## STIMULATED SCATTERING OF LIGHT FROM THE SURFACE OF A HIGHLY VISCOUS LIQUID

## A. I. BOZHKOV and F. V. BUNKIN

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R.

Submitted December 10, 1968

Zh. Eksp. Teor. Fiz. 56, 1976-1978 (June, 1969)

Stimulated light scattering from the surface of a highly viscous liquid is analyzed theoretically. Stimulated light scattering in this case differs greatly from all other known types of stimulated scattering in that the Stokes and anti-Stokes frequency shifts of the scattered radiation depend on the intensity of the incident light. The instability threshold of capillary waves on the surface of a liquid is calculated.

 $S_{TIMULATED}$  scattering (SS) of light on the surface of a liquid was predicted theoretically in<sup>[1]</sup>. In the present work we have calculated the threshold intensity I<sub>0</sub> of the scattered light. This threshold determines the onset of capillary wave instability on the surface of a highly viscous liquid for which

$$2vq^2 \ll \Omega_0. \tag{1}$$

Here  $\nu = \eta/\rho$  is the kinematic viscosity,  $\rho$  is the density, and **q** is the wave vector of a capillary wave. The frequency  $\Omega_0$  is determined from the dispersion equation for capillary waves:

$$\Omega_0 = \left( \alpha q^3 / \rho \right)^{\frac{1}{2}} \tag{2}$$

where a is the coefficient of surface tension.

It is characteristic of SS on the surface of a lowviscosity liquid<sup>[1]</sup> that the frequencies of the capillary waves on which SS occurs (and therefore the frequencies  $\omega_0 \pm \Omega_0$  of the Stokes and anti-Stokes scattered components, where  $\omega_0$  is the incident light frequency) do not depend on the incident light intensity I up to a threshold I<sub>0</sub> but are determined from Eq. (2). The intensity I governs only the logarithmic decrement  $\gamma$  of the capillary wave:

$$\zeta \sim \exp[i(\mathbf{qr} - \Omega t)] = \exp(-\gamma t)\exp[i(\mathbf{qr} \pm \Omega_0 t)].$$

 $In^{[1]}$  the complex frequency  $\Omega$  is given by

$$\Omega = \pm \Omega_0 - i2\nu q^2 [1 \mp BI / (2\Omega_0 \rho \nu q^2)], \qquad (3)$$

where  $B = B(k_0, q, \Psi, \epsilon)$  is a certain function of only the incident light wave vector  $k_0$ , the capillary wave vector q, the incident light polarization  $\psi(\cos \psi = E_y / |E|)$ , and the dielectric constant  $\epsilon$  of the liquid.<sup>11</sup> The threshold value

$$I_0 = 2\eta q^2 \Omega_0 / |B| \tag{4}$$

corresponds to the condition  $\gamma = \text{Im } \Omega = 0$ .

In the present work we consider SS on the surface of a highly viscous liquid when

$$(\Omega_0 / 2\nu q^2)^2 < 0.145.$$
 (5)

Subject to (5) and without including the ponderomotive action of the radiation, the capillary wave frequency  $\Omega$  is purely imaginary  $(-i\Omega_0^2/2\nu q^2)$ ; this corresponds to exponentially damped motion of the liquid surface without time-dependent oscillations.<sup>[2,3]</sup> The spectrum of light scattered on the thermal fluctuations of this liquid surface contains only an unshifted component.<sup>[3]</sup>

The ponderomotive action of the field of an intense light wave on the surface of a highly viscous liquid can be taken into account in exactly the same way as this was done in<sup>[1]</sup> for the case of a low-viscosity liquid. Thus for arbitrary viscosity of the liquid and arbitrary polarization of the incident light we obtain the following characteristic equation determining the complex capillary wave frequency  $\Omega$ :

$$\Omega_0^2 + (2\nu q^2 - i\Omega)^2 + i\frac{2B}{\rho}I = (2\nu q^2)^2 \sqrt{1 - i\frac{\Omega}{\nu q^2}}$$
(6)

This equation differs from the usual characteristic equation for capillary waves in a viscous liquid<sup>[2]</sup> only by the presence of the last term on the left-hand side; this term includes the light intensity. Here  $B(k_0, q, \psi, \epsilon)$  is the same function as in (3). In the case

of an extremely viscous liquid, which we shall be considering henceforth, we have  $2\nu q^2 \gg \Omega_0$ , and the solution of (6) is<sup>2)</sup>

$$\Omega = \frac{BI}{\rho v q^2} - i \frac{\Omega_0^2}{2 v q^2} \left[ 1 - \frac{3}{2 \Omega_0^2} \left( \frac{BI}{\rho v q^2} \right)^2 \right].$$
(7)

The accompanying figure shows the real and imaginary parts (Re  $\Omega$  and Im  $\Omega$ ) of the frequency belonging to the capillary wave on which SS takes place, as functions of the light intensity I. The threshold intensity I<sub>0</sub>, determined from the condition Im  $\Omega = 0$ , is given by

$$I_0 = \gamma^{\overline{2}/3} \eta q^2 \Omega_0 / |B|. \tag{8}$$

The frequency of the excited capillary wave is  $BI_0/\rho\nu q^2 = \sqrt{2/3}\Omega_0$ . It is of interest to compare the thresholds for low- and high-viscosity liquids under identical conditions of excitation, i.e., identical values of  $\mathbf{k}_0$ ,  $\mathbf{q}$ , and  $\psi$ . If we assume here an identical dielectric constant  $\epsilon$  for both types of liquids, then the values of  $B(\mathbf{k}_0, \mathbf{q}, \psi, \epsilon)$  will also coincide. The ratio

<sup>&</sup>lt;sup>1)</sup>For the special case, considered in [<sup>1</sup>], of polarization perpendicular to the plane of incidence, we have  $B = (8\pi/c)q^2D$ , where D is determined from (5) of [<sup>1</sup>].

<sup>&</sup>lt;sup>2)</sup>The second root of (6) corresponds to extremely stronger damping of the wave and will therefore be disregarded.



of the thresholds obtained from (4) and (8) [with the indices (1) and (2) designating the low- and highviscosity liquid, respectively] will then be

$$\frac{I_{0}^{(2)}}{I_{0}^{(1)}} = \frac{1}{\sqrt{6}} \frac{\eta_{2}}{\eta_{1}} \left( \frac{\rho_{1}\alpha_{2}}{\rho_{2}\alpha_{1}} \right)^{t_{0}}.$$
 (9)

The SS effect on the surface of a highly viscous liquid is basically different from all other known forms of stimulated light scattering in that the frequency Re  $\Omega$  of the excited capillary wave does not depend on the wave vector **q** of this wave (as in SS on the surface of a low-viscosity liquid, or similarly in the case of Mandel'shtam-Brillouin SS). Equation (7) shows that the given frequency depends on the intensity I of the incident light.

In a given direction of observation (i.e., for given q) the following qualitative picture of the scattering appears. At low intensities I the scattered light spectrum contains, as already mentioned, only the unshifted line of width  $\Omega_0^2/2\nu q^2$ . With increasing I we

have the corresponding "running" capillary wave because of a real addition to the frequency, Re  $\Omega$ = BI/ $\rho\nu q^2$ . Then either a Stokes component ( $\omega_0$  + |Re  $\Omega$ |) or an anti-Stokes component ( $\omega_0$  + |Re  $\Omega$ |) appears depending on the direction of scattering (the sign of B). At the light intensity I<sub>1</sub> =  $\rho\Omega_0^2/2$  |B| the scattered line is shifted from  $\omega_0$  by a distance equal to its (previously given) width  $\Omega_0^2/2\nu q^2$ . With further increase of I this shift grows, but the width of the line decreases until it vanishes at I = I<sub>0</sub>, which corresponds to the onset of capillary wave instability. For I > I<sub>0</sub> a special quantitative analysis of SS is needed.

We conclude with a numerical estimate of the threshold  $I_0$ . When the incident light wave is polarized in the incident plane at the incident angle  $\theta = 80^{\circ}$ , with  $q \approx 10^3/\text{cm}^{-1}$ ,  $\Omega_0 \approx 10^5 \text{ sec}^{-1}$ ,  $k_0 \approx 10^5 \text{ cm}^{-1}$ , and  $\eta \approx 10$  poise, we have  $I_0 \approx 6 \times 10^8 \text{ W/cm}^2$ .

The authors wish to thank M. V. Fedorov for a discussion of this problem.

<sup>2</sup>V. G. Levich, Fiziko-khimicheskaya gidrodinamika (Physico-chemical Hydrodynamics), Fizmatgiz, 1959.

<sup>3</sup>R. H. Katyl and U. Ingard, Phys. Rev. Lett. 19, 64 (1967).

Translated by I. Emin 228

<sup>&</sup>lt;sup>1</sup> F. V. Bunkin, A. A. Samokhin, and M. V. Fedorov, ZhETF Pis. Red. 7, 431 (1968) [JETP Lett. 7, 337 (1968)].