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The energy spectrum of the classical radiation of an electron moving in a constant electric field is 
found and, in particular, the radiation spectrum of a uniformly accelerated charge is determined. The 
region on the particle's trajectory where radiation with a given wave vector k is generated is found, 
which allows one to indicate specific experimental conditions for observation of the spectrum. 

1. INTRODUCTION 

THE motion of a charge in a constant electric field in 
the particular one-dimensional case reduces to uni
formly accelerated (hyperbolic) motion, characterized 
by constant acceleration in the co-moving Lorentz sys
tem. The electromagnetic field of a charge undergoing 
such motion was considered by Born l1 J and Schott. l2 1 

Using Born's solution, Pauli reached the conclusion that 
a charge does not radiate during hyperbolic motion l3 1 

(also see von Lauelll ). On the other hand Schottl5 J and 
later DrukeylsJ and Bondi and Gold l71 reached the oppo
site conclusion. The most complete argumentation in 
favor of radiation is given in the articles by Fulton and 
Rohrlich. [8 ' 91 

Here we cite and comment upon the basic formulas 
of the classical theory of radiation, [101 which will be 
used in what follows. 

From the expressions for the electromagnetic field 
created by a moving charge 1> (at the moment t' the 
charge is located at the point x(t'), has a velocity 
v = x(t')' and an acceleration w = x(t'); the field is ob
served at the point x = x(t') +Rat the moment t = t' + R), 

E 
e(1- z,2) (R-vR) e[R[(R-vR)w]] 

(R-Rv) 3 + (R-Rv) 3 ' 

H- [RE] (1)* 
- R , 

it is seen that if the charge is being accelerated then at 
large distances from it, namely for 

R~ (1- u2) /w, (2) 

the field becomes a wave field (i.e., it is described by 
only the second term in (1) for which E = H; E, H, and 
R form a right-handed set of three orthogonal vectors, 
and the field falls off like K 1) and consequently such a 
charge radiates. 

The energy, radiated by the charge into a solid angle 
d n at the moment t' during the time interval dt', in the 
wave zone passes through the area element R2d0 in the 
direction n = R/R at the moment t = t' + R during the 
time interval dt = (1 - v · n)dt', and this energy is deter
mined by the relation 

!)The Gaussian system of units is used; the velocity of light c = I; the 
notation is PJ.t = (p, Po), pk = p · k- p0 k0 ; uJ.I is the 4-velocity, aJ.I = 
duJ.I/ds is the 4-acceleration and sis the proper time. 

*IRE] =RXE. 

d/Sn = ([EH]n) R"dQ dt = e' [n[(n- v)wll' dQ dt. (3) 
4lt 4n (1- vn) 6 

The first equality determines the total energy passing 
through the area element. The second equality deter
mines the radiation energy and is written down for con
dition (2), when only the second (wave) term remains of 
the field (1). We shall be interested not in the intensity 
d.6 nfdt of the radiation registered by an observer, but 
in the intensity d6 nfdt' of radiation from the source, 
i.e., the energy radiated per unit time by the particle. 

It is not difficult to calculate the total (i.e., integra
ted over all directions n) intensity d & n/dt' of radiation 
from the source: 

~=~) [n[(n-v)wll'ag 
dt' 4ll (1- vn) 5 

2 [ w2 (wv) 2 ] 2 
=3e' (1- v2) 2 + (1 v2)3 =3e'a2: (4) 

(afJ. denotes the particle's 4-acceleration2 >). Thus, the 
energy radiated per unit time by a particle is positive, 
relativistically invariant, and proportional to the square 
of its. 4-acceleration. The relativistic invariance of 
d6/dt' is a consequence of the symmetry of dipole radia
tion (seel101 , Sec. 73) and allows one to perform the cal
culation in an arbitrary coordinate system. In the sys
tem where v = 0 the second equality in (3) holds for 
arbitrary R, and this means that one can establish the 
existence of radiation with regard to the field in any 
arbitrary neighborhood of the charge, and not just in the 
wave zone. [91 

For a charge moving in a constant electric field and, 
in particular, for a uniformly accelerated charge3 > a2 is 
a constant quantity, different from zero, and conse
quently such a charge radiates. However, Pauli laJ noted 
that the field of a charge undergoing hyperbolic motion 
does not have a wave zone at any distance from the 
source at the moment t = 0 when the velocity of the 
charge is equal to zero, and consequently there is no 
corresponding radiation. But the moment of observation 
t = 0 does not satisfy condition (2) for the wave zone 

t- t' ~ 1 - ,,•(t') I = ia-2 + t'2 

W ( t') hyperb. mot. 

2 >we recall that aJ.I = {(l-v2 r'w+(l-v2 r 2 (v·w)v, (l-v2 r 2 v·w }. 
3lBy definition uniformly accelerated motion means w =I= 0, w = 0 in 

the system where the particle is at rest, or in covariant form a2 =I= 0, rJ.I = 
0 where rJ.I = (daJ.I/ds)-uJ.Ia2 • For charged particles (2/3)e2 rJ.I is the 4-
force due to radiation damping. [ 10 ] 
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for any moment of emission t'; in any case the moment 
of observation t must be much larger than the recipro
cal of the acceleration: t >> a-1. 

2. RADIATION SPECTRUM OF AN ELECTRON MOVING 
IN A CONSTANT ELECTRIC FIELD 

Let us consider the radiation spectrum of an electron 
moving in a constant electric field. 

As is well known (see the problem in Sec. 66 of[ 10 J) 
the radiation energy spectrum of an electron is deter
mined by the formula 

where j J.l (k) is the Fourier component of the charge's 
current 4-vector: 

j.(k)= _:_ r dSl'lp.(s)exp {- ikc.Xc.(s)}. 
m~ 

(5) 

(6) 

Here xa(s) and 1Ta(s) = m(dxa/ds) are the charge's 
4-coordinate and 4-momentum, depending on the proper 
time s (ds = ..J1- v2 dt') and obeying the equations of 
motion 

For motion in an arbitrary constant field F J.l!l one 
can represent the momentum 1T J.l in the form 

(7) 

np.(s) = hPP. + f2Fp.vPv + faF.v'Pv + /4Fp.vFv1JJ;., (8) 

where PJJ. is a constant 4-vector (p2 = -m2) determined 
by the condition 1TJ.l(O) = PJJ. and which is the limiting 
value for 1T J.l when the field is turned off, Ftv 
= (i/2)EJ.lvA.aFA.a• and the fk are four scalar functions 
of s: 

e2 cos lJS + T}2 ch es e e sh 8S + lJ sin lJS 

/1 = 82 + lJ2 • h = m 82 + '112 

f _ e e sin lJS -l] shes _ ( e ) 2ch es- cos lJS 
3- h- -

m 82 + '112 ' m 82 + 1]2 • 
(9) 

The quantities E and 11 appearing here are related to the 
well known field invariants F = (1/4)FMZ1 and 
G = (1/4)FJ.lvFjj.v by the relations 

e ----- e -----
e =- ("t'F2 + G2 -F)''•, '11 =- ("j!F2 + G2 +F)'"· (10) 

m m 

For an electric field 11 = 0 and E = eE/m, where E is 
the magnitude of the electric field intensity, and we ob
tain 

F ••P• F p.vFv;.p;. 
l'lp.(s)=P•+sh(es)};+(ches-1) · E2 • (11) 

Concerning the phase f(s) = -ikaxa(s) appearing in 
the current j J.l (k), having represented it in the form of 
the integral of -ika1Ta(s)/m overs, and having simpli
fied this last expression with the aid of the dimension
less invariant parameters z, ~, and 1.1 given by 

z sh • = F p.vpvk" 
~ eE2 ' 

(12) 
we obtain 

Substituting the momentum (11) and the phase (13) 
into the expression for the current and evaluating the 
quadratic combination Jj J.l (k) /2 which determines the 
spectrum, we obtain 

jp.(k)j.(- k)= e2{( (~;;:) 2 -1) JB0 J2+ <;::;:) 2 (/B./"-JB2 / 2)}, 

(14) 
where 

~ 

Bo, 1, 2 = ) ds ef<•l{ 1, sh es, ch es}, 

It is obvious that the change of variable ES - ~ = u ex
presses Bo in terms of the function 

~ 

Rv(z) = ~ duei(zshu-vu) = inHl~ (iz) = 2e•ni2K;v(z), (15) 

which to within a factor is a Hankel function of the first 
kind or a Macdonald function. For real z and 1.1 this 
function is real. Since B1 = -ioB0/oa and B2 = ioBo/ob 
where a = z cosh ~ and b = z sinh ~ , one can express the 
functions B1,2 in terms of Rv(z) and its derivative with 
respect to z, R~(z). As a result we obtain the following 
expression for the spectrum dS'k: 

d$k = ~{[(1- ~)v2 -1) Rv2(z)+ y2Rv'2(z)} d'k, (16) 
4n2E2 z2 

in which the invariant parameter 

y = 'ji(F •• p.)2 I Em= "t'm2 + PJ.2 I m (17) 

characterizes the motion, and the invariant variables 
z and 1.1 are related to the wave vector k and the momen
tum p by the equations 

the subscript 1 denotes the component perpendicular to 
the field E, and cp is the angle between p1 and k 1 . We 
note that /vI is always less than or equal to z. 

Formula (16) for the radiation spectrum of an elec
tron in a constant electric field is the analogue of the 
well known Schott's formula for the radiation spectrum 
of an electron in a magnetic field. During motion in a 
constant electric field the square of the particle's 
4- acceleration is a constant: 

(19) 

so that the parameter y is nothing else but the dimen
sionless acceleration of the particle expressed in units 
of eE/m: y = am/eE. As to the radiation damping force 
(2/3)e2r J.l, it is a function of s and vanishes only in the 
case p1 = 0 or y = 1. Thus, in the special case y = 1 
(and consequently 1.1 = 0) formula (16) describes the 
radiation spectrum of a uniformly accelerated charge: 

(16') 

A characteristic feature of the spectrum (16) is its 
independence of PII and ku, the components of the vectors 
p and k parallel to the field E. This is a consequence of 
the fact that in a homogeneous constant field a change 
of these components is equivalent to a change of the 
time origin. Therefore, if we represent d3k in the form 

d3k = dknkJ.dkJ.d<p = (eE I my)2dkuzdzdrp (20) 

f(s) = +i[z sh (es- 6) - ves + z sh 6]. (13) and integrate the spectrum over k 11 , the resulting integ-
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ral will diverge linearly. And what is more, since as 
z - 0 the functions 

Rv(z) ~ 2ln (2/z) -2C, Rv'(z) ~ -2/z, C=0.577 ... , 

then the spectrum possesses a logarithmic singularity 
d.W k = z-1dz at the point k 1 = 0 (or z = 0). 

The divergence of the total radiation energy is not 
surprising since the intensity of the radiation d.W /dt' is 
finite, see Eq. (4), and therefore the total radiation en
ergy during the infinite time interval associated with 
the entire trajectory of the particle is infinite. 

We shall show that the radiation associated with a 
definite value of the wave vector k is produced in a 
definite segment of the particle's trajectory, the so
called "coherence interval" whose position and length 
are proportional to k 11 /k1 • It is obvious that the coher
ence interval is that segment of the particle's trajectory 
on which the functions Rv(z) and R~(z) are formed, being 
integrals over the proper time s (or over u = ES- ~ ). 

Let us consider the function Rv(z) (see Eq. (15)) assum
ing that the acceleration is not too large, i.e., y ~ 1. 4> 

In this case the ratio 11/z ~ 1, but not too close to unity 
so that 1- (v/z)2 ~ 1. It is not difficult to see that for 
z « 1, in the integral over u which determines the func
tion Rv(z), values of u lying near u = 0 in an interval 
~u ~ ln z-1 are effective. For z :;c. 1 one can estimate 
the effective range of integration over u by the saddle
point method. From such an estimate it follows that on 
the real axis, values of u lying close to Re u0 (u0 is the 
saddle point) in an interval ~u ~ lim u0 1 + lf"(uo)l-112 are 
effective. For the function Rv(z) the saddle point lies 
on the imafrtnary axis Uo = i cos-1(v/z) and If" (uo) r112 

= (z2 + v2t 112• From here it is seen that for z :;c. 1 values 
of u lying close to u = 0 in an interval ~u ~ cos-1(v/z) 
~ 1 will be effective in the integral (15). Consideration 
of the function R~(z) leads to the same results. 

Thus, the coherence interval is determined by values 
of the proper time s lying inside the interval s 0 - ~ 

~ s ~ so + ~ with center at the point 

6 1 F v-vPvkv- m [ ku Pll ] Bo=-=-Arsh =- Arsh--Arsh , 
8 8 eE2z eE k.J.. l'm"+P.J..' 

(21) 
and length 

m {Inz-1 for z~ 1 
A~-

eE 1 for z;;;::1 · (22) 

Only the position of the interval depends on k 11 , its 
length does not depend on k 11 and is practically a con
stant, of the order of m/eE. However, if we change to 
the time relative to the laboratory frame 

m( Pll Pll Po ) t=x0(s)=- --+-ches+-shes 
eE mm m' 

then the picture becomes complicated due to the non
linear dependence of tons, and there is a substantial 
change oft when s passes through the interval ~ ~ r::-1• 

As a result both the position 
m( Pn kn) to=t(so)=- --+y-
eE m k.J.. ' 

(23) 

and the length of the coherence interval 

4>The case 'Y > I, when l-(v/z)2 < I, reduces to the radiation of a 
charge in a crossed field; we consider it below. 

flt = t(so + fl)- t(so- fl) = 2~v~sh ell (24) 
eE k.J.. 

depend on k 11 • 

Thus, one can say that radiation with a given momen
tum k is emitted at the moment to with an uncertainty 
at. Dividing the energy contained in the interval ~k11 of 
the spectrum by the corresponding ''radiation time'' 
ato = my~k11/eEk1, we obtain the invariant quantity 

fl~o) d8 .. = :.:~ {[ ( 1- ;:)v•-1] Rv2(z)+v2Rv'2(z) }z•dzdcp, 
~ ~~ 

which one can call the spectral distribution of the inten
sity of the radiation, provided the uncertainty ~t in the 
determination of the radiation time ~to is sufficiently 
small: at« ato for all k 11 from the interval ~k 11 • Since, 
however, ~t ~ ~to the spectrum of the intensity (25) is 
only determined to within terms of order unity. Thus, 
if expression (25) is integrated over z and q; for the 
case p 1 = 0 (corresponding to uniformly accelerated 
motion), then we obtain 

d8 2trE2 f , 91{ 2. ( •F )1 
.......-=--J Ko~(z)z2 dz=-·-e•. -,..- , 
dto nm2 0 32 3 m 

which differs from the intensity (4) by the factor 911/32. 
From the existence of a finite coherence interval it 

follows that in order to observe the spectrum in a given 
range of angles and frequencies, it is not necessary to 
realize motion over all space. For this purpose it is 
sufficient that the considered motion should be realized. 
over a segment which should contain within it the coher
ence interval given by (23) and (24), and the segment 
should be many times larger than the coherence inter
val (in practice several times larger). Outside of this 
segment the motion may be arbitrary; it may lead to 
radiation with the same wave vector k, but this radiation 
will originate at a time differing substantially from t0 

± ~t, and one can always separate out this radiation by 
turning- on the spectrometer only during the time when 
the electron is traveling along the coherence interval 
given by Eqs. (23) and (24). 

The discussion given here indicates that the radiation 
spectrum and the coherence length of a uniformly ac
celerated charge are not distinguished by anything and 
do not possess any special features distinguishing them 
from the general case of radiation in an electric field 
for y "" 1. We also note that in this general case the 
work done by the radiation damping force per unit time 
in the laboratory frame 

(26) 

is constant and is not equal to the intensity of the radia
tion (with the opposite sign) - (2/3)e2a2 , but approaches 
this value as y = a/ E increases. 

Now let us consider the radiation spectrum d.Wk when 
the particle's acceleration is large: y >> 1. In this 
case, as we see below, large values of z and v close to 
each other are important: z, lvl ~ y 3 , 1- (v/z)2 ~ y-2 • 

In this region one can replace the functions Rv(z) and 
R~(z) by their asymptotic values, which are obtained by 
the saddle-point method, taking second and third deriva
tives into account: 

-·( 2 )''• -( 2 )''• Rv(z) ~ 2'fn -; ll>(y), Rv' (z) ~ 2l'n -; Ill' (y); (27 ) 

here y = (v/2)213(z2/v2 - 1), and i)(y) is the Airy function 
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defined by the integral 

<D(y) = ~ r du' exp {i( u'' + yu' )}. (28) 
2y'n_= 3 

in which the variable u' is related to the proper time s 
or to the variable u = ES- ~ (see Eq. (15)) by the rela
tion u' = (v/2) 113u + iAv/2) 113(tan a- a) where 
a = tan-1[(z/v)2 - 1] 1 2 • 

Instead of z and cp it is convenient to introduce new 
variables v and T: 

z 
U=~, 

Y' 
(29) 

whose effective values will be of the order of unity. 
Using (27) and (29) in formula (16) and taking into con
sideration that y >> 1, we obtain the following expres
sion for the spectrum d&k: 

rn' ( 2 )',',{c ( 2 )'/, } d(t'k=-----;;-:;;, --- c2<D2 (y)+ - <D'2 (y) d'k, 
ny-E" v v 

(30) 

in which y = (v /2)213 (1 + T2 ), and in accordance with (20) 
and (29) one can use 

E ' 
rf3k = ( em ) "y3 dk11 ,. dv de. (20') 

instead of d3k. Of course, the fact that the spectrum, 
as before, does not depend on k 11 here also leads to an 
infinite total energy but in contrast to expression (16) it 
possesses an integrable singularity d /5' k ~ v-113dv at the 
point k1 = 0 (or v = 0). 

The coherence interval is now determined by the 
region of formation of the Airy function and its deriva
tive. Considering in (27) the relation between the inte
gration variable u' and the proper time s, it is not diffi
cult to show that the coherence interval is determined 
by the same position of the center So given by Eq. (21), 
but has a length which is y times smaller 

for 
for (31) 

In terms of the time measured in the laboratory frame, 
the coherence interval is characterized by the same 
position to given by Eq. (23), but the length 

t>..t ~ !!':...2.".'!. eE kj_ 
Since y » 1 the "radiation time" A to of energy in the 
interval Ak 11 is now well determined: At0 >> At if 
Y Ak 11 » ko, and the quantity 

df. = - 1- ~ d6 k = !"__( eE'I)'(~) ;,~ c2<D2 (y) + ( _2_)'/_, <D'2 (y)} v2 dv Jr 
l~ n rn v l u 

~"" (32) 
will be the spectral distribution of the radiation inten
sity. One can represent the integral over T of this dis
tribution in the form 

e2 ( eEy)'{ f 2 } dl= -co - .) dx<D(x)+-;-<D'(v'h) vdv. 
Jn rn vh (33) 

Carrying out the integration over v, we obtain the total 
intensity 

2e2 ( eEy\ 2 7 2 ( eEy)" I = - ~ -} _\ dx x<D' (,r) = --;- e2 -- , 

In m 3 m 
ll 

(34) 

in exact agreement with formula (4). 

We note that for y » 1 the electric field in the elec
tron's rest system appears to be very close to a crossed 
field (i.e., very close to a field for which E l H, E = H). 
Indeed, one can show that the limiting formulas (29) and 
(32)- (34) for the energy spectrum and radiation inten
sity in an electric field are exact for the radiation in a 
crossed field provided that, in the invariant variables 
v, T, and in the parameter eEy/m = e-./(F 11p11 ) 2/m2 , by 
F 1111 one understands the field tensor of t~e crossed 
field. 

The spectrum (16') will always be observed when 
uniformly accelerated motion is realized on a segment 
which is much longer than the coherence interval. For 
example, the one-dimensional motion of an electron ac
cording to the law x(t) = v-./(v/w)2 + t2 (vis the velocity 
of the charge for t = ± oo, w is the acceleration for t = 0) 
for v close to unity is very close to uniformly accelera
ted motion for times which are small in comparison with 
the characteristic time associated with a change of the 
momentum t << t1T = v /w-./1 - v2 , and its radiation spec
trum 

actually coincides with the spectrum (16') in the region 
k1 » k 11 -./1- v2 , i.e., those k for which the time At 
~ vk0/wk 1 required for generation of the radiation is 
small in comparison with the characteristic time t1T. 
Whereas here the total radiated energy is finite: 
/5' = JTe2w2t1T/4, equal to the total energy calculated by 
integration of the radiation intensity (4) over the time, 
and this also agrees with the total work done by the 
radiation damping force. However, just as in the case 
of a constant field, one can only determine the spectral 
distribution of the intensity to within terms of order 
unity since the time Ato for radiation of energy into the 
interval Ak 11 is stated with an uncertainty At ~ Ato. 

During the passage of the electron through the coher
ence interval the radiation probability will be optimal, 
~1/137 if z ~ yS, i.e., k1 ~ eEy 2/m. In this region the 
coherence length cAt~ (mc 2/eEy) 2k0 • For a field E = 3 
x 106 V/cm andy ~ 1 this gives k1 ~ 6 cm-1 and cAt 
- 2.8 x 10-2 ko [em] (ko is expressed in cm- 1). Measure
ment of the spectrum for y - 1 is of interest as a con
firmation of the transformation of Schott's energy of 
acceleration l 2 ' 6 ' 8 l into radiation. 
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