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Expressions for the recombination and ionization rates in a plasma of arbitrary composition are ob­
tained on basis of the concept of the two processes being one of electron diffusion in discrete energy 
space. Electron-atom collisions and radiative processes are taken into account. The possible ab­
sence of Maxwellian energy distribution of free electrons is taken into account. Results of concrete 
calculations are presented and compared with the experiments. 

THE kinetics of ionization and recombination in a 
partially ionized plasma has a number of distinguishing 
features, which are closely connected with the multi­
level structure of the atoms and molecules. The recom­
bining electron, before producing an atom in the ground 
state, passes through a set of excitation states. The 
recombination rate is determined by the time of pas­
sage through these states, and is therefore closely con­
nected with the distribution of the atoms over the ener­
gy levels. In final analysis, the recombination rate is a 
a complicated function of the concentration of the light 
and heavy particles, their energy distributions (the 
Maxwellian electron energy distribution may be vio­
lated), and by the condition for the yield of the radia­
tion. All the foregoing applies equally well to ioniza­
tion. 

The rates of ionization and recombination are cus­
tomarily represented as the product of the electron 
density, raised to a certain power, and an appropriate 
coefficient. However, owing to the dependence of these 
coefficients on a number of parameters, it is prefer­
able to speak of ionization and recombination functions 
(IF and RF). The IF and RF can be determined by 
solving a system of balance equations1> written out for 
each of the excited states of the atom. This system 
should be solved simultaneously with the kinetic equa­
tion for the electrons. 

Starting with the work of Bates and co-workers/ 4 J 

a numerical method of solving this problem has gained 
wide acceptance, and has made it possible to compile 
tables of IF and RF for certain elements and for a lim­
ited range of parameters.[ 4 - 6 J It is important, however, 
that the electron energy distribution was assumed to be 
Maxwellian, and the emission yield was considered only 
in two limiting cases. 

On the other hand, it was noted that although the lev­
els in the atoms are not equidistantly located, the prob­
abilities of the transitions between the energetically 
close levels are the largest. In this case, the recombi­
nation can be regarded as a certain slow probabilistic 
process of the Brownian-motion type in energy space, 

1>The balance equation follows, under certain assumptions, from a 
more rigorous analysis of this problem, see, for example, [ 1•2 ]. Among 
the latest papers, mention should be made of ( 3 ]. 

and a suitable Fokker-Planck equation can be written, 
with the discrete spectrum replaced by a continuous 
one. [ 7 - 9 J The latter circumstance has narrowed down 
the limits of applicability of the indicated approach. 

In this paper we use a modified diffusion approxima­
tion, [ 10• 111 in which the real discrete structure of the 
energy spectrum is retained. This calls for the deriva­
tion and solution of a corresponding Fokker-Planck 
finite-difference equation. Account is taken of the col­
lision and radiative processes. It is assumed that the 
Maxwellian distribution for the electrons is violated. 
Allowance for the discreteness makes it possible to 
consider not only recombination but also ionization, and 
the limits of the analysis of recombination in this case 
are greatly broadened. General expressions are ob­
tained for the IF and RF, as well as approximation for­
mulas. The connection between the IF and RF is dis­
cussed. Results of calculations are presented for a 
number of atoms and are compared with the experimen­
tal data. 

FUNDAMENTAL EQUATIONS 

We write the rate of change of the electron concen­
tration in the form 

(1) 

where {3 and 0! are functions of the ionization andre­
combination/> vJ takes into account the transport phe­
nomena. We are interested below only in volume proc­
esses (0! and {3). 

The functions 0! and {3 should be determined from 
the solution of the system of nonstationary particle­
balance equations for each of the levels of the atom. 
However, the problem can be greatly simplified by us­
ing the condition that the excited states are quasista­
tionary. The point is, that in a wide range of conditions, 
the following conditions are satisfied in the plasma 

~ nk<ne,nt 
k>i 

(nk-concentration of the atoms in the state k). Then 
the concentration of the atoms in the excited states will 

2>The recombination rate is sometimes assumed equal to a*ne2 • 

Then a* = nea. 
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have time to adjust itself to relatively slow changes of 
ne and n1• 

The problem can be solved quantitatively by compar­
ing the ionization relaxation time T 1e and the relaxation 
time Tk of the individual excited states. Estimates per­
formed in [ 5' 111 have shown that T 1e >> Tk (k ;;=: 2) in a 
wide range of conditions. It is clear that when t >> Tk 
it is possible to use the quasistationarity approximation. 
Quasistationarity means that at each given instant of 
time, in all cross sections of energy space, there is one 
and the same particle flux j, which determines the IF 
and RF. The assumption of quasistationary development 
of ionization or recombination makes it possible to cal­
culate j in the stationary approximation. 

In [lO, 111 we investigated the distribution of the atoms 
over the levels and of the electrons over the energies in 
a stationary nonequilibrium plasma. The processes in 
the discrete energy spectrum were described with the 
aid of a Fokker-Planck finite-difference equation. The 
processes in the energy continuum were described with 
the aid of a differential Fokker-Planck equation. Ac­
count was taken of the influence of the inelastic electron­
atom collisions on the free-electron distribution, as 
well as of the reaction of the non-Maxwellian behavior 
on the distribution over the excited states. It turned out 
that the final results can be represented in the form of 
formulas that are obtained when account is taken of only 
transitions between neighboring energy levels (the 
single-quantum approximation). However, the probabil­
ities of these transitions differ from the single-quantum 
ones and are expressed in terms of moments that are 
characteristic of the diffusion approximation. Thus, for 
the transition k ....... k + 1, this effective probability is 
given by 

(zk, k+t) = (Ek-t -EHt)-1(E•- Ek+t)-1 ~ (wkn) (En- Ek) (En-Ek-t), 

n {2) 

where (wkn) is the probability of the k ....... n transition, 
averaged over the free-electron distribution. It is easy 
toseethat(zk k+ 1 )= (wk k+ 1 ) ongoingovertothe 
single-quantum approximation, and this quantity is pro­
portional to the mean square of the energy transferred 
by the electrons to the atoms on going over to a quasi­
continuous energy change. 

Moments of the type (2) can be calculated with the 
aid of the sum rules, making it possible to represent 
(zk k+ 1 ) 0 in the form 

' 

k;:;.. 2, (3) 

where ( )0 denotes averaging over the Maxwellian 
electron-energy distribution, and Ak is the so-called 
Coulomb logarithm for the bound states, a plot of which 
against ~Ek/Te is shown in Fig. 1. 

In the absence of strong external fields, the main fac­
tor violating the Maxwellian distribution may be the in­
elastic collisions with the nonuniformly populated atoms. 
This process is most appreciable in the high-energy 
region, where the frequency of the Maxwellizing colli­
sions may turn out to be insufficient. Formally this 

FIG. I. Plot of the Coulomb log­
arithm for bound states. 

m•~--~m~~---t~.o~~m~--,=u• 
T/AEK 

circumstance can be taken into account by replacing 
(z12 ) by (Zt2 )°F11 where 

1 l'1 +4c -1 
Ft= , 

c l'1 +4c+ 1 

(4) 

,\ is the Coulomb logarithm for the interelectron colli­
sions; these collisions are usually the main Maxwelliz­
ing factor.t 121 For k;=:2 we assume (zk k+ 1 ) 

0 ' = (zk,k+l) • 
The motion of the bound electron over the energy 

spectrum, resulting from the radiation acts, has a di­
rectional character and does not constitute diffusion. In 
the section of energy space between the levels k and 
k + 1, the flux due to the radiation processes can be ap­
proximately written in the form 

nk+ta:+l- n.•a•' = nk+t ~ ~ A;n- ne2 ::8 aek, {5) 
i~kn<k n<k 

where Ain is the probability of the spontaneous transi­
tion i ....... n, and O!ek is the probability of radiative re­
combination at the level k. It can be shown from (5) 
that for each level k the transitions k ....... i (i < k), k + 1 
....... k, and the radiative recombination have been taken 
into account accurately. In the presence of reabsorp­
tion, Ain in {5) is replaced by A'fn = Ain9in, where ein 
is the probability that the given photon will leave the 
plasma without absorption.[ 131 

Writing now the expression for the total flux j in the 
section of energy space between each pair of levels, we 
obtain the following system of coupled equations: 

j = nk(Zk, k+I)- nk+I ( (zk+I, •> + akR) - n.Za•'· 

Solving the equations and connecting the populations of 
the last of the discrete levels realized in the plasma 
with the electron concentration, we obtain expressions 
for the IF and RF:3 > 

II= ( n.Kc1Ilt ::8 s.) -t, 
k;;o.l 

R 

rr. = II ( 1 +. an+!Kn ) ' s.-l = (z •. HI) x.-trr., 
n;;.k (zn, n+l) Kn+t 

Kk = 2~;(g.nh3)-1(2nmT.)''• e-E.IT,, 

Ilk is a factor that takes into account the influence of 
the radiation yield on the population of the (k + 1) -st 

(7) 

3> At high temperatures, ionization by electrons from the ground state 
and electron-ion-electron recombination into this state may become no­
ticeable. These processes are not steplike. Their contribution must be 
summed with (6). 
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level. ~i is the partition function of the ion, and gk is 
the statistical weight of the level k. The energy Ek is 
reckoned from the continuum, n = ne + 6 nk is the 

k~1 
total number of heavy particles. 

This leads to a general relation between the IF and 
RF: 

~=aK1n[( 1+~ a~+,sk)n,r'. 
k;a.1 

(8) 

IONIZATION BY ELECTRON IMPACT AND THREE­
PARTICLE RECOMBINATION 

If radiative processes can be neglected, then 

a - ( ~ nn.Kk )-' - LJ ) , ~ = aK1n. 
k (zk, k+l 

{9) 

The detailed-balancing relation {3 = 0! K1n is valid also 
in the absence of a Maxwellian distribution, if due to in­
elastic electron-atom collisions (F 1 < 1). 

We simplify the expression for Q! by using the fact 
that all terms of the sum in {9) make equal contribu­
tions. This can be verified directly. However, it is suf­
ficient to recall the character of the distribution of the 
atoms over the excited states. [ 10• 113 The highly-excited 
levels are in relative equilibrium with the continuum. 
The low-lying levels are close to equilibrium with the 
ground state. Obviously, upon ionization (recombina­
tion), the bound electron rapidly passes through energy 
intervals corresponding to these groups of levels. As to 
the group of intermediate essentially-nonequilibrium 
states, it constitutes the "'bottleneck" for the flux in 
energy space. The passage through the bottleneck in 
fact determines the rate of the ionization (recombina­
tion). 

The position of the bottleneck E * can be estimated 
by using the approximate expression for the populations, 
obtained earlier in [ 103 , reffered to the equilibrium val­
ues of T e (yk = niJnk:, Ye = ne/n~): 

(Ek) [ (E') (Ek)] 4 C , y(Ek)=y(Et)X -;- +Y.' X - -x - , x(x)=-= J e-ttl•dt 
1. T. T. 3yn 0 ( 10) 

From the condition a')r /a E2 = 0 it follows that E* 
= 3Te/2. The lower limit of the bottleneck can be iden­
tified with the point where the derivative Cly /oE de­
creases by a factor e; this yields a value ~ 7T e/2. 

A. Low temperatures. The bottleneck falls in the 
region of strongly excited states, in which the discrete­
ness of the levels can be neglected. Going over in (9) 
from summation to integration, and assuming the ex­
cited states to be hydrogen-like, we obtain 

3n l'n m2 T 'I• ( E,) a-1 - X -
- 2h3e•A Ry''• • T. ' 

(11) 

A is the value of Akin the region of the bottleneck. We 
can assume 

A ~ 0.2; Ry = e•m I 2h'. 

The formula of the type (11) was obtained earlier in 
[ 93 , where the discreteness of the levels was neglected 
from the very outset. By stipulating that the difference 
between the neighboring levels in the bottleneck zone be 
smaller than Te, we can readily obtain a criterion for 
the validity of (11): 

2(3/ 2)''''/T./ Ry<ii!; 1. 

It is important that (11) does not depend on the type 
of the atom. This is due to the fact that the rate of the 
recombination (ionization) is determined by the passage 
through the highly-excited hydrogen-like states. 

B. High temperatures. The bottleneck is located in 
the energy interval (E1 - EJ. Retaining in {9) only the 
first term, we obtain 

(12) 

Formula (12) for {3 corresponds to the approximation 
of "immediate ionization" of the excited atoms that ap­
pear during the course of the relaxation. The ionization 
rate is determined by the excitation rate. A criterion 
for the applicability of {1~ is the inequality s1 
>> 6 Sk. Calculating I; Sk in the quasicontinuous 
k~2 k::::2 

approximation, we can write this inequality in the form 

2 A !J.E1 ( Ry )''• { E2 }[ I E2 )]-' ---·- exp -- F,x,- <ii!;i. 
3 A 1 T. T. T. T. 

It follows from {12) that when F 1 * 1 the IF and RF 
depend not only on the temperature but also on ne. In 
the limit of a strong non-Maxwellian distribution (F1 

<< 1), {3 is determined by the rate of the interelectron 
collisions for an electron with energy E = E1 - E2: 

2l'2n e•ne'J., { !J.E, } 
~= exp -- . 

T.ymT. Te 
(13) 

C. General case. We obtain an approximate formula 
applicable to the entire region of Te. To this end, we 
separate in the sum {9) the term with k = 1, and replace 
the remaining sum with an integral. We then obtain 

(14) 

This expression makes it possible to draw certain con­
clusions with respect to the dependence of Q! on the 
plasma composition. Thus, at low T e, as already noted, 
0! is the same for all the atoms. With increasing Te, 
the specific structure of the atom comes into play. Un­
der these conditions, Q! depends principally on the ratio 
~Jg1 and on the magnitude of the "gap" ~E1 • 

D. Results of calculations, comparison with experi­
ment. Figure 2 shows the results of the calculation of 
0! for the atoms H, Ar, He, N, K, and Cs. For each of 
them, the calculations were made both by the approxi­
mate formula (14) and by formula {9). In some cases 
{depending on the specific structure of the atom) we 
used both ( Zn n + 1 ) 0 calculated with the aid of the sum 
rules, and (zX:, n 71 )

0 obtained by using directly present­
ly known expehmental data on the transition probabili­
ties. In all cases, the simple formula (14) did not result 
in appreciable deviations from the more accurate val­
ues. It can be used to calculate IF and RF in plasmas of 
various composition under a wide range of conditions. 

The same figure shows the calculated data of Bates 
and co-workers[ 4 J for H, obtained by numerically solv­
ing the system of balance equations of the excited atoms. 
Although our calculations were performed by a differ­
ent method, on the whole the agreement is satisfactory. 
It is not so good in the region Te = {8 -16) x 103 o K. It is 
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FIG. 2. Coefficient of three-particle recombination as a function of 
Te for different atoms. !-Calculation of a for all atoms by formula (II); 
2, 3, 4, 5, 6, ?-calculation of a by formula (9) forK, Cs, N, H, He, and 
Ar, respectively; 8-calculation of a by formula ( 14) for H. 0 - calcula­
ted points of Bates et al. [4 1 . Experimental data: /:;. - for H (IS 1 , + - for 
He [Is I , 0 - for H [ 141 . 

important that it is precisely here that a is the most 
sensitive to the form of the cross section of the 1- 2 
transition at the threshold. This cross section was ob­
tained by Bates from Gryzinski, i.e., not in the same 
way as we did. Figure 2 shows also the experimental 
data from r 14 1, which are in fair agreement with the 
calculated ones. 

We proceed to discuss the dependence of a on the 
singularities of the structure of the atom. At Te 
< 3000° K we have a ""T~9/ 2 for all elements, as is 
well confirmed by numerous measurements made on 
H, He, and Cs atoms r 15- 17 l With increasing Te, devi­
ations from the T~9 /~ law set in. For atoms with a rel­
atively uniform level density (K, Cs), the Te9 / 2 law has, 
naturally, greater applicability. For He, which has the 
maximum gap t:;.Et> the deviation from Te9 / 2 begins 
much earlier (the case of Ar is discussed below). Hy­
drogen and nitrogen occupy an intermediate position. 

The specific structure of the atom is manifest not 
only in the value of AE1 • Formula (14) explains the 
practical coincidence of a for the pairs H, N and 
He, Ar. These atoms have close values of ~i/g1At-4 > 

IONIZATION AND RECOMBINATION FUNCTIONS 
WITH ALLOWANCE FOR RADIATION 

When the influence of the radiation yield is signifi­
cant, the calculation of a differs from that of (3, since 
these quantities depend differently on the electron con­
centration. In the presence of reabsorption, an addi­
tional difference is due to the influence of the linear 
dimensions of the plasma and other parameters that de­
termine the effective lifetimes. Allowance for all these 

4>In complicated atoms with splitting in I, it is convenient to com­
bine into one level groups of nearly-equal-energy states that are in rela­
tive equilibrium. For example, for nitrogen such a level, with k = I, is the 
state of the main configuration. 

effects is based on formulas (6). Let us discuss the ex­
treme cases and possible simplifications. 

If we decrease ne and by the same token increase 
the role of the radiation, then we obtain from (6) in the 
limit the so-called coefficient of "radiative recombina­
tion" 

a= (n.n)-•,:3 flgko (15) 

This approximation is valid if the following inequalities 
hold for the levels that contribute to :L;aek: 

k 

(16) 

The first inequality means that the excited atom is 
more likely to emit than to experience an inelastic col­
lision. The second inequality indicates that the "radia­
tive recombination" coefficient (15) must be larger un­
der these conditions than the "triple recombination" 
function calculated in the preceding section, multiplied 
by ne· 

If the inequalities (16) are reversed, the radiation 
yield becomes negligible, and we return to the formu­
las of the preceding section. In the intermediate condi­
tions there occurs the so-called "impact-radiation" 
recombination. We shall discuss its qualitative fea­
tures. 

The intensity of the radiative processes decreases 
rapidly with increasing k, and the intensity of the im­
pact processes increases. Therefore, the energy inter­
val can be broken up into two regions: Ek > ER, where 
the recombination is determined by the radiation, and 
Ek < ER, where collision processes predominate. 

Let us consider the case of low temperatures and let 
us estimate the influence of the radiation on a. Obvious­
ly, this influence is significant only if the level ER lies 
above t~e lower limit 7Te/2 of the bottleneck. By the 
same token, the length of the bottleneck decreases, as 
can be roughly estimated by modifying formula (11) in 
a natural manner: 

_ 1 3n. )'; m2 'I• ( E8 ) 

a = 2h3e•ARy'l• T. X To . (17) 

The value of ER can be determined from the condition 
ITER = 1. If we take into account the fact that the strong-

ly excited states are hydrogen-like, we can obtain the 
following approximate expression: 

ER~Ryn>( yne<A )'1', c,=(3-4)·10'0sec-1 • (18) 
RyymT.c1 

Inasmuch as the function x is continuous, it follows 
from (18) that at low temperatures, when ne is appre­
ciably decreased, the radiation does not influence a as 
strongly. The situation is different at high Te, when the 
radiation can exert a strong influence on a, and still not 
shift the bottleneck from the energy interval E1 - E2 • 

Then 

(19) 

With further decrease of ne, it is necessary to use the 
general expression, since 8 1 becomes comparable with 

L; Sk• 
k2:2 
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R(,cm 

FIG. 3. Dependence of aK1 /(Jon 
the parameter R~ for a mixture Ar + K. 
~ = nK/nAr, R-linear dimension of the 
system, which determines the radiation 
yield. Curves: 1-ne = 1012 , 2-JQ13, 
3-JQ14 cm·3. 

The radiation has entirely different effects on a. and 
(3. At high temperatures it has little effect on (3. Indeed, 
the factor IT1 in (19) drops out completely from the ex­
pression from {3 at high temperatures (when S 1 

>> I; Sk)• At low temperatUres, to the contrary, the 
k>l 

radiation has little effect on a., but it can radically alter 
{3. In fact, under these conditions 

(20) 

where a. is given by formula (17). Figure 3 shows the 
dependence of a.KJ/3, for a mixture of argon with po­
tassium on R~; R is the linear dimension of the plas­
ma and ~ is the ratio of the number of potassium atoms 
and the number of argon atoms. It follows from Fig. 3 
that 11 1 can reach quite large values, particularly for 
small ne. Naturally, the use of the detailed-balancing 
relation {3 = a.K1n is not valid under such conditions. 
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