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The stability of electroacoustic solitons is investigated in liquids with negative dielectric constant. It 
is shown that low-amplitude solitons are stable against small perturbations. 

J T has been shown earlierl1 J that the nonlinear interac­
tion between a high-frequency electromagnetic wave and 
density oscillations leads to the possibility of propaga­
tion of nonlinear electroacoustic waves in a medium with 
a negative dielectric constant E < 0; these are carried 
with the electromagnetic fields itself (in the linear ap­
proximation, propagation of these waves is not possible 
in such media). The simplest example of an electro­
acoustic wave in a medium characterized by E < 0 is a 
stationary individual wave (soliton). By analogy with 
other cases in which solitons appear, one expects that 
the latter should play an important role in the dynamics 
of nonstationary electroacoustic processes. 

In the present note we consider the stability of elec­
troacoustic solitons in fluids. We shall limit our inves­
tigation to low-amplitude solitons. Under these condi­
tions the basic equations for electroacoustic waves 
[cf. lll, Eqs. (2.24) and (3.7)] can be written in the form 

c ( a' ) 
Vt + Cs"\lx =- 2E:2 {a2)x + 0 E} , 

(a2)t + c,(a2)x= o( ;:.). 

(1) 

(2) 

(3) 

Here, v is the relative deviation of the fluid density p 
from the equilibrium value Po: v = (P - Po)/Po; E~ 
= 167Tc~/loEo/opoJ, cs is the acoustic velocity in the 
medium, Eo = E(w, Po) is the dielectric constant of the 
medium at equilibrium density Po (Eo < 0); a is .the am­
plitude of the electric field, (.fe = (1/2)[a(x, t)e-Iwt + c.c.] 

l,l2 = -w2e, f c2, y" = -eo/ J po8Eo f 8poJ. (4) 

The quantity 11-1 represents the penetration distance 
of an electromagnetic field in a medium characterized 
by E = Eo < 0 in the linear approximation, that is to say, 
the dimension of the skin depth. 

From Eqs. (1-3) we can obtain conservation rela­
tions for waves that damp at x - ± oo: 

(5) 

dd<Dt = 0, <ll = ~ S v• dx 
y" -00 ' 

(6) 

d "" 
dt ~ a2 dx = 0. (7) 

The relation in (5) has the meaning of mass conserva­
tion while those in (6) and (7) represent the conservation 

of elastic energy and electric energy respectively in 
the wave. 

The stationary solution of Eqs. (1)-(3), which des­
cribes a solitary wave, is of the form 

v{x, t) = -2y"sech2 Jl(x- wt), 

a(x, t) =a, sech Jl(x- wt), 

lZm = 2Ec{1- M) 'I'Y, 

(8) 

(9) 

(10) 

where M = w/cs is the electroacoustic Mach number, 
which is always smaller than unity. The condition that 
the amplitude be small, which is necessary if Eqs. (2) 
and (3) are to be valid, reduces to the form 1> 

1-M-% 1. (11) 

We now introduce a new variable z =tanh Jl(X- wt) 
and represent all quantities as functions of z and t; in 
these variables the soliton equation becomes 

II(s) = aml"1 - z2 , V(s) = -2y2 { 1 - z2). 

We now assume that a perturbation exists on the soliton 
background so that 

a(z, t) = am)"1- z2 [1 + q;{z, t)], (12) 

where cp(z, 0) « 1. Expressing 11 in terms of a by means 
of Eq. (1), we have 

I i'f l v = y2(1- z2) L --.--2 ' 
1 + q; J 

- d r d J L=(1-z2)-'-: (1-,.t)2-. 
dz L dz 

(13) 

(14) 

Taking account of the form of the operator L we can ex­
pand the perturbation cp(z, t) in Gegenbauer polynomials 
C:/2 (z) = dPn • /dz (Pn is the Legendre polyn~mi:l) which 
are characteristic functions of the operator L: LC:/2 

= -n(n + 3)C:/2 

(15) 
11.=0 

1 

an(l)=hn-1 ~ QJ(z,t)C~;" (z)(1-z2)dz, (16) 
-t 

hn = 2(n + 1) (n + 2)/{2n + 3). (17) 

Thus, the problem reduces to the investigation of the 
time behavior of a specified number of generalized co­
ordinates O!n(t) which characterize the perturbation. In 

llThe solution in (8)-(10) differs from the soliton solution obtained 
in [ 1 I on the basis of more exact equations (cf. Eqs. (3.19) -(3.21) of [ 1)) 

in the fact that 1-M2""' 2(1-M). 
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order to investigate this behavior we make use of the 
basic ideas of the Lyapunov method (cf. for example[21 ). 

In carrying out this procedure we consider the quantity 
<P, which is expressed as a functional of cp(z, t) by Eqs. 
(6) and (13). The increment o <P due to the perturbation 
of the soliton is 

i i 

6<D==<D{q;(z,t)}--<D{O} =4 ~ (1-,z2)<pl~q;dz+ ~ (1-z2)(Lq;)2dz. 

-i -i (18) 

Substituting (Hi) in (18) we have 

n=O 

The first two terms in this sum vanish so that o <P is a 
positive-definite quadratic form of the generalized co­
ordinates an(t) (n = 2, 3, ... ). Assuming that <P(t) is an 
integral of the motion and assuming that the initial per­
turbation is small, we find that o <P(t) = o <P(O) < E2 , 

where E is speeified beforehand to be a small number. 
It then follows that 

ez 
an2 (t) < , n ~ 2. (20) 

n(n + 3)[n(n + 3)- 4] hn 

Thus, the coefficients an(t) with n = 2, 3, ... remain 
small if they are small at the initial time. 

We now investigate the quantities a 0 (t) and a 1(t). 
Substituting Eqs. (12) and (15) in Eq. (7) we have 

~ Uzn (t) = ~ Uzn (0). 
n=O n=O 

It follows from Eq. (21) and (20) that 

ao(t) = ao(O) + O(e). 

Without loosin~: generality we can assume that 

ao(O) = 0, 

(21) 

(22) 

(23) 

because if this is not the case, as is evident from Eqs. 
(12) and (15) we would be considering the problem of 
stability of a soliton with amplitude am = am[1 + ao(O)] 
with the initial perturbation2 > 

iji(z, 0) = [<p(z, 0)- ao(0)]/[1 + a 0 (0)]. (24) 

2lwe would simultaneously have to redefine Z, taking Z = tanh J.L(X­
csMt). 

In order to obtain an equation that describes the 
variation of £l!!(t) we substitute Eqs. (12), (13) and (15) 
in Eq. (2) and expand both sides in Gegenbauer polynom­
ials. We then obtain the following system of equations 
for the quantity an(t): 

a;= - 2/3f.lC.,(1-M) (ao + 27/,az), 

. { n(n+i) 
n(n + 3)an =•- f1C8 (1- M) Un-i [4- (n -1) (n + 2)]--­

(2n + 1) 

(n+2J(n+3)} 
-ctn+d4-(n+1)(n+4)] (Zn+ 5) , 

n=2, 3, ... 

(25) 

(26) 

Attention is directed to the fact that Eq. (26) does not 
contain the quantities a 0 (t) and a 1(t), that is to say, this 
system of equations represents a closed system with 
respect to the parameters a 2 (t) and a 3 (t). Under these 
conditions the function <P defined by Eq. (6) is the 
Lyapunov function for the system in (26). 

It follows from Eqs. (20), (22), and (2 5) that 

da1 I dt :=::; O(e). (27) 

It follows from Eq. (27) that for sufficiently small values 
of E the characteristic time for a significant change in 
the coefficient a 1(t) will be much greater than the time 
in which terms that have been neglected in Eq. (1-3) 
become important. Thus, within the limits of the accur­
acy used here it can be assumed that an electroacoustic 
soliton of low amplitude is stable against small pertur­
bations. 
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