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The quantum theory of single-mode laser radiation is considered. In the coherent state representa­
tion the problem reduces, in the quasiclassicallimit, to an investigation of a closed set of equations 
of the hydrodynamic type. The small parameter of the problem in this case is the quasiclassical 
parameter 1/...fn where n is the number of photons. The equations derived are used for determin­
ing the photon distribution function and the damping decrement of the mean field due to quantum 
phase fluctuations. Two limiting cases are analyzed in detail: the case of ion density of excited 
atoms when collective processes in the spontaneous radiation do not play any role, and the case of 
high density when effects of the self-consistent field must be taken into account in the spontaneous 
radiation from the atoms. It is demonstrated that for low radiation energies collective effects re­
sult in suppression of the radiation fluctuations (radiation "capture"). At high energies, near the 
instability region of stationary generation, the fluctuations become much stronger and on the bound­
ary of the region attain a relative magnitude of the order of unity. 

1. INTRODUCTION 

AN appreciable number of recently published papers 
is devoted to the study of quantum fluctuations of radi­
ation in the quasiclassical region, i.e., when the num­
ber of photons in one mode is large. The most interest­
ing from this point of view is the study of the fluctua­
tions of laser emission, since strong coupling between 
the electromagnetic field and the radiating medium 
exists in a laser. 

It was established in[l-8 J that, depending on the laser 
emission power, there are three characteristic regions 
with different statistical radiation properties: below 
the threshold of classical generation the quantum 
"noise" can be regarded as thermal with a certain ef­
fective temperature; at the threshold, the distribution 
function of the photons is Gaussian, and the relative 
fluctuations in this region are of the order of unity; 
above the threshold, the photon distribution approaches 
a Poisson distribution. Qualitatively these conclusions 
agree with experiment[9- 12l. We note that referencesr1- 81 
differ from one another in method, and in some cases 
also in the results. In earlier investigations[l-3 1, a 
semiphenomenological approach was used, connected 
with introducing noise sources into the classical equa­
tions of motion. A strictly quantum approach was de­
veloped in the later papers. 

We emphasize that in the papers mentioned above 
they investigated a case typical of a helium-neon laser, 
when the lifetime of the photon in the resonator 1/ v is 
large compared with the lifetime T of the excited atom: 

vr..,;;;; 1. (1) 

In this case the length CT of the electromagnetic train 
in the spontaneous emission of the atoms is shorter 
than the photon mean free path c/v and collective ef­
fects in the spontaneous emission, which are not linear 
in the atom density, do not play any role. When condi­
tion (1) is satisfied, the equation for the photon density 
matrix reduces in the quasiclassical region to the 
Fokker-Planck equation. 

In this paper we consider for the quantum descrip­
tion of laser emission a method connected with the use 
of coherent states. Such an approach is particularly 
lucid and convenient in the quasiclassical region, where 
the quantum fluctuations become relatively small. 
Using the procedure of decoupling the Bogolyubov chain 
of equations, a closed system of equations is obtained 
for several of the first distribution functions. The 
small parameter of the problem is in this case 
1/ ..JTD), where ( n) is the average number of photons 
in the system. In the representation of the coherent 
states, the obtained equations turned out to be equiva­
lent to a system of hydrodynamic equations, which de­
scribe two-dimensional flow of a compr~ssible liquid 
in a strong external field. In Sees. 4.1-4.3, these 
equations are considered under the conditions of the 
inequality (1 ). The photon distribution function is ob­
tained, and the damping decrement of the average field 
due to the quantum fluctuations of the phase is deter­
mined. Above the generation threshold, the dispersion 
of the distribution function of the photons differs from 
that obtained by others. 

Further, (Sees. 5.1-5.4) we consider the case vT 

~ 1, when collective effects due to the "overlap" of 
the radiation processes and the absorption of photons 
by different atoms become significant. 

2. EQUATIONS OF MOTION IN THE COHERENT­
STATE REPRESENTATION 

The simplest model of the single-mode laser is a 
quantum oscillator of frequency w 0 , interacting with a 
system of N two-level resonant atoms with transition 
frequency Wab· Such a model corresponds to the well 
known spin Hamiltonian (in the interaction representa­
tion; n = 1) 

H = 1/2w03 + g(a+a_ + aa+), w = Wab- wo, (2) 

a= L;ai, g =dab '/wo/2V. 

Here a+ ap.d a are Bose creatiol} and anp.ihilation op­
erators, o-1 are spin matrices, a! and 0"~ are the 
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matrices of upward and downward spin flip: 

. ( 0 1) 0 '-+- 0 0 ' 
. ( 0 0) 

O-' = 1 0 ' 
. ( 1 0) a,• = 0 -1 ' (3) 

dab is the dipole moment of the transition ab, V is the 
volume of the system, and the summation is over all 
the spins from 1 to N. For simplicity, the atoms are 
assumed to be immobile and the coupling constant g 
for all the atoms is assumed to be the same. The 
processes of relaxation and excitation of the atoms will 
be taken into aecount in the next section. 

It will be convenient to write the initial equations 
from the very outset in the coherent-state representa­
tion. In this representation, the operator a is diago­
nal [131: 

(4) 

In the coherent-state representation, the eigenvectors 
are not orthgonal. For the two vectors I z ) and I z' ) 
we have 

I (z' I=) 12 = e-1<-z'l'. 

In order to obtain the equations of motion in the 
z-representation, we write the density matrix of the 
entire system (spins plus radiation) z, following 
Sudarshan[141 and GlauberP3 l, in the so-called P­
representation: 

r= ~ d2zlz) (zlr(:, 1). 

We now substitute (6) in the equation for the density 
matrix 

ar 
i at = [H, r], Sp r = 1, 

(5) 

(6) 

(7) 

where Sp denotes the trace over all the spin variables 
and the oscillator variables. Multiplying (7) from the 
left and from the right by the vectors ( z' I and I z'), 
and taking (5) into account, we obtain after integrating 
by parts an equation for the density matrix in the z­
representation: 

(8) 

(9) 

v =!_(;_-i;_ ). 
2 ?X Olj ' 

The superior bar denotes complex conjugation. The 
quantity d'6o =:16~ is obviously the Hamiltonian of the 
interaction between the spins and the classical field z. 

The non-Hermitian Hamiltonian J'€1 describes the 
processes of emission and absorption of photons in the 
system. If we dis card J'6 1 , then the Hamiltonian J'€0 

makes it obviously possible to represent the density 
matrix of the system r in the form of a product of the 
density matrices of the spins and of the oscillator, the 
oscillator density matrix being constant in time. Such 
an approximation is justified only when the number of 
photons is large and I z 12 » N. Therefore :J€1 cannot 
be regarded as a perturbation relative to :Je0 when 
I z 12 ~ N, when the density matrix of the oscillator 
changes appreciably in the process of interaction with 
the spins. In this case, in the classical limit, the self-

consistent behavior of the spins and of the radiation 
were considered earlier in (ls, 161, 

Thus, ~:1 includes the classical effect of the self­
consistent field of order N/1 z 12 , and also the quantum 
effects connected with the photon diffusion and having 
an order 1/l z 12 • We introduce the oscillator distribu­
tion function 

p (z) = (r(z, t))12 ... N, (10) 

where ( ... ) 12 • •• N denotes the trace over the variables 
of spin 12 ••• N. Then the density matrix of the oscilla­
tor takes the form 

R = ~ d'z lz)(z I p (z, t), )d2zp(z,t)=L (11) 

Strictly speaking, p ( z, t) need not necessarily be a 
positive definite quantity for all z. However, in the 
quasiclassical limit (I z 12 » 1 ), in which we are in­
terested, p ( z, t) is essentially the ordinary distribu­
tion function. 

We define further the single-, two- and three-parti­
cle spin density matrices: 

pr;(z, t) = (r)t...i-1, i+t...N, 

pr;;(z, I) = (r)t...i-1, i+t...i-1, Ht...N, 

pr;;k(z, t) = (r)t...i-1, i+t...;-1, ;+t...k-1, h+L N· 

(12) 

The density matrices defined in this manner satisfy the 
normalization condition 

(13) 

The function p(z)ri(z) is the joint distribution function 
of the oscillator and of the i-th spin in the z-plane. 
Analogously, prij is the joint distribution function of 
the oscillator and two spins, etc. We emphasize that 
Eqs. (12) do not mean factorization of the joint distri­
bution functions into spin and oscillator functions, 
since ri> rij, and qjk depend on p. 

We obtain from (8) a system of coupled equations 
for the distribution functions (10) and (12 ). Putting rij 
= rirj + oqj, we get 

ap --
ifii+V(gP-p)+V(gP-;-p)=O, (14) 

ar- -
i a: + g(P-V - P + V) r; = [J'€0;, r;] + S; + 6S;, (15) 

p± = 2: P±i = ~ (a±ir;);, 

S; = _ _!_[V(<J_ir;p)- a. c.], It±;= a±i-P±i• (16) 
p 

68;=-_!_::3 (V(a_i/ir;;p);-h.c.). (17) 
p i*i 

Equation (14) is the continuity equation for two­
dimensional flow (in the z plane) of an incompressible 
liquid, expressed in complex form. Here gP± plays 
the role of the flow velocity. Equation (15) without the 
quantum corrections Si and oSi is none other than the 
self-consistent equations of motion of the spins and of 
the classical field, written in Euler variables. Indeed, 
in Lagrange variables we obtain in this case in lieu of 
(15) a system of equations for q(t) and the classical 
field z(t): 

dr· i-d; = [J'60;(z(t) ), r;], 
dz idt = gP-(t). (18) 
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Allowance for the terms Si and oSi in Eq. (15) leads 
to the correlation of the distribution functions of the 
oscillator and of the spin and to the appearance of the 
diffusion of photons in z-plane. 

In the classical limit Si is a small quantity, and its 
order relative to [~oi, riJ is determined by the quan­
tity p-1 apja I z 12, since the remaining functions in Si 
are smoother than p ( z ). For a distribution of the 
Poisson type with a dispersion of the order of ..[[II), 
we have p-1 apja I z 12 ~ 1/...fW. 

Equation (15) without the term oSi is equivalent to 
the equation of motion of a low-temperature ideal 
liquid situated in a strong external field. To estimate 
the last term in (15 ), we write the equation for orij. 
Putting 

r;;k = r;r;rk + r;lk;k + r;llr;k + rkllr;; + llr;;h, 
(llr;;h)k = (6r;;k); = (tlr;;k); = 0, 

we get from (8) 

•·· - ) i--" + g(P-V- P+V)I!r;; = (d6'o; +~o;, llr;;] (19 
iJt 

-g ~ ((a_hiJr;khVr,+ (a_kiJr;h)kVr;-h.c.) 
,.,.i~j 

- g(!J-ir1Vr; + !J_ir;Vr; -h.c.). (20) 

Since orij enters in Eq. (15) only in the form of a 
quantum correction, which can be comparable with Si, 
it suffices to write the equation for orij itself only with 
accuracy of the order of 1/.J\il). We have therefore 
discarded in (20} the small terms connected with ~li. 
d6'1j, and Oijk· 

We note also that from the definition of the irre­
ducible part orij we get the condition ( oqj h = ( orij ) j 
=0, and that Eq. (20) agrees with this condition. With 
the aid of (20) it is easy to establish that the order of 
magnitude of oSi/Si is N/1 z 12 , and thus the region of 
the collective processes in the radiation diffusion co­
incides with the region I z 12 :S N of the self-consistent­
field approximation. As applied to a laser, the quantity 
N/1 z 12 is the ratio of the lifetimes of the excited atom 
and the photon in the resonator, so that the region of 
the collective effects, as already noted, is VT ~ 1. 

3. PROCESSES OF RELAXATION AND EXCITATION 
OF THE ATOMS 

In order to take into account the relaxation pro­
cesses connected with the finite lifetimes of the atoms 
and the photon in the resonator, and also processes of 
excitation of the atoms by the pump, we proceed in the 
following manner. Since we are interested only in 
equal-time distribution functions, the corresponding 
operators of relaxation and excitation can be intro­
duced directly in the initial equation for the density 
matrix of the entire system. Of course, these opera­
tors should not violate the normalization and the 
hermiticity of the density matrix r. 

Equation (7) then takes the form 

iJr - ""' - 1 at= vr+ LJ't"C'r+t!H,r], 
i 

;, = v(-a+ar + ara+ +h. c.), 

(21) 

(22) 

(23) 

Here r1°1 is the normalized (( r1°1)i = 1) density 
matrix of the i-th spin in the absence of radiation. It is 
natural to assume that without radiation the atoms are 
unpolarized. Therefore we have r! 01 = ( 1 -a~ )/2 for 
an excited atom and r! 01 = ( 1 - a~ )/2 for an unexcited 
atom. For simplicity ~e also assume that the times of 
longitudinal and transverse relaxations of the spin are 
equal. The number of excited spins will be denoted by 
Na, and the number of unexcited spins by Nb· Thus, 
N = Na + Nb is the total number of the spins, and 
AN= Na- Nb > 0 is the excess population. We shall 
also assume that AN is not very small, AN>> IN, 
for otherwise the excess population will have a fluc­
tuation origin. The relaxation operators (22) and (23) 
obviously satisfy the necessary conditions indicated 
above, since 

Sp.(,:r) = 0, (ij1r); = 0. 

In the z-representation, the oscillator damping opera­
tor is given by 

\•r = ''(V (zr) + V (zr) ). (24} 

The oscillator damping operator leads to the following 
substitution in the left sides of Eqs. (14), (15), and (20): 

gP_->-V-= gP_- ivz, gP+->-V+ = gP++ h•z. (25) 

We note that the coupling constant g, which has the 
dimension of frequency, is a very small quantity. Thus, 
for a gas laser, the typical order of magnitude is gT 
~ 10-3 • The characteristic order of magnitude of I z I 
(above the generation threshold) is ( gT f 1. 

It will be convenient further to consider separately 
the cases vr « 1 and vr ~ 1. 

4.1. THE CASE VT << 1 

In this case, as already noted above, the collective 
effects do not play any role and oSi can be omitted 
from Eq. (15). The system of Eqs. (14) and (15) then 
becomes closed. Since the relaxation in the spin sys­
tem occurs much more rapidly than the change of the 
photon distribution function (within a time of the order 
of 1/v), the equation for ri(z, t) can be considered 
in the quasistationary approximation, discarding in it 
the terms v_ V and v. V, which are of the order of vr. 

After this, the equation for ri assumes the form 

r· r-<Ol 1 1 
___: = 2- + -;-[d6'o;, r;] + -;--S;, 

't" "t" I I 

S;~ -g(cr_ir;Vp/p-a.c.). 

(26} 

(27) 

With respect to Eq. (26), it should be noted that al­
though the terms of order vr, which were discarded in 
it, are generally speaking larger than Si, nonetheless 
they are insignificant, since they do not contain the 
gradient of the distribution function p ( z, t ), and 
therefore do not influence the photon diffusion coef­
ficient!). For the same reason, only the term with 
Vp/p was retained in expression (27) for Si. 

The problem consists of finding the quantum correc-

owe note that in the stationary case we have v+ = v_= 0 when w = 0, 
meaning that there is no probability flux. 



1078 A. P. KAZANTSEV and G. I. SURDUTOVICH 

tions that must be added to the classical radiation cur­
rent because of the diffusion of the photons in the 
z-plane. 

We note that the approximation of Scully and Lamb[7 l 
is equivalent to the representation of the equation for 
ri(z, t) in the form {26}, the only difference being that 

al enters in place of al. This difference is connected 
with the fact that in[7 1, in determining the joint density 
matrix of the spin and of the oscillator, it was assumed 
that the photon density matrix does not change within a 
time of the order of T. Yet the determination of the 
diffusion coefficient r.equires.a higher accuracy. The 
difference between al and ai is significant only at 
intermediate values of the radiation energy; at low and 
high radiation energies we have I Pi I « 1 and <JlR~ a1. 

Equation {26) can be easily solved by perturqation 
theory 

(28) 

(29} 

From this we get the radiation current from the i-th 
spin 

P+; = p~> + p~2> + ... , p~IJ = (a+;"tt>);, p~2J =<a+~~;>);; 

1(1)- - 1 g-r:zi.q1 ( 4k )-t 1 ( ) 
p + - i 1 - is ' i.. = 1 + 1 + e2 ' k = g-r;z 12, e = w-r:; 30 

.<> .Vp zb.Vp p•2 =a•-+- •-; 

.,. p z p 
(31) 

. i.lfTI. [( 1 + i.q; ki.2 )( 2k ) 2k2}.~ 
a• = -- ------ 1 +-- + .,-:-.,---c-:-

1 - ie 2 1 + e2 1 + ie (1 + ie) a 

- k/.2(1 + }.q;)q; J 
1+ip ' 

bi=- ig-r:ei..[--i..-(i+~)+-2-( 1+i..q; __ k_) 
1-ie (1-i£)2 i+ie 1+ie 2 1+e2 

A.(1+i..qi)J 
+ 1-ie · 

Here qi = + 1 for spins that are directed upward in the 
absence of radiation, and qi = -1 for spins directed 
downward. 

The function ;\ ( I z 12 ) describes the effect of satura­
tion of the difference of the populations of the upper 
and lower levels of the atom by the radiation field. 
Summing the radiation currents from all the spins and 
substituting the result in the continuity equation 

(14') 

we obtain the Fokker-Planck equation for the distribu­
tion function p ( z, t ). Since the coefficients a i and bi 
depend only on I z 12, the final equation is best written 
in cylindrical coordinates z = /feiqJ, z = {fe-iqJ: 

&p { ii ( ap ) 1 o ( Bz op )} ( ) ---'=2v --- Atp+B1-. +---- A,p+---- . 32 
at o; a; ~ ocp s oq; 

In Eq. (32) we have discarded the term with the mixed 
derivative, since it produces only a small quantum 
correction to the classical generation frequency shift 
due to the coefficient A2 • We introduce further the 

generation parameter 11 : 
g2-r:tJ.N 

TJ= (1 +c2)v 
(33) 

In the classical limit, the generation region is deter­
mined by the condition 11 > 1; the condition 11 = 1 de­
termines the generation threshold. 

With the aid of (30) and (31) we get 
1(1) 

At(~)=s[1+ ~ ~Im(-P; )]=W-lJi..), {34) 
I 

+( ~. -1) (1+e2-},) :~J. {36} 

B2(s)=-g~ ~Im(ai-bi)= sTJ 1[(1+<2)2 
4v 1 8(1+e2) 11 

N 
+ i, (1- &2 - 2£') + i.2e2(e2 -1) + 2e2},3]-" + ((1- e2) 2 - }.(1 + 3e2 

!1N 

(37) 

The coefficients A1 and A2 are classical quantities­
the active and the reactive parts of the radiation 
power; B1 and B2 determine the radial and azimuthal 
coefficients of the diffusion of the photons in the z­
plane. Let us expand the oscillator distribution func­
tion in a Fourier series 

1 +oo 
p(z,t)=- L; Pm(s,t)e-imq>, Pm=P-m· (38) 

It 
n1=-x 

In this expansion Po(~, t) is the photon distribution 
function, in terms of which the mean values of quanti­
ties such as the density operator are expressed; these 
mean values contain equal numbers of creation and 
annihilation operators. Mean values of the operators 
of the type am, a+lal+m, etc. are expressed in terms 
of Pm( ~. t). 

4.2. PHOTON DISTRIBUTION FUNCTION 

The average number of photons ( n ) and the dis­
persion ((D.n)2 ) are connected with the distribution 
function p 0(~, t), obviously, in the following manner: .. .. 

(n~= Sp.(a+aR) = \ d~;po(;, t}, ~ d~po(s, t) = 1, {39) 
0 .. 

((An),!)= Sp.((a+a)2R)- (n)•= ~ dss2po(s,t)+ (n)- (n)z. (40) 

Proceeding to the solution of Eq. (32) for the photon 
distribution function, we confine ourselves to an ex­
amination of the stationary state. Under stationary 
conditions there should be no probability flux; from 
this we get 

A (~) (') + B <·> dpo(s) = o 
1 ~ Po • 1 s d~ . (41) 

The distribution function p 0 { ~) assumes a simple form 
in the following three characteristic generation regions: 

A. Below the threshold of classical generation 
( gr « 1 - 11 « 1 ). In this case the saturation effect 
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does not play any role. Putting A = 1 in (34) and (36) 
we obtain the Planck distribution 

(") 1 . 1< > N.fi1.V (42) 
Po ~ = (11) e-• " ' (11) = 1 -11 . 

Since ( n ) >> 1, we have for the photon-number fluc­
tuation the usual expression 

(43) 

B. Threshold of classical generation (11 = 1). In 
this case it is impossible to neglect completely the 
saturation effect. Putting in (34) A~:::: 1 - 4k(1 + E2 f\ 
we arrive at the Gaussian distribution 

Pom = _2_e-'-'l•<n,• 
n (n) ' 

((/1n) 2) = (n)2 (JT /2- 1). 

(44) 

(45) 

Cases A and B pertain to the regiqn of ~ow radiation 
energies. As already noted, here a,i ~:::: a1. Therefore, 
if we put in (42)-(45} E =0 and Na = t.N, then these 
formulas coincide with the corresponding results of[7 l, 

C. Above the threshold of classical generation 
(11 - 1 >> gT), Here we deal with the region of classical 
generation. Since the relative fluctuations are small 
in this region, the diffusion coefficient B 1 ( ~) can be 
taken at the point ~ = ( n ) . Then 

1 { (s- (11)) 2} (n) = (11 -1) (1 + e2) • 
Po(s) = "'f2n(n)d exp - 2d(n) ' 4(gT) 2 

((11n) 2) -d+i (46) 
(n) - , 

d= ~1/IJ+e2)Na/11N+(1J-1)(1+e2 -1/11)Nb/11N (47 ) 
(11-1)(1 + e2) 

When Nb = 0 we get 
{(11n) 2) =-11__ 1 

{n) 11-11 11(1 + e2) 
(48) 

This expression for the dispersion of the photon dis­
tribution function is smaller than that obtained in[7 l 
by an amount equal to the second term of formula (48 ). 

When 11 » 1 and d ~ 1/11 « 1, the distribution 
function Po(~) becomes o-like: 

Po(~) = O(;- (n)), 

and the photon distribution obeys the Poisson law. 

(49) 

Finally, when Na ~:::: Nb >> t.N and 11 >> 1, we have 

d = N I 211N ;!1> 1, (50) 

i.e., the dispersion of the photon distribution function 
increases as a result of the increase in the fluctuations 
in the occupation numbers of the atomic states. How­
ever, under the conditions when the inequality t.N 
» fN holds, the relative fluctuations of the photons 
are small. 

4.3. ATTENUATION OF AVERAGE FIELD 

To find the harmonics Pm ( ~, t) of the oscillator 
distribution function we can proceed in the following 
manner. Confining ourselves to the region of classical 
generation (case C) and assuming that the generation 
has become stationary, we seek an approximate solu­
tion of (32) in the form 

(51) 

where the constant Cm is determined by the initial 
conditions. Then the time dependence of the mean 
value of the operator am is of the form 

(52) 

When m = 1 formula (52) determines the frequency 
shift and the attenuation of the average electric field in 
the laser. 

When (51) is substituted in the diffusion equation (32 ), 
it suffices to take the coefficients A2 and B 2 at 
~ = ( n). As a result we obtain the following expres­
sions for the real and imaginary parts t.v~ and t.v~ 
of t.vn: 

A.vm' = - mve, 

av::.= 11Vm2 _ {[t+e4_2e2(1+e2) + e2(e2 +1) (53) 
4{n) (1 + £') 11 11• 

+ 2e•]_!!__+e•(2+~)+~}. (54) 
113 AN 11 11 

The generation frequency shift (53) has a purely classi­
cal origin and corresponds to the frequency pulling 
effect. The attenuation of the average field is due to 
quantum fluctuations of the phase and determines the 
spectral width of the laser emission line(7l. 

Let us consider several limiting cases for the at­
tenuation frequency. When N = t.N and w = 0 we have 

A r; _ vm2 (1 +11) (55 ) 
<>Vm- 4(n) · 

Near the generation threshold ( 11 ~:::: 1) formula (55) co­
incides with that obtained inr7 l: 

When E >> 1 and N =t.N 
,1 vm2 e2 (11 -1) 2 

4vm = {n) 411 ; 

If N >> t.N and E = 0, then 

5.1. CASE VT ~ 1 

11 ,, _ vm'TJ !!.__ 
'Vm- 4{n) 11N • 

(56) 

(57) 

We shall analyze here the case of high density of the 
excited atoms, when the photon mean free path becomes 
smaller than the length of the electromagnetic train in 
spontaneous emission. Under these conditions, effects 
of the self-consistent field become significant in the 
spontaneous emission of the atoms. Effects of this 
kind, as is well known[ 17- 19l, are important in the 
theory of diffusion of resonant radiation in a gas. How­
ever, in the theory of radiation diffusion one is usually 
not interested in the photon distribution function in a 
single mode, and furthermore the radiation field is 
assumed as a rule to be weak, so that the saturation 
effect can be disregarded. 

In the description of the laser radiation in the first 
approximation, one can confine oneself to a considera­
tion of only one mode of the electromagnetic field, but 
the saturation effect, generally speaking, must be taken 
into account in all orders. 

As already noted above, the criterion for the collec­
tive effects in the diffusion of laser emission is vT 

~ 1. The same condition can be written in the usual 
form as the criterion for the density of the excited 
atoms, if account is taken of the fact that the cross 
section for the absorption (emission) of a resonant 
photon is 7t2 (21T7t-radiation wavelength): 
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N 
V l\ 'ooo'f;;::, 1. 

Here it is assumed for simplicity that the lifetime of 
the atom is determined by the spontaneous emission at 
the transition frequency T ~ 71:3/ d~b• and that the emis­
sion energy is not too high ( T/ ~ 1 J. In a strong radia­
tion field the photon absorption cross section de­
creases like 1/T/. 

We obtain below the stationary distribution function 
of the photons in the region of laser parameters where 
the classical generation is stable. Near the boundary 
of the instability region, the photon fluctuations become 
very strong. We also determine the damping decrement 
of the mean field in the quasistationary approximation. 

5.2. INITIAL EQUATIONS 

We proceed to calculate the photon diffusion coeffi­
cient with allowance for the "overlap" of the processes 
of emission and absorption of photons by various atoms. 
Whereas in the case vr « 1 it was sufficient to find 
only the correlation in the distributions of the spins 
and the photons, it is now necessary to take into ac­
count also the correlation in the distributions of the 
different spins. In other words, it is necessary already 
to know the irreducible part of c5rij of the joint distri­
bution function of the spins rij. It is clear that the 
equation for the distribution function p ( z, t) no longer 
reduces to the Fokker-Planck equation, since the re­
laxation in the spin system occurs more slowly than 
the relaxation of the oscillator. 

To facilitate further calculations, we make the 
following simplifying assumptions. We confine our­
selves to a consideration of the stationary generation 
regime under conditions of exact resonance ( w = 0 ). 
In addition, we assume that in the absence of radiation 
all the spins are turned upward ( N = 6-N). Since all 
the spins are under identical conditions, the summation 
over the spins reduces now to multiplication by N. We 
note also that in the stationary state the distribution 
function Po depends only on ~ = I z j2 • Under these con­
ditions it follows from (14') that 

V+=V-=0. 

The integral of motion (58) denotes that there is no 
probability flux in the stationary case. 

We write down Eqs. (15) and (20) for the macro­
scopic quantities: 

(58) 

Pa. = ~ (cra.ir;);, Pa.- = ~ (cra.;o_ir;);, Pa.+ = L (o+icra.ir;);, (59) 
i 

6Pa.~ = ~ (cra.icr~i{lr;;) ;;, a,~ = +, -, 3. (60) 
i=f.=j 

The two-particle correlation matrix is obviously sym­
metrical: 5Paf3 = c5Pf3a· We then get from (15) 

Pa. P~1 1 
- =-+-;- ~ <m .. ,J>~ 

't 't ' ~ 
g dpo _ 

- -;--d-[(P,.- + 6Pa.-)z- (Pa+ + 6Pa+)z], (61) 
I Po 6 

where P~01 = N and P~01 = 0. The matrix d'6af3 is given 
by 

36+3 = gz, ~-3 = -gz, ~3+ = 2gz, 363- = -2gz, (62) 

and the remaining matrix elements are equal to zero. 

From (20) we have, accurate to 1/N, 

26P"~ =~~~a.~. a.·~·OPa.·~· -( ~) {V Pa.(6Pp- + Pp-) 
't I cz'P• I 

+ VPp(OPa.-+Pa.·-)-VPa.(6PP++P~+)- VP~(6Pa++Pa.+)}. (63) 

The matrix ;J6af3,a'f3' results from the Hamiltonian 
<moi + ~oj and has a somewhat cumbersome form; we 
shall not write it out in explicit form. We use further 
the following symmetry conditions, which follow, as 
can be readily seen, from (63): 

6P++I Z" = OP_ -I z2, 6P3+ I z = -6P3_ I z. (64) 

The matrix 5Paf3 has thus only four independent 
matrix elements. 

Using the condition (58), we can represent the sys­
tem of equations (63) in the following form: 

1 " -:r+v -4--Z 0 0 
l 

g' 2 2 .. ' _[! c-) -2-,--z -:r+v _.;. z 
I I i 6P3, 

0 
gz 1 

0 OP+-
i -:r+v 

OP3a 

0 4g'z 0 
i 't 

( 

-vP3T ;;p;~. (zP +_zp- ) 
_ i ds • + 

- -vP+-

2 §_ dP3 p + 
i as z • 

where g' = g( 1 + ( Y2) dPs/ dO. 

(65) 

The population difference between the upper and 
lower states P3 ( ~) decreases with increasing field, 
i.e., dPs/~ < 0, so that a situation in which g'/g < 0 
is possible. This produces, as it were, effective at­
traction forces between the spins, and the correlation 
between them can become very strong. Recognizing 
that the generation parameter T/ now takes the form 

(66) 

and using (58), we write the system (61) in the following 
form: 

Equations (67) and (68) constitute a system of differen­
tial equations of first order for the two unknown func­
tions Po(O and q(O, where q is the excess popula­
tion for one spin. 

The coefficients A and B depend on ~, q ( 0, and 
dq(O/~. To find A and B it is necessary to solve 
the system (65) and express P~ and 'P(l in terms of 
Pa. According to the definition (59), we have 

P3+ = ivz(1 + q) I g, (70) 
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5.3. PHOTON DISTRIBUTION FUNCTION 

Since the terms containing the gradient of the photon 
distribution function in Eqs. (67) and (68) have the 
character of quantum corrections (A ~ B ~ 1 ), we 
shall solve these equations by perturbation theory. As 
will be shown later; perturbation theory is valid every­
where with the exception of a certain region of the 
parameters 11 and vT, in which the stationary genera­
tion becomes unstable. 

The solution of the equations for PoU,) and q(O is 
in general quite cumbersome, and we shall consider 
immediately two limiting cases: generation in the 
vicinity of the threshold and generation above the 
threshold. 

1) I 11 - 1 I « 1. In this case the saturation effect is 
weak and gr I z I « 1. The only component of the vector 
Pa which is not small is the component 'P: i'::! N, and 
in the matrix fJ P af3 the only large element is fJ P + _ , 

for which we get from (65) 

liP+-= -~P+-· 
1 -t- VT 

Thus, in this limit we obtain ultimately 
1 

q=1, A=---, B=O, 
1 + vt 

dpo 
--. =(1 -t-n)[1J-1-4~(g-r)2). 
pod; 

(71) 

(72) 

(73) 

When vT « 1, the distribution function p aU;) coincides 
with that obtained in the preceding case (formulas (42 )­
(48) with N =AN). Below the threshold (gr« 1 - 11 
« 1) the function p 0 ( ~) is of the form 

1 1 
Pom=<n>e-!.f<n>, (n)=(1-1])(1-t-VT). (74) 

At the threshold ( 11 = 1) we have 

2 { ~2 } Po(~)=-- exp - -- , 
n(n) n(n) 2 

1 
(n)=--==o-• (75) 

2g·q11 + Vt 

((~n) 2 ) = (n)2 (n /2- 1). 

Above the threshold ( gr « lJ - 1 « 1) we have 

1 { (£-(n))2} 
Po(~)= y2nd(n) exp - 2d(n) ' (76) 

1J -1 1 
(n)--- d- ((.~n)2)=(1-t-d)(n). 

- 4(g1:)2 ' - {TJ- 1) (1 + v-r) ' (77) 

We see thus that the effect of overlap of the trains in 
spontaneous emission leads to the suppression of the 
radiation fluctuations. When vr > 1 a "dragging" of 
the radiation takes place: the photon spontaneously 
emitted by one atom is either absorbed by the other 
atom or leaves the resonator even before it has time 
to be formed. 

The fact that the correlation function fJP+- turned 
out to be negative can be explained in a simplified 
manner as follows: let us consider two classical radi­
ators, dipoles 1 and 2. If the first dipole has emitted a 
wave with phase <p1, then the second dipole radiates 
under the influence of such a wave, in the case of an 
exact resonance, a wave with phase <p1 + 'IT/2. Under 
the influence of the wave with phase <p1 + 'IT/2, dipole 
1 emits a wave with phase <p1 + 'IT. The resultant radia­
tion of the first dipole is thus attenuated. It is clear 

that this reasoning pertains only to spontaneous emis­
sion, since stimulated emission leaves all the dipoles 
in a state with equal phase. In a strong radiation field, 
when multiple re-radiation processes must be taken 
into account, the sign of the correlation function may 
change, and the radiation fluctuations can accordingly 
increase. 

2) 11 - 1 »gr. Solving Eqs. (67) and (68) by per­
turbation theory in the principal order (the classical 
limit), we get 

1 
qo=-, 

1J 

1)-1 
• -(n)-· 
'o- -. 4(gt)2. (78) 

In this region the distribution function of the photons 
has a Gaussian form (76 ), so that 

dpo 1 li" = 6 -(n) (79) 
Pod~ === -ylls, "' (n) · 

Since fJ~ is a small quantity ( {)~ ~ ( n) -1/ 2 « 1 ), it 
follows that by putting 

q = qo + q1b£, ~ = (n)(1 +Iii;), 

we obtain in the first order in a~ a system of two 
algebraic equations for d and q1: 

T)ql =-A/ d, 

-ljql = 1J - 1 +BId. 

(80) 

(67') 

(68') 

In the calculation of the coefficients A and B we shall 
write q0 and ( n ) in lieu of q and ~, and replace 
~ dq/ d~ by q1. In this approximation, the coefficients 
A and B take the form 

_l = 1 ~ + 1J- 1 2 -t- VT k 
i. + 2 2 1-t-n ' 

(81) 

(82) 

We note that 2( 1 + vr)r-4 71:"-1 is the determinant of the 
system (65). The function A.(TJ) determines the magni­
tude of the spin correlation. When vT << 1, the quan­
tity A.(TJ) i'::! 1/TJ coincides with a previously introduced 
function, which describes the usual effect of saturation 
of the populations of the atom by the field (see formula 
(30) ). 

Solving the system (67') and (68'), we obtain the 
dispersion of the distribution function of the photons 

;1,.('1) = 

A (1-t-v-r/2)i.(1J) 
d = - -T)q-1 = (1 + n) ( '1 - 1) • (84) 

(1 + V"t)[2 -t- \'T-t- 2VTIJ.,-':(1J_:___-_1-':c))'-::---:.,-:--. (85 ) 
(1 + vt/2)((1 + vr) (2 + n) -t-(2- v-r) ('1- 1)] 

When 11 - 1 << 1 we return to the previously considered 
case (formula (77) ). 

When vr >> 1J we obtain for the photon dispersion 

((an) 2) 

(n) 
1 + (2TJ-1)'T] 

('1-i)v"t 
(86) 

and far from the generation threshold, when TJ - 1 is 
not small, we have ((An)2 )/( n)- 1, i.e., we obtain a 
Poisson distribution function, and the state of the 
quantum oscillator is a set of coherent states with 
I z I = ..f\r0 and with a uniform phase distribution. 
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IP 

IP 

'----,~.----:!,g.---fr 
~-r: 

In the region T) 2 liT, the fluctuations increase. On 
approaching the curve (see the figure) defined by the 
equation 

TJ _ 1 = (1 + vr) (2 + n) 
vr-2 

(87) 

A and d increase strongly, and the fluctuations become 
anomalously large. As shown in the appendix, the re­
gion bounded by the curve (87) (shown shaded in the 
figure), coincide with the region of instability of the 
stationary generation regime. It is clear that in a 
small vicinity ~1//W near the shaded region, o~ can 
no longer be regarded as small, and the perturbation 
theory employed by us is no longer valid. In this small 
vicinity, the spin correlation also increases appreci­
ably; the irreducible part oqj of the joint distribution 
function qj is of the order of 1/ ..f\n), whereas in the 
region where we have the usual fluctuations we get 
orij ~ 1/( n). Inside the shaded region there is no sta­
tionary solution, since the generation occurs in a 
pulsating ("spike") regime. 

5.4. ATTENUATION OF AVERAGE FIELD 

The attenuation of the average field, connected with 
the quantum fluctuations of the phase, can be regarded 
as a slow quasistationary process whose characteristic 
time is much longer than T. Assuming that the radial 
function p 0 ( 0 has already relaxed to its stationary 
value, we repr~sent the distribution function p in the 
form ( z = If elCfl) 

p(~, <p, t) ~ po(~)p.(<p, t). (88) 

We also write down the vector Pa in the form 

Pa. = P<tT) + P~1 ), jP~) j<>t;' p~CT)' (89) 

where the stationary value pf:t) was obtained in the 
preceding section. Retaining in (61) both the radial and 
the azimuthal parts, we obtain 

p~l) 1 I!) g 8p1 _ 
- =-: ~d6'a.,J'~ + 2'-8-[:(Pa.- + 6Pa.-)+z(P .. ++ 6Pa+)). 

T I ~ ;. Pt <p (90) 

Substituting here the previously obtained stationary 
values P~, Pa, oPa+, and oPa-, we obtain a solution 
of this equation: 

P~tl= vz(TJ+1) ~ p~ll=O. (91) 
4gjzj (1 + n) PtO'f' 

We see therefore that the diffusion coefficient for the 
phase has no singularity near the instability region de­
fined by Eq. (87 ). It now follows from (14') that 

{92) 

For the Fourier components Plm (see formula (38)) 
we get 

(93) 

When v-r<>t;' 1 

When vr » 1 

L\v = v(1 + TJ) I 4(n). 

L\v = (1 + TJ) I 4(n)r, 

{94) 

(95) 

i.e., the width of the spectral line is determined in this 
case not by the Q of the resonator, but by the lifetime 
of the atom. 

6. CONCLUSION 

Thus, the problem of a quantum oscillator resonantly 
interacting with a system of N spins, acquires in the 
coherent-state representation a relatively simple and 
lucid character. 

In the quasiclassicallimit, the problem reduces to 
an investigation of a closed system of equations of the 
hydrodynamic type. The accuracy of the obtained equa­
tions is of the order of 1/ fW. Depending on the ratio 
of the number of spins and the characteristic number 
of photons, there are two limiting cases. When N/( n) 
~ liT<< 1, the problem cari be considered in the "given 
field" approximation; the collective effects do not play 
any role in this region. When liT 2 1, the problem 
must be considered in the sell-consistent field approxi­
mation. In the present paper we investigated both 
limiting cases. 

In the calculation of the quantum corrections con­
nected with the diffusion of the photons to the classical 
current above the generation threshold, it is necessary 
to take into account the dependence of the diffusion co­
efficient on the radiation power. The use of Bi in 
place of O'i in Eqs. (26) and (27) leads in this case to a 
decrease of the diffusion coefficient. When liT > 1, the 
fluctuations of the radiation are determined essentially 
by the collective effects. The overlap of the electro­
magnetic trains in the spontaneous emission at low 
radiation energies leads to a decrease of the fluctua­
tions. In the region of intermediate radiation energies 
( T1 < liT), the photons have in practice a Poisson dis­
tribution. Finally at high energies, the fluctuations in­
crease strongly near the instability region (see the 
figure). On the boundary of the instability region, the 
relative fluctuations are of the order of unity. However, 
the phase diffusion coefficient has no singularity near 
this boundary. 

In conclusion we note that the simplest laser model 
considered by us can be generalized relatively simply 
to include allowance for the thermal motion of the 
atoms, for the difference between the relaxation times 
in the spin system, etc. 

The authors thank V. L. Pokrovskii for a number of 
useful discussions. 

APPENDIX 

Let us consider the problem of the stability of the 
stationary generation regime in the classical limit. The 
sell-consistent system of Maxwell's equations for the 
classical field z(t) and the equations of motion of the 
medium are 

dz(t) 
-;It+ vz(t) =- igF-(t), 

dP_ P_ 
"at+-;--= igz (t)P3, 

dPa Ps-N 
-;u+~,-= -2gi(z(t)P+-c.c.). 
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Linearizing this system of equations near the station­
ary solution P3 = N/1/, I z 12 = (1/ - 1)/4(gT)2 and 
separating the time dependence in exponential form 

ext/T, we obtain the following dispersion equation: 

x3 + ax2 + bx + c = 0, 

where a= 2 + vT, b = 11 + vT, c = 2vT(7] - 1). The 
boundary of the instability region is obtained from the 
condition Re x = 0, from which we get 

c=ab, 

which coincides with formula (87 ). 

Note added in proof (7 May 1969). Quantum fluctuations in a gas 
laser were recently considered by a semiphenomenological method in a 
paper by Yu. L. Klimontovich and P. S. Landa (Zh. Eksp. Teor. Fiz. 56, 
275 ( 1969) Soviet Phys. JETP 29, 151 ( 1969) ). 

1 M. Lax, Phys. Rev. 145, 110 {1966). 
2H. Haken, Z. Physik 190, 327 {1966 ). 
3V. Arzt, H. Haken, H. Risken, H. Sauermann, Ch. 

Schmid, and W. Woidlich, Z. Physik 197, 207 (1966 ). 
4R. D. Hempstead and M. Lax, Phys. Rev. 161, 350 

(1967 ). 
5J. A. Fleck, Jr., Phys. Rev. 149, 309, 322 (1966). 
6 C. R. Willis, Phys. Rev. 156, 320 (1967). 
7M, 0. Scully and W. E. Lamb, Jr., Phys. Rev. 159, 

208 (1967 ). 
8J. P. Gordon, Phys. Rev. 161, 367 (1967). 
9 A. W. Smith and J. Armstrong, Phys. Rev. Lett. 

16, 1169 (1966). 
1°F. T. Arecchi, M. Giglio, and A. Sona, Phys. Lett. 

25A, 341 {1967). 
11 F. T. Arecchi, V. Degiorgio, and B. Querzola, 

Phys. Rev. Lett. 19, 1168 {1967). 
12 Yu. I. Za'itsev and D. P. Stepanov, ZhETF Pis. Red. 

6, 733 {1967) (JETP Lett. 6, 209 (1967)]. 
13 R. J. Glauber, Phys. Rev. 131, 2766 (1963). 
14 E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963). 
15 A. P. Kazantsev and V. S. Smirnov, Zh. Eksp. 

Teor. Fiz. 46, 182 (1964) [Sov. Phys.-JETP 19, 130 
(1964)]. 

16 A. I. Alekseev, Yu. A. Vdovin, and V. M. Galitskil, 
Zh. Eksp. Teor. Fiz. 46, 320 {1964) (Sov. Phys.-JETP 
19, 220 (1964)]. 

17 M. I. D'yakonov and V.I. Perel', Zh. Eksp. Teor. 
Fiz. 47, 1483 (1964) (Sov. Phys.-JETP 20, 997 {1965)j. 

18 Yu. A. Vdovin and V. M. Galitskil, Zh. Eksp. Teor. 
Fiz. 48, 1352 {1965) (Sov. Phys.-JETP 21, 904 (1965)]. 

19 Yu. A. Vdovin and V. M. Ermachenko, Zh. Eksp. 
Teor. Fiz. 54, 148 {1968) [Sov. Phys.-JETP 27, 81 
{1968)]. 

Translated by J. G. Adashko 
232 


