid consisting of "defectons" and "impuritons." It is shown that at absolute 
zero in crystals with a large amplitude of the zero-point oscillations (for example, in crystals of 
the solid helium type) zero-point defectons may exist, as a result of which the number of sites of an 
ideal crystal lattice may not coincide with the number of atoms. The thermodynamic and acoustic 
properties of crystals containing zero-point defectons are discussed. Such a crystal is neither a 
solid nor a liquid. Two kinds of motion are possible in it; one possesses the properties of motion in 
an elastic solid, the second possesses the properties of motion in a liquid. Under certain conditions 
the "liquid" type of crystal motion possesses the property of superfluidity. Similar effects should 
also be observed in quasiequilibrium states containing a given number of defectons. 

A FUNDAMENTAL property of crystals is their ideal 
periodicity, i.e., the periodicity of the density function 
p(r) which determines the probability of different posi
tions of the particles in space. In general there exist 
two different causes which violate this periodicity. 
These are, in thelirst place, vibrations of the crystal 
lattice sites and, in the second place, defects (vacan
cies, extra atoms, dislocation loops, etc.). 

In considering the vibrations it is usually assumed 
that at each lattice site (i.e., at a maximum of the func
tion p(r)) there is always exactly one atom and these 
atoms undergo small vibrations. Then 3r (r is the num
ber of sites in an elementary cell) vibrational branches 
appear. Quantum-mechanical effects require the exist
ence of zero-point vibrations, i.e., vibrations that re
main at zero temperature and therefore do not violate 
the periodicity of the crystal. The initial assumption 
about the identification of sites and atoms will here be 
valid only in the case when the amplitude of the zero
point vibrations turns out to be small in comparison 
with the lattice period, and therefore the wave functions 
of atoms located on neighboring sites do not overlap in 
practice. A numerical measure of the magnitude of the 
zero-point vibrations is given by the dimensionless pa
rameter A = h/a .JmE ) (see [ tJ ), where m is the mass 
of an atom, E is the characteristic interaction energy 
of the atoms, and a is the interatomic distance. For 
example, for elements of group VIII of the periodic ta
ble, one can take as E and a the parameters which de
termine the potential energy of the interaction of two 
atoms: U(r) = 4E {(a/r)12 - (a/r)s}. 

The parameter A is actually very small for the ma
jority of crystals. However, crystals exist for which A 
~ 1. For example, A= 0.6 for Ne, A= 2. 7 for He\ and 
A= 3.1 for He3 • In addition, crystals exist in which the 
condition of smallness of the amplitude of the zero
point vibrations may be violated not for all but only for 
certain kinds of vibrations. For example, this pertains 
to the vibrations of hydrogen impurity atoms in lattices 
consisting of certain heavy metals. The appreciable 
magnitude of the amplitude of the zero-point vibrations 

is here related to the smallness of the impurity atom 
mass. The usual approach to an investigation of the 
properties of such crystals and, in particular, the vibra
tions is completely inapplicable (see [2 - 4 l). We will 
see that even the number of normal modes may differ 
from 3r. 

Defects are usually regarded classically as localized 
objects which only occasionally move from one position 
to another. It is clear, however, that at sufficiently low 
temperatures, because of the finiteness of the parame
ter A, quantum effects must also become important for 
defects. And what is more, as we shall see, the exist
ence of zero-point defects or, more accurately, "zero
point defectons" turns out to be possible; just like 
zero-point vibrations "ze-ro-point defectons" exist at 
zero temperature and do not violate the crystal perio
dicity. The existence of zero-point defectons means 
that the number of sites in an ideal crystal lattice does 
not coincide with the number of atoms. This is not sur
prising since for finite values of A an atom is not lo
calized at a definite site, and therefore the requirement 
that the number of sites be equal to the number of at
oms is not compulsory. 

In the present article the influence of quantum ef
fects on the behavior of defects in a crystal will be con
sidered, and it is shown that these effects lead to the 
existence of a number of rather unusual crystal proper
ties. 

1. DEFECTONS 

Because of the quantum-tunneling effect, a defect in 
a crystal at zero temperature is not localized. Accord
ing to quantum mechanics, in such a case the possible 
states are classified according to the values of the qua
simomentum k. Thus, with each type of defect there is 
associated a branch of excitations-the defectons. The 
energy of a defecton, which is a function of the quasi
momentum E(k), takes all possible values inside a cer
tain band of width AE which is proportional to the prob
ability of tunneling by the defect. 
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In the majority of cases the tunneling probability is 
relatively small; therefore one can use the tight-binding 
approximation in order to calculate a defecton's energy. 
In this connection the function € (k) may be determined, 
as is well known, in explicit form for all values of k. 
For example, for a simple cubic lattice we have 

e(k) = llt + B2(cos ka1 + coska2 + coska,), 

where €u €2 are constants and a11 a.a, 8.a are the basis 
vectors of the lattice. 

At finite temperatures collisions of a defecton with 
other crystal excitations are possible. The increase in 
the number of collisions which takes place as the tem
perature is raised has a substantial effect on the nature 
of the defect motion. If the frequency of collisions is 
sufficiently small, then one can talk about a practically 
freely moving defecton which only occasionally under
goes collisions. As the collision frequency increases 
there appears a moment when, during the time spent by 
a defect on a fixed site, it is able to reach equilibrium 
with the lattice. Under such conditions one must talk 
about a localized defect which undergoes a random walk 
with a step equal to the lattice period a. 

In the low temperature region the diffusion coeffi
cient D for a defecton is determined by the gas-kinetic 
expression D ~ vl, where v is the velocity of the de
fecton, l ~vTtr is its mean free path, and Ttr is the 
transport time that characterizes the collisions of the 
defecton with other excitations of the crystal. In dielec
trics at temperatures much smaller than the Debye 
temperature ®, collisions with long wavelength acoustic 
phonons play a major role; for such processes, as is 
well known, the collision cross section a is propor
tional to the fourth power of the frequency. Therefore 
a ~ a2(qa)4 where q is the phonon wave vector. The 
reciprocal of the time between collisions is given by 
1 IT ~ Nphca (where c is the speed of sound, Nph is 
the number of phonons per unit volume). Substituting 
Nph ~ (T/a®)3 and qa ~ T/® we obtain 1/T ~ (c/a) 
X (T/®)1 ~ (®/ti)(T/®)1. Since the phonon momentum is 
small in comparison with the defecton momentum, the 
transport time differs from T by the presence of a 
large factor (®/T)2 • In order of magnitude the diffusion 
coefficient is given by 

D ~ ftv2 ( ~)9 ~ ~!!_( !!_)" 
8 T t 6t, T ' 

(1) 

where the time t ~ a/v spent by a defecton on a lat
tice site has been introduced. On the other hand, if it 
is taken into consideration that v ~ A€/k ~ aA€/ti, then 
we obtain a relation between t and the width of the band: 
t ~ 11/A€. 

We note that in metals the collisions of a defecton 
with electrons play a fundamental role. In this connec
tion the coefficient of diffusion for a defecton is propor
tional to 1/T as long as T >> A€. 

The diffusion coefficient for a localized defect is ex
pressed in terms of the probability w for a transition 
to a neighboring site by the relation D ~ a2 w, which 
corresponds to a random walk with step a and frequen
cy w. At not too high temperatures the probability w is 
determined by the above-introduced time t (w ~ 1/t) 
and does not depend on the temperature. In this connec-

tion the coefficient of diffusion also does not depend on 
the temperature and is equal to D ~ a2/t ~ a2AE:/ti. 
From the condition for matching this expression with 
formula (1) we obtain the temperature at which a tran
sition occurs from freely moving defectons to localized 
defects: T ~ ®(A€/®)1/o, 

A further increase of the temperature leads to the 
result that with appreciable probability a defect is found 
in one of the excited states in a potential well corre
sponding to the position of equilibrium. In this case the 
probability for a transition to a neighboring site is 
given by 

where Wn is the probability for a transition from the 
state n, €n is the energy of this state measured from 
the energy of the ground state (n = 0). As the tempera
ture increases w increases from the value w0 ~ 1/t, 
corresponding to quantum tunneling from the ground 
level, to the purely classical value w ~ (®/ti)exp-U/T, 
which is obtained at the expense of above-barrier tran
sitions from states with E:n > U (U is the height of the 
barrier which must be overcome in order for a transi
tion to a neighboring site to take place). 

Thus, as the temperature is lowered first the diffu
sion coefficient of the defects falls exponentially (clas
sical diffusion), then a plateau appears (quantum diffu
sion, localized defects), and then it increases (diffusion 
of defectons). 

In addition to the above-considered mechanism of 
localization of a defect, which is associated with an in
crease of the temperature, mechanisms due to the in
teraction of defects with each other or with fixed de
fects may play an essential role. Let q.J(r) be the poten
tial energy describing the interaction of a given defect 
with other defects. Since q1 depends on the coordinates, 
the energies of the states corresponding to localization 
on neighboring sites differ by a quantity of order 
IV q1 I a. If this quantity is larger than the width A€, 
then a tunneling transition from site to site is impossi
ble, and a defect cannot change into a defecton. Point 
defects interact according to a cubic law, i.e., the inter
action energy of two defects separated by a distance r 
is given by q1 ~ mc2(a/r)3 , where m is the mass of an 
atom in the lattice. Differentiating and substituting r 
~ n-1/ 3 (n denotes the number of defects per unit vol
ume), we find IVo/la ~ mc2(na3) 4 13 , In order for this 
quantity to be smaller than A€, the concentration of de
fects must satisfy the condition na3 << ( AE:/mc2) 3 14, 

If the written condition is fulfilled, then a defect is 
not localized at any specific site. However, in this con
nection one may find that it is localized in a certain 
macroscopic region. Such a situation arises in the case 
when the defects form a supperlattice with a macro
scopically large period. For complete delocalization of 
a defect it is necessary that the superlattice should be 
unstable, which is automatically satisfied if the height 
of the potential barrier q1 ~ mc2(a/r)3 ~ mc2na3, which 
a defect must overcome in order to pass from one su
perlattice site to another, is smaller than A€, i.e., if 
the concentration na3 is smaller than AE:/mc2 • 

A question arises concerning the statistics which de
fectons should obey. If, for example, the question is 
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about the defectons corresponding to vacancies, then 
one can easily see that their statistics coincide with the 
statistics of the atoms out of which the crystal is com
posed (it is assumed that the crystal consists of atoms 
of a single type). In fact, the creation operator for a 
vacancy, i.e., the operator which changes the ground 
state of the crystal into an excited state, corresponding 
to the presence of a single vacancy, may always be 
written in the form 

oep+(x)= 2; ~ Kn(x,x';xt,,.,xn;x/, ... ,xn') 
n=O 

X 'I' ( Xn') d3x' d3x1 d3x/ . .. d3xn d3xn', 

where 1jl(x) and 1JI + (x) are operators for the annihilation 
and creation of real atoms. Here all integrals converge 
for lx- xi I~ lx- xi' I~ a; terms with n ~ 1 are essen
tial in the summation. The operators cp, taken at points 
x and x' such that I x- x' I >>a, have the same commu
tation relations as the operators 1jl. On the other hand, 
since the vacancies are "good" quasiparticles (if their 
density is sufficiently small) they must obey either Bose 
or Fermi statistics. Thus, the first case is realized in 
a Bose crystal (for example, in solid He4 ), and the sec
ond case is realized in a Fermi crystal (He3). 

Similarly one can easily convince oneself that in the 
general case the defecton statistics are determined by 
the number of atoms which must be annihilated or cre
ated in order to produce the corresponding defect. If 
this number is even then the defectons obey Bose sta
tistics; if it is odd their statistics coincide with the sta
tistics of the atoms. 

Everything said at the beginning of this article also 
pertains to the case of quasiparticles corresponding to 
impurity atoms in the crystal. At sufficiently low tem
peratures localized impurities turn into "impuritons" 
which move essentially freely through the crystal. On 
the basis of what was said above, one can easily deter
mine the statistics of the impuritons. Here the situation 
is obviously different for interstitial and substitutional 
impurities. Interstitial impuritons obey the statistics of 
the impurity atoms. Substitutional impuritons obey Bose 
statistics if the crystal atoms and the impurities have 
the same statistics, and obey Fermi statistics in the op
posite case. For example, an interstitial He4 impurity 
in a crystal of He3 corresponds to a Bose impuriton, a 
substitutional He4 impurity in He3 corresponds to a Fer
mi impuriton, and impurities of He3 in He4 always cor
respond to Fermi impuritons. 

If there are a certain number of defects of a specific 
type (vacancies or interstitial atoms) present in a crys
tal, then the number of these defects cannot change as a 
result of processes occurring inside the crystal. The 
same result is obviously valid under conditions when 
the defects turn into defectons. A change in the number 
of defectons may only take place on the surface of the 
crystal. The number of defectons inside the bulk 
changes only as a consequence of their diffusion to the 
surface. The corresponding relaxation time is macro
scopically large. The time required to establish equi
librium for a given number of defectons is much smal
ler. Thus, at a sufficiently low temperature such quasi-

equilibrium states exist in a crystal when the defectons 
constitute a strongly degenerate Fermi or Bose gas. In 
particular, Bose condensation of defectons occurs in the 
latter case. 

Below we shall see that a similar situation may also 
be realized under complete equilibrium conditions. 

2. ZERO-POINT DEFECTONS 

Let us trace the change in the energy spectrum of a 
defecton associated with an increase of the parameter 
A, i.e., associated with an increase in the probability of 
quantum tunneling. In the classical limit a defect is lo
calized and possesses a certain energy E0 > 0. The 
presence of a small but finite tunneling probability 
leads to the appearance of a band of finite width where 
the middle of the band coincides with E0 • As the tunnel
ing probability increases, the width of the band in
creases, and therefore the minimum energy Eo (the 
bottom of the band) is reduced. Thus, in a crystal with 
A~ 1 a situation is possible in which the energy Eo be
comes negative. This means that a reorganization of 
the crystal's ground state must occur. Below we shall 
clarify the nature of this reorganization. 

In the simplest case the defecton energy E(k) has a 
minimum value at k = 0. Near this point one can ex
pand E in powers of k: 

e = eo + k2 I 2M. 

Here M is some effective mass which, for simplicity, 
we assume to be isotropic. In order of magnitude M 
coincides with (t.Ea2/ti2)-l, 

If a defecton with k = 0 appears in the crystal, then 
the crystal remains perfectly periodic; however, the 
number of crystal lattice sites becomes unequal to the 
number of atoms. The quantity E0 is equal to the dif
ference between the energies of these two crystal 
states. Since E0 depends on the pressure, then at a 
certain pressure or, what is the same thing, at a cer
tain value V0 of the volume associated with a given to
tal mass of the solid, E0 may tend to zero. In order to 
determine the properties of the crystal near this point, 
let us expand E0 in powers of V 0 - V: 

V0 - V k2 
e(k)= ?c---+-. (2) 

Vo 2M 

If for definiteness we assume :1. > 0, then for V < V0 

the number of defectons of a given type is proportional 
to exp (-E 0/T). The number of defectons at T = 0 
(zero-point defectons) is equal to zero. For V > V the 
situation depends on what kind of statistics the defe0c
tons obey. 

First let us consider the case of Bose statistics. At 
T = 0 the defectons condense into the state with k = 0, 
and the energy of the system decreases with increase of 
their number until the interaction is no longer effective. 
Since E0 is small near the point V = V0 , this happens at 
a small (in comparison with atomic) density of defec
tons. Therefore we may use the well-known expression 
for the energy of a rarefied Bose gas (see [ 51 ). The 
contribution of the defectons to the total energy of the 
crystal is given by 

(3) 
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where N is the number of defectons, and a is the am
plitude for their scattering on one another. 

If a< 0 then a phase transition of the first kind oc
curs at V = V0• Naturally, in the present case it is im
possible to say anything definite about the properties of 
the resultant new phase. · 

However if a> 0 (i.e., the defectons are repulsive) 
then from the condition that the energy (3) be a mini
mum we obtain the following result for the equilibrium 
number of zero-point defectons: 

N Mi.. v-vo 
- = ------+-------. 

V 4na Vo 
(4) 

Substituting (4) into (3) we obtain 

E = _ V M>..2 ( V- V0 )z. 
8na Vo 

(5) 

from which it is seen that a phase transition of the 
second kind occurs at the point V = V0• The order pa
rameter of this transition is the square root of the num
ber of zero-point defectons or of the difference between 
the number of lattice sites and the number of atoms. 

At any finite temperature this transition becomes a 
first-order transition. Actually, for V0 > V the con
densate is not present, the interaction between defec
tons is unimportant, and one can use the well-known for
mulas for the thermodynamic functions of an ideal Bose 
gas with chemical potential equal to zero and spectrum 
given by Eq. (2). The contribution of the defectons to 
the free energy is given by 

~ 

2 M'" ~ x'l• d:r: 
F= --V--T''• 

3 2'h:rr2 0 exp{x+t.(V0 -V)/TV0}-i' 

Because of the presence of V in the denominator of the 
integrand, the function F(V) has a singularity at the 
point V = V0 such that for X(V0 - V)/V0T << 1 we have 

JT ( &P) = _ V 82Fr::::: (2M) 'I• T''• i.. 2 ~ ezx x'l• dx . 
oV T 8V2 3:rr2 0 {exp[x+I.(Vo-V)/TVo]-1}3 

r::::: (2Mi..)'''r(~)''•. 
8n Vo-V 

This expression is the part of the derivative aP/oV 
which is associated with the type of defectons under 
consideration. However, it is such that as V- V0 - 0 
the total derivative (taking the compressibility of the 
initial crystal into consideration) becomes positive. 

For V > V0 and not too high temperatures, T 
<< (N/V)2 / 3 M-1 , one can use formula (5) from which 
it is seen that in this region the defectons introduce a 
small contribution to the pressure and to the derivative 
oP/oV. Therefore here this derivative is negative. 

For T * 0 the pressure as a function of the volume 
has a minimum and a maximum near the point V = V0, 

i.e., it has the form characteristic of a first-order 
phase transition. 

In the case when the defectons obey Fermi statistics, 
at T = 0 the states with k < ko, where k0 

= {2MX(V- V0)/V0 }1/2 (V > V0), are filled and the re
maining states are empty. Therefore the contribution 
to the energy is given by 

v ~ { v- Vo kz 1 
E=-- J 4nk2dk ->..---+-~ 

(2:rr) 3 
0 V0 2M' 

= _ _!_(2M)''• (t. V- Vo )''•. 
15n2 Vo 

For the equilibrium number of zero defectons we ob
viously have 

N=_!_{2Mi..(V-Vo)}''• (V>Vo). 
6n2 Vo 

At the point V = V0 a phase transition takes place which 
is completely analogous to the transitions considered 
previously by one of the authors[ sJ for electrons in a 
metal. At finite temperatures this transition is washed 
out. 

From everything that has been said it is clear that 
zero-point defectons of one or the other type may exist 
in certain pressure intervals in a crystal that is in an 
equilibrium state at zero temperature and has not too 
small a value of the parameter A. In terms of its ther
modynamical properties at low temperatures, such a 
crystal differs substantially from an ordinary crystal. 
In the case of Fermi defectons the heat capacity of the 
crystal (dielectric) must vary linearly with the temper
ature owing to the contribution of the defectons situated 
near the Fermi surface (k = ko). In the boson case the 
excitations appearing because of the presence of the 
zero-point defectons have an acoustic spectrum at 
small energies (a Bogolyubov spectrum for small k) 
with a velocity 

u = [I.(V- Vo) I MVoJ''•, (6) 

which is small in comparison with the velocity of ordi
nary sound in the crystal. In this case the heat capac
ity of the crystal is proportional to ~; however, the 
coefficient of proportionality is much larger than usual. 

As we already noted, in a crystal containing zero
point defectons the number of lattice sites, i.e., the 
number of maxima in the density function, does not co
incide with the number of atoms. For this reason there 
are two possible types of motion in the crystal. The 
first of these is associated with displacement of the lat
tice sites and is characteristic of an elastic solid. The 
second is associated with mass transport by means of 
the motion of the zero-point defectons while the lattice 
sites remain essentially fixed. This kind of motion pos
sesses the properties of motion of a liquid.u Thanks to 
this a crystal is able to flow through a capillary in a 
gravitational field. 

These two types of motion are related to each other 
by the conditions at the surface of the crystal. Namely, 
a single-valued relation exists (see [ 7 J) between the 
stresses normal to the surface and the concentration of 
defects near the surface. Upon deformation of the crys
tal there arises therefore a self-consistent motion of 
the lattice sites and a flow of defectons, accompanied by 
a transport of mass and therefore causing quantum flu
idity of the crystal. 

It should, of course, be kept in mind that at finite 
temperatures, owing to the presence of vacancies, all 
crystals possess the property of fluidity. At absolute 
zero, however, one can discern a clear distinction be
tween solids, liquids, and crystals containing unequal 
numbers of sites and atoms which occupy an intermedi
ate position. 

llwe note that a similar situation occurs in metals, which are crys
tals containing an electronic liquid. In metals, however, the situation is 
complicated due to the condition of electrical neutrality. 
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Since a nonideal Bose gas possesses the property of 
superfluidity, the liquid type of motion of a crystal con
taining Bose zero-point defectons will also possess this 
property (superfluid flow of the crystal through a capil
lary). The same also holds under well-known conditions 
in the case of Fermi defectons. It is of interest to note 
that defects of a fundamentally new type may exist in a 
superfluid crystal. The question concerns vortex lines, 
i.e., linear defects for which the phase of the conden
sate's wave function changes by 21T upon going around 
the defect. 

3. MACROSCOPIC EQUATIONS OF MOTION 

For finite values of A the usual equations of motion 
of a crystal, based on the identification of lattice sites 
and atoms, are, as mentioned above, inapplicable. But 
it is precisely the possibility of such an identification 
which enables one in the usual case to investigate the 
question of the nature of the crystal vibrations over the 
entire frequency range. In our case just as, for exam
ple, in the case of liquids, it is possible to carry out a 
general investigation of only the long wavelength (and 
low frequency) vibrations. This can be done with the aid 
of macroscopic equations of motion whose form is 
uniquely determined by the conservation laws. 

Turning to a derivation of these equations, let us in
troduce the vector u that defines the displacement of 
the crystal lattice sites from their equilibrium posi
tions. The derivative u, equal to the velocity of motion 
of the sites, in general does not coincide with the veloc
ity of the crystal macroscopic motion since processes 
of mass transport exist for fixed sites. Moreover, in a 
superfluid crystal it is necessary to introduce two ve
locities of macroscopic motion, one of which (vn) deter
mines the velocity of the "normal part," and the second 
(vs) determines the velocity of the "superfluid part." 
With the aid of the well-known formulas for a Galilean 
transformation one can express the energy E and mo
mentum j per unit volume of the substance in terms of 
their values (E and p) in the coordinate system in which 
Vs = 0: 

E = pv,2 /2 + pv, + e, j = pv, + p, (7) 

where p is the density of the crystal. One can regard 
the energy E as a function of the entropy S, the density 
the derivatives Wik = iluk/ilxi of the vector u with re
spect to the coordinates, and the momentum p of the 
relative motion of the normal and superfluid parts. We 
note that in our case the components of the tensor wik 
and the density p are independent variables in contrast 
to the usual case when the relation op/p = -wzz holds. 
Let us write the differential dE in the form 

de = TdS + 'MAdW;A + f.tdp + (vn - v,)dp. (8) 

Then we operate in standard fashion (see [ 81 ), starting 
from the conservation laws. We seek the equations of 
motion in a form which will guarantee the mass and mo
mentum conservation laws, the increase of entropy, and 
the potential existence of superfluid motion: 

8!1 8IT1k 
Tt+ ox. =O, p + divj = 0, 

The unknown quantities 1Tik, cp, q, and R must be deter
mined from the requirement that the law of energy con
servation, 

E +divQ = 0. (10) 

should follow from Eqs. (9}. Differentiating the first of 
the equations (7) with respect to time and using Eqs. (8), 
(7), and (9), we obtain 

. . ouk ( v,z ) v,2 
E = TS+ 1..1,-,-- J.l divj-div -j +iV--

o~ 2 2 
• iiii;k • • 

- (J- pvn} Vq:- Vni -;:-- + VnV, diV] 
ox, 

{ v,2 } . 
= -div i2+STvn+vn(VnP) +T(S+divSvn) 

au. ( v,z) +A.;A 0x1 +(i-pvn)V q:- 2 -pvr.V'J.l 

a 
- Vn;-,- {II;,- pv,; Vak + v,; p;. + Vn'<Pi 

ox, 
+£-e + TS +(vn -v,)p + J.lp]6;;.}- J.ldivj, 

where we have neglected the term vni A.kt awkz I iJxi> 
which is cubic in the "normal" motion of the crystal, 
and which corresponds to a linear theory with respect 
to the "rigid" type of crystal motion. 

With the aid of simple transformations one can re
write the last formula in the form 

. {( v,z ) 
E+div 2+J.l i+STvn+vn(VnP)+q+1Jl(i-pvn) 

+ Vn;. 11A;- A;k Uk }= R +It;;.· ~::i + ¢ div(j- pVn} 

q'VT of..;• + -T + (vnk- u;.) -,-, (11) 
UX£ 

where the following notation has been introduced: 

Il;A = pv,;Vsk + VsiPh + VnkPi + [ -8 + TS 
+ (vn- v,)p + !lP]<'>iA- Aki + l'tiA, 

(j) = v,2 /2 + !l + 1jl. (12) 

Comparing (11) with (10) we obtain an expression for 
the energy current 

Q =[ v;2 + J.1) j +STvn +vn (VnP)+ q + ¢(j- pvn)+ Vnk11ki- A.;;. u;. 

(13) 

and for the dissipation function of the crystal 

From the condition of positiveness of the dissipation 
function, with the Onsager symmetry principle taken 
into account, we obtain the following relations: 

fJT iiA.k1 
q; = -'Xik ii'xk -a;, a;;:' 

8T iil..k1 
Pn;- u;= -a;•·-,-- ~~·-8 -; 0Xk .XI 

Ovnz 
ll;k= -T}iklm-,-. -- ~;kdiv(j- flVn), 

OXm 

OVn; 
¢= -~;.-8--xdiv(i- pvn}, 

Xk 
(15) 

where K, a, (3, 1/, ~.and x are certain kinetic coeffi
cients. The quantities K have the meaning of the ther
mal conductivity tensor; 11, ~. and x are the coeffi-
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cients of viscosity; {3 and a are stipulated by the proc
esses of diffusion and thermodiffusion of defects. We 
note that the obtained equations are also applicable to 
nonsuperfluid crystals in which the density of the super
fluid component vanishes. 

If we neglect the dissipative terms, then from 
Eq. (12) we obtain the following expression for the mo
mentum current: 

n,. = pv,,v,. + VsiPk + VnkPi + [ -8 + TS + (vn- v,)p + flp]l\;k- Aki· 

The tensor 7Tik is always symmetric, a result that fol
lows from the law of conservation of angular momentum. 
Therefore, in general the quantities "-ik are not sym
metric; their antisymmetric part is given by 

For not too large values of the velocities one can ex
pand the momentum p in powers of Vn - Vs and limit 
our attention to the linear terms: 

Pi~= PAn) (vnr,.- v,,) · 

(n) • 
Here the tensor Pik plays the role of the density of the 
normal component. It is symmetric since the quantities 

[p~~-1 are equal to the second derivatives of the en
ergy E with respect to the components of the relative 
momentum p. One can write the total momentum per 
unit volume in the form of the sum of the momenta as
sociated with the normal and superfluid motions: 

where p~> = p- p~~> is the density of the superfluid 

part. 
With the aid of the derived equations let us consider 

the problem of the spectrum of the long wavelength 
crystal vibrations at zero temperature. Linearizing 
Eqs. (9) and neglecting the dissipative terms, we obtain 
the following system of equations: 

• (s) (n) 
P+div(Pik Vsk+Pik zh)=O, 

(16) 

where aik = "-ik- [- E + !lP] Dik. Assuming that all 
quantities depend on the coordinates and time by means 
of the factor exp (ik• r- iwt), and eliminating Vs with 
the aid of the first of Eqs. (16), we find 

w~p' + iw2 p/.n>kiuk = Pi~> kikk!A', 

iw2 pAn) uk - Pi~) kh 11' = O'i k k,, (17) 

where the primes denote the deviations of the quanti
ties from their equilibrium values. It is convenient to 
carry out further calculations in terms of the variables 
!l and Uik = lf2 (auifaxk + auk/ a xi) (in the linear ap
proximation the energy depends on only the symmetric 
part of the quantities Wik). From the relations between 
the differentials 

in the linear approximation we obtain 
o-;.i, ihik , , ol,ik ( lip ) 

O'ik = - 0-Uzm+--- ~~ - ~ik PIA = -,--Uzn- --- + P~ik !1 1 , 
Ulm Of-!. OUzm ,ouik 

(18) 
where the thermodynamical identity d(E - !lP) = "-ikdUik 

- pdfl has been used. After substituting (18) into (17) 
we have 

oi.;k k k . k , . <•> (k , + · 2 ) pw2u;- --- 1 kUm = lPih k!A - lp;k h!A l:U Uk , 
o·uzm 

w2 ~P 11' = pf~ k; (kw' + iw2u•)- iw2p,.k1u., (19) 
0!! 

where Pik = ap/auik + poik· 
The system of equations (19) determines four eigen

frequencies w (k) for each value of the wave vector k. 
The physical meaning of the corresponding eigenvibra
tions is especially simple in the case of a slightly anom
alous crystal, i.e., when the quantities Pl~> and Pik are 
small in comparison with the total density of the crystal 
(in an ordinary crystal ap/auik = -poik 

If we neglect the right-hand part in the first of 
Eqs. (19), then we obtain an equation for the acoustic 
vibrations of a crystal with moduli of elasticity a"-ik/ 
au lm· Let w0 (k) and u{0 > be the frequency and unit po
larization vector of one of these vibrations. Taking the 
discarded terms into account by using perturbation the
ory, we find the frequency with the linear terms in the 
small p~> and Pik taken into account: 

(k)- (k)+ Wo(k) (O) (s) (O) 
w - wo ~ ui Pik uk . (20) 

The fourth solution of the system (19) corresponds, 
as we shall see, to a frequency w N p<s> which is low 
in comparison with w0 • In this case one can consider 
Ui = 0. The second of Eqs. (19) then gives 

(21) 

where it has been taken into consideration that a!lfap 
= (a 2E/ap2)uik· 

Solutions with the dispersion law (21) represent os
cillations of the crystal density with fixed lattice sites 
(ui = 0). One can also show that these correspond to 
oscillations of the density of defectons. For this reason 
the velocity of the oscillations, calculated with the aid 
of formula (21), must coincide for the model considered 
in Sec. 2 with expression (6) for the velocity of the one
particle excitations. 

We further note that in a crystal (which is not super
fluid) containing Fermi zero-point defectons along with 
ordinary acoustic vibrations, vibrations of the zero 
sound type can exist which (for a small number of de
fectons) are also accompanied by oscillations of the 
crystal density for fixed lattice sites. 

For simplicity we assumed everywhere above com
plete equilibrium between the crystal and the zero-point 
defectons. However, everything that was said also per
tains to the quasiequilibrium states containing a given 
number of defectons which were mentioned at the end of 
Sec. 1. In addition, similar effects should be observed 
in solid solutions if they can exist at zero temperature. 
For example, it is quite possible that, just as in the 
case of liquids, a nonstratifying weak solid solution of 
He3 in He4 may exist at zero temperature. The He3 at
oms in such a solution would behave like a degenerate 
Fermi gas of impuritons. 

Finally let us consider the question of to what extent, 
on the basis of existing experimental data, can one re
gard solid helium as a crystal containing zero-point de
fectons There are indications (for example, (gJ) from 
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the discrepancy between the density of helium measured 
by ordinary methods (measurements of the number of 
atoms) and with the aid of x-rays (measurements of the 
number of lattice sites). A linear term was observed 
in the heat capacity of He3 , r lOl which could be explained 
as the defecton contribution (however, a similar result 
was also obtained in He4 , for which there is no reason 
provided a sufficiently large number of He3 impurities 
were not present). On the other hand, there are signifi
cant discrepancies between the measured coefficient of 
the T3 term in the heat capacity and the values calcu
lated with the aid of the velocities of sound. r 11 l How
ever, all of this data is not sufficiently reliable so it is 
impossible to say anything definite in answer to the 
posed question. 2 > 

2) A. I. Shal'nikov has informed us of experiments involving the 
measurement of the velocity of motion of a small steel sphere in solid 
He4 due to the influence of an external force. Investigation of the tem
perature dependence of the velocity of motion would enable one to ob
tain important information about the nature of the motion of defects 
and, in particular, would enable one to answer the question about the 
existence of zero-point defectons. Recently an upper limit on the ve
locity, v < 10-6 em/sec, was obtained for a sphere of radius 0.8 mm at 
a temperature T:> 0.5 °K and pressure of 64 atm under the influence of 
a force of 50 mg. 
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