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A new mechanism of resonance energy transfer between impurity atoms (or molecules) in a solid is 
considered. The excitation level of the impurity is assumed to be close to the exciton excitation band 
in the crystal matrix. It is shown that the transfer probability is Wda ~ RO! exp (-yR), where R is 
the distance between the impurities, Wda is calculated for one-dimensional and three-dimensional 
cases and for interstitial as well as substantial impurities. The physical basis for such a mechanism 
is delocalization of the wave function of the impurity excited state with decrease of t::. which is the 
difference between the excitation energies of the impurity and exciton. The probability W da as a 
function of t::. passes through a maximum. If the exciton band possesses several minima for k '* 0 
then interference terms from different minima enter Wda and for an ordered distribution of impuri
ties this may lead to a nonmonotonous dependence of the energy transfer rate on the impurity con
centration. If the exciton band is due to dipole-dipole interaction between the crystal atoms (mole
cules) then at large distances Wda ~ RCfa· The mechanism studied here may be especially effective 
in the case of triplet-triplet excitation transfer. 

1. INTRODUCTION 

RESONANT excitation transfer from one molecule to 
another plays an important role in the mechanism of 
luminescence quenching, in the absorption of light by 
impurities in condensed media, etc. Forster proposed 
a mechanism for resonant energy transfer from an ex
cited donor molecule to an acceptor molecule. [ 11 If the 
ground and excited states of the donor and acceptor mol
ecules are coupled by a dipole transition, then the ma
trix element of the excitation transfer from the donor D 
to the acceptor A turns out to be dD*DodAoA*/Rda,, 
where dD*Do and dAoA* are the matrix elements of 
the electric dipole moment for the transition of the do
nor D from the excited electronic state to the ground 
state and respectively of the acceptor A from the 
ground state to the excited state, and Rda is the dis
tance between the molecules D and A. Then the proba
bility of excitation transfer from D to A turns out to 
be 

(1) 

where 0! is a coefficient that can be calculated if the 
emission spectrum for the molecule D and the absorp
tion spectrum for A are known. If the matrix element 
of the dipole transition D or A is equal to zero, and 
only the probability of the electric quadrupole or mag
netic dipole transitions differs ftom zero, then the cor
responding probability is ~ 1/Rda_. [ 21 

In the cited papers, and in others devoted to reso
nant energy transfer between impurities in condensed 
media, the properties of the medium were taken into 
account only by introducing the static dielectric con
stant of the medium E. However, starting with the ex
perimental investigations of Robinson and co
workers[3' 41 on triplet-triplet energy transfer be
tween isotopically substituted impurities in solid ben-

zene (in [41 there are many references to papers pub
lished to data concerning this question), it has become 
clear that allowance for the exciton excitation band of 
the solvent crystal, which is closely adjacent to the ex
cited levels of the impurities, changes radically the 
character of the energy transfer. In these experiments, 
the shift of the triplet level of the impurity relative to 
the level of the solvent molecule is t::. >> E0 , where E0 

is the width of the triplet electronic band. The probabil
ity of energy transfer is then W ~ (E 0/ t::..) exp <Rcta/a), 
where a is the interatomic distance in the crystal. An 
exact result was obtained in this case only for a one
dimensional chain. Energy transfer in a one-dimen
sional system (polymer) for interstitial impurities, 
when the interaction between the impurity molecules 
and the polymer molecules is V << t::., was considered 
theoretically in [ 51 • The calculation was based on per
turbation theory in terms of the small parameter V / t::.. 
The energy transfer probability was then found to be 
W ~ exp ( -YRcta), where y is a coefficient that depends 
strongly on the arrangement of the energy levels of the 
impurities and of the solvent substance. 

In the case of a three-dimensional crystal, the ex
ponential dependence of the excitation-transfer proba
bility on the distance between impurities is obtained 
only if the interaction between the atoms of the crystal, 
leading to the presence of the exciton band, is of the 
short-range type (excitons with short-range action). In 
the case of dipole-dipole excitons at larger distances, 
W ~ O!R(i~, where the coefficient 0! is strongly aniso
tropic and depends on the characteristics of the exciton 
band. 

In this paper we present an exact solution of the 
problem of energy transfer in both the one-dimensional 
and three-dimensional cases, for interstitial and substitu
tional impurities with t::. < E0 • This inequality is fre
quently satisfied under experimental conditions (see, for 
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example, [ 61 ), and it is precisely in this case that the 
investigated energy-transfer mechanism is most effec
tive. 

2. SYSTEM HAMILTONIAN. ENERGY TRANSFER 
MATRIX ELEMENT 

We are considering the following system: atom1 > of 
the main substance situated at the crystal-lattice sites, 
a donor atom D, and an acceptor atom A. As will be 
shown below, the exponential character of the depend
ence of the excitation-transfer probability on the dis
tance between the donor and acceptor atoms does not 
depend on whether the impurities are of the interstitial 
or of the substitutional type, all that changes is the 
method of calculating the constants. We write down the 
Hamiltonian of the system with interstitial impurities in 
the second-quantization representation: 

Je = ~ Ekbk +bk + edbd+bd + eaba +ba + :5; {V d (k) bk +bd 
k k 

(2) 

Here Ek is the exciton energy reckoned from the 
ground (electronically unexcited) state of the crystal, 
the summation over the wave vector k is within the 
limits of the fi.rst Brillouin zone, Ed and Ea are the 
excitation energies of the donor and of the acceptor 
reckoned from the ground states of the corresponding 
atoms, bk and bk are the operators of creation and an
nihilation of the excited state of the crystal, bd_, bd, and 
b~, ba are the operators of creation and annihilation of 
the excited states of the donor and acceptor, respec
tively. The vacuum wave function is assumed to be the 
wave function of the ground state of the system i'0 

= <P0 C.OctpC.Oao· The wave function of the exciton is then 
ilk = bk i'0 ), and the wave function of the excited state 
of the donor (or acceptor) is 'lid = bd I il0 ) ('l!a = b; I i'0)). 

The program of the subsequent analysis is as fol
lows: we find the distribution of the energy levels of 
the impurity atoms due to the interaction via the exci
tons. This enables us to find the matrix element of the 
excitation transfer from the donor to the acceptor, and 
then also the total transfer probability. 

We call attention to the fact that Ed and Ea in for
mula (2) are not observable quantities. Indeed, we have 
retained in (2) only the matrix elements of the interac
tion between the impurity atoms and the atoms of the 
main substance, of the type (i'kiVIi'd), i.e., those con
necting the exc:ited states of the impurities and of the 
crystal. On tpe other hand, all the "diagonal" matrix 
elements of V , which connect the wave functions of the 
crystal only, or else of the impurity only, are included 
in the zeroth Hamiltonian, the diagonalization of which 
leads to the first three terms of the right side of for
mula (2). But whereas a local perturbation leaves the 
quasicontinuous spectrum in the excitation band of the 
crystal practically unchanged, the levels Ed and Ea can 
differ greatly from the excitation levels of the isolated 
atoms, without being at the same time excitation levels 
of the impurity atoms in the crystal, so that a part of 
the interaction with the crystal atoms (the last term in 

Owe say "atoms" for simplicity, but these can be either atoms or 
molecules. 

the right side of .Eq. (2)) is not taken into account in 
their calculation. However, we shall show below that 
the final expression for the energy transfer probability 
will contain the true excitation energies of the impurity 
atoms in the crystal. 

Let us examine in greater detail the structure of the 
expression 

(3) 

The operator V d is the operator of the Coulomb inter
action of the valence electrons of the donor atom with 
the valence electrons of the crystal atoms: 

A e' 
vd = ~ L; -;---~ 

; i lr;-r;l (4) 

where the index i pertains to the electrons of the donor 
atom, and j to the crystal electrons. That part of the 
operator V d• which leads to the transfer of excitation, 
can be written as the sum of different multipole terms 
and of the exchange interaction (see, for example, [ 71 ). 

Retaining from among the multipole terms only the 
dipole-dipole interaction (the higher multipole terms, 
being short-range, can be effectively included in the ex
change term), we obtain 

1 ( • )R '2 3( •R ') ( R ') 
Vd(k) = -=exp(ikRd) ~ exp(ikRm') l1d 11 m - l1d m 11 m 

fN 'Rm' R,,/5 

1 1 + -=exp(ikR,) Vex= -=exp(ikRd) vd(k), (5) 
YN YN 

where Rfn = Rm- Rct, P.d and p. are the matrix ele
ments of the dipole transition in the impurity atom and 
in the crystal, respectively, Vex is the exchange inte
gral, Rs is the radius vector of the atom closest to the 
impurity, and is assumed approximately equal to Rct, 
and N is the number of atoms in the sample. 

We now proceed to determine the exact energy levels 
of the system. We seek a wave function that diagonalizes 
the Hamiltonian (2) in the form 

qr = ~ akbk+l'l'o) + adbd+l'l'v) + aab+ai'I'o). (6) 
k 

We then obtain in the usual manner the following system 
of equations for the determination of the energy levels 
of the system and of the coefficients ak, ad, and aa: 

ak(ek- E) + adVd(k) + a,Va(k) = 0, 

~ akvd·(k)+ad(ed-E)= 0, 
k 

~ akva·(k)+ aa(ea -E)= 0. 
k 

(7) 

Expressing O!k with the aid of the first equation (7) in 
terms of O!d and aa, and substituting in the second and 
third equations, we obtain a system of equations: 

Equating the determinant of the system (8) to zero, we 
obtain an equation for the eigenvalues of E. We are in
terested only in the energy level outside the limits of 
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the exciton band, which is interpreted as the impurity 
excitation level Ect (or Ea). 

We call attention to the fact that by equating to zero 
the expression in the square brackets in the first or 
second equations of (8), we obtain an equation for the 
determination of the experimentally observed impurity 
level Ed in the case of large dilution, for only in such 
a case is it possible to consider a single impurity atom. 
Let the impurity level lie below the bottom of the exci
ton band. The largest contribution to the sums in (8) 
will obviously be made by the terms having Ek near the 
bottom of the band. Assuming that the change of the ex
citation energy of the impurity atom due to the interac
tion with the other impurity atom is 

IIIEdi"""IEd-Ell ~ IEl-e~~.l, (9) 

we can expand the sums in the square brackets of (8) in 
terms of the small quantity llEct/(Ed- e:IJ. It is then 
possible to put in the remaining sums Ed = Ed, since 
these sums themselves, as will be shown below, are 
small. We assume also that Ed = Ea. This simplifies 
the derivations without affecting the magnitude of the 
calculated excitation-transition matrix element. Owing 
to the interaction via the excitons, the doubly-degener
ate impurity level (either the donor or the acceptor is 
excited) is split. Taking (9) into account and equating to 
zero the determinant of the system (8) we obtain for the 
splitting ll Ect 

I11Edl=2[1+ ~ 1Vd(k)l2 J-'/,[1+2; 1Va(k)l2 ]-'/, 
k (Ed- ek) 2 k (Ea- ek) 2 

I 2; Vd"(k) V.(k) I. (10) 
k Ed- Ek 

On the other hand, if there is some interaction t- that 
leads to the transition of the excitation from a donor to 
an acceptor, then the matrix element of the transition 
is 

lvdal""" l<qldolj)aeTvl<pao<jlde)l = 1/2IIIEdl· (11) 

Substituting (10) in (11), we obtain for the matrix ele
ment of the transition 

- [ "' I Vd(k) 12 ]-'/,[ 1 "' jV.,(k) 12 ]-'/• 
lvdal- 1 + £J (E _ )• + £J (E _ )2 

k a ek t a e11. 

(12) 

The dependence of lvdal on the distance Rcta is de
termined principally by the energy spectrum in the ex
citon band near the minimum of the band (if Ed lies be
low the exciton band), or near the maximum (if Ed lies 
above the exciton band). As will be shown in the next 
section, if e:(k) has no singularities at the minimum of 
the band, then Vcta "' exp ( -YRcta/2). The exponential 
character of the dependence of Vda on Rcta is due to 
the last factor in the right side of (12), and the closer 
the excitation impurity level to the exciton band, the 
smaller y. The physical reason for this dependence is 
as follows: 

When Ed approaches E:k, the excitation becomes 
more and more delocalized, and spreads over the 
closely-lying atoms of the host matrix. This can be 
readily verified by calculating a wave function of type 
(6) for one impurity atom. Such a "swelling" of the 

wave function of the excited state leads to the so-called 
Rashba effect, namely a sharp increase of the coeffi
cient of light absorption by the impurity when the im
purity excitation energy approaches the exciton band of 
the crystal. [ 8 • 9 l In our case, the "swelling" of the 
wave function of the excited state of the donor leads 
its overlap with the unexcited wave function of the ac
ceptor, and increases the excitation transition probabil
ity. However, the first two factors in (12) decrease 
with decreasing I Ed- Ekl, and this decreases Vda· The 
reason is that as the wave function ild "swells out" its 
amplitude near the acceptor atom may decrease, since 
the region where ild is significantly different from 
zero (R ~ 1/y) increases, and >ltd is normalized to 
unity: Ji>Itdl2 dR = 1. Therefore the probability of exci
tation transfer as a function of I Ed- e:ki passes through 
a maximum. 

In the case of a dipole-dipole interaction between the 
crystal atoms (three-dimensional case), Ek has a singu
larity at k = 0,[7l due to the appearance of a long-range 
character of the interaction, leading to the presence of 
an exciton. Then vda in (12) depends on Rcta in a much 
more complicated manner, and at large distances we 
get Vcta "'Rdi. 

3. EXCITATION TRANSFER VIA EXCITONS WITH 
SHORT-RANGE ACTION 

We now proceed to the calculation of Vda by means 
of formula (12) in those cases when the interaction that 
leads to the appearance of the exciton band is short
range. We consider the one-dimensional and three
dimensional cases. 

In the one-dimensional case (physical realization-a 
polymer chain) it is reasonable to confine oneself only 
to the nearest-neighbor interaction, both in determining 
the exciton-band structure and in the calculation of the 
interaction between the impurity and the polymer links. 

Then 

Bk =Eo- eocos(kd), (13) 

where 2e: 0 is the width of the exciton band, -rr/d :s; k 
:s; rr/d, d-period of the one-dimensional structure (pol
ymer), and 

Va(k)=~eikR•va, V.,(k)= ~eikR•Va, (14) 
iN iN 

where Vd a is the term in (5) corresponding to the pol
ymer linlt closest to the impurity. Replacing in (12) 
summation over k by integration and assuming 

eo>·~, (15) 

where D. = Eo - e: 0 - Ect is the energy difference between 
the bottom of the exciton band and the impurity level, 
we obtain, in accordance with (12), 

Ivai Ivai [ lval 2 ]-'/'[ lva2 l ]-'/• 
I Vda I = i2e~ 1 + 2 i2 eo'"~''• 1 + 2-i-='-2-'eo'-',,.~'--.,-. 

><:•exp{- R;• i_2ll_/_eo}. (16) 

If vd and vd are sufficiently large, 

(17) 

we obtain for vda the simple expression 
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(18) 

i.e., the probability of excitation transfer does not de
pend at all on the character of the interaction va and 
Vd (provided, however, that (17) is satisfied). In the 
case of small va and vd 

(19) 

we obtain for lvdal 

(20) 

In the three-dimensional case, to describe the 
structure of the exciton band we confine ourselves to 
the effective-mass approximation of the exciton near 
the bottom of the band. This approximation is physical
ly justified if the condition (15) is satisfied, since the 
integrals in (12) contain only those exciton states, 
whose energies are close to the bottom of the band. 
Near the bottom of the band (kmin = ko) 

f12 
Ek=Ek,+ ~ 2(k-ko),,_2, 

a=x, y, z l!ct 
(21) 

where Jl.a are the principal values of the exciton effec
tive-mass tensor. Using (15), we can extend the inte
gration with respect to k in (12) to k = ""• and we then 
obtain 

Jvdal= [t +~ ~· (fl.ixfliyfliz)'" Jvd(ko;) J2]-'" 
2 "'/2 :rtfl3 i /';.;'1· 

X [1+-~- ~· (flixfliyfl;,)'i• Jva(ko;)J2)-''• 
2 "'/2 nh3 1 /';.1 'I• 

Q I ~ , Vd'(ko;)va(ko;) , 1 
X ,, ~ (flixf.tiyfl;,) '' exp( -R; )exp(iko;Rda) , 

,2 nli3 . R;' 
' (22) 

where n is the volume of the unit cell of the crystal, 
the sum over i is the sum over all the minima of the 
exciton band, '~i = E:ko. -Ed, 

1 

Rl = 111J'1•"'/Xda2 flix + Yda2 fliy + Zda2fJ,iz, (23) 

Xcta, Y da• and Zcta are the projections of R da on the 
coordinate axes, chosen in such a way that the effective
mass tensor is diagonal close to the i-th minimum. 
Formula (22) is difficult to interpret. If all the ai are 
identical ( ai = a), the effective mass is isotropic ( IJ.ix 
= JJ.iy = Jl.iz = }J., Vd, a(koi) are the same for all koi. and 
we assume that the inequality (17) is satisfied (in this 
case E:0 ::::::1i2/JJ.U2 13), we obtain 

Jvdal=·~"f/';. __!_I~ eik,.R•·I-1-exp{-,Rda l 2fl/';.} (24) 
ffl n 1 Rda 1i 

where n is the number of minima of the exciton band. 
We call attention to the fact that if there are several 

minima in the exciton band, the contributions from them 
interfere (the sum in the expression (24)). vda may 
vanish at certain values of Rcta. Thus, if there are two 
minima, such that ko1 = -k 02 = ko, then 

*I~ e'klliRda I= J cos (koRda) I. 

At values of Rcta such that (koRcta) = (2Z + 1)7T/2, we get 
vda = 0. If the impurities are disposed in the crystal in 

an orderly manner, i.e., if llRcta the average spread of 
the distances between the neighboring impurity atoms 
satisfies the condition liRcta < 7T/2ko, then the presence 
of such an interference can lead to a nonmonotonic de
pendence of the excitation transfer probability on the 
impurity density. The width of the impurity excitation 
band (when there is only one species of impurities) is 
also determined by formula (24). Then the width of the 
band as a function of the impurity density may have os
cillations. 

So far we have considered interstitial impurities. In 
the case of substitutional impurities, the physical rea
sons for the appearance of an excitation transfer prob
ability that is exponentially dependent on the distance 
are the same as given above, but the mathematical ap
proach is somewhat different. We present the results 
for the case when the impurity atom differs from the 
crystal atoms only in the magnitude of the excitation 
energy; the interaction between the impurity and the 
neighboring atoms is the same as for the atoms of the 
host matrix. It is easily seen that the Hamiltonian of 
the system then takes, in lieu of (2), the form[ BJ 

~ = ~ ekbk+bk + /';.e:l b:~+ b:~ +/';.e. b,.+ba, 
k 

where aE:d is the difference between the excitation en
ergies of the donor and crystal free atoms, aE:a is the 
same for the acceptor. Assuming the inequality (9) to 
be satisfied, we obtain for the one-dimensional case the 
result (18), and for the three-dimensional case, in lieu 
of (22), 

lvdol= 21 ~ (f.li• J.liy f.liz) .,, e~~:' exp(iko; Rta) I [ ~ (f.lix f.liy f.liz)'!. /';.;-~' r·. 
! I ~~ 

If all the minima of the exciton band are the same, then 
vda is determined by formula (24). Thus, in cases of 
practical interest (the satisfaction of the inequality (17), 
i.e., not too weak an interaction between the impurity 
and crystal atoms, and not too large a gap a, when vda 
is not too small) the excitation transfer probability does 
not depend on whether we are dealing with substitutional 
or interstitial impurities. 

So far we have disregarded direct interaction Vda be
tween the atoms D and A; if this interaction exists, it 
has a multipole character (since Rda is large). If Rcta 
i.S so large that the exponential term in Yda becomes 
smaller than the power-law term due to Vda• then it is 
easy to show that 

vd•=[1+ ::8 lv:~(k)J2 J-'''[1+~ jv.(k)J2_J-'"w,.J2. (26) 
k (E:~- Ek) 2 k (Ea- ek) 2 

Only in the case of a weak interaction of the impurity 
atoms with the crystal atoms (19) do we have Vda 
:::::: IV da I/ 2 l but in the case of a strong interaction be
tween the impurity and the crystal (inequality (17)), the 
transfer by means of the Forster-Dexter mechanism 
decreases appreciably when a<< € 0 • Assuming vd, va 
:::::: € 0 , we get for vda 

(27) 

4. EXCITATION TRANSFER VIA DIPOLE-DIPOLE 
EXCITONS 

We now consider the three-dimensional case, when 
the excitation level of the impurity is close to the di-
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pole-dipole exciton band. Then E(k) has a singularity 
at k = 0, i.e., when k- 0 the value of the energy E:(k) 
depends on the direction of k. Near k = 0, the function 
E (k) can be represented as a sum of a part that is regu
lar when k = O, a part quadratic in k, and an irregular 
part that depends only on the angles 13 and cp that spec
ify the direction of k: l 10 l 

(28) 

where E is a parameter with the dimension of energy, 
and as a rule E ~Eo is the width of the band. (To sim
plify the derivations, we shall henceforth assume that 

-1 -1, ) 
lla(3 = ll u a(3 • 

Let us consider for concreteness a substitutional im
purity. Then 

lvdal= I ~dkexp(ikRda)l11+e(k)]-1 1 [ ~dk[11+e(k)]-•r (29) 

The dependence of Vcta on Rcta is determined by the in
tegral I in the numerator of (29). If we neglect the 
terms that decrease exponentially with increasing Rda. 
then we can show that after integration with respect to 
k the integral I reduces to 

+i 2.rr. 

I= _1t_ \ dx I d<p {a1(x,<p)exp[-a1(x,q>)Rdalt1J- a,exp[-a2RialtiJ}; 2 • J 
_, 0 (30) 

where 

130 and cp0 are the spherical angles of Rda· 
The integral (30) cannot be evaluated exactly. How

ever, if we go over to integration variables x and t, 
then we can readily see that the expansion of I in pow
ers of Rcta begins with Rct~· In the general case we ob
tain for this first term of the asymptotic expansion of 
v da in terms of Rda the expression 

1 h'e';, [ 1e + & + 1f]-' I Vda I= ------ In-'--=--
Ria3 12 ltf.!';, 111 

X 1r dr[3 a,"(x,t) - a,''(x,t) J (1-r2)-'/'l· (32) 
_, a,'(x,t) a,3 (x,t) 1~o 

Here a1 is the function defined by (31), but with varia
bles x and cp replaced by x, t and x = ,; (1 - x~) (1 - t2) 

+ txo, 
a,_ da1(x, t) 

1 - dt ' 
a"_ d2a1 (x; t)_ 

1 - dt2 . 

Let us consider a concrete example. Let the crystal 
contain one atom per unit cell and let the excited level 
of the crystal atoms, causing the exciton band, be nonde
generate. Tbenl !OJ 

/(fJ, <p) = cos2 fJ, (33) 

where 13 is the angle between k and the dipole moment 
of the transition. We then obtain for parallel transfer 
(13 0 = O) 

and for perpendicular transfer ( 13 0 = rr /2) 

1 h'E';, [ 1e+ & +1P'J-1 1 
Via= 212 f.!''• 1'.2 ( 1 + €/ 11 )'/' ln l' A Ria 3 • ( 3 5) 

The power-law dependence of vda on Rda is valid 
at distances Rda >> d.JE;j'i:, where d is the crystal
lattice period. When Rda ::, d,(EJA, formula (24) holds 
true, but since the argument of the exponential is ::, 1, 
vda is practically constant at these distances. The fact 
that at large distances Vda ~ R& in the case of a di
pole-dipole exciton band has a simple physical meaning. 
So long as we have dealt with short-range action, the 
excitation transfer was due to the overlap of the "blown 
up" wave functions and the acceptor, and since the wave 
functions decrease exponentially with increasing dis
tance, v da also had an exponential dependence on Rda· 
The "blown up" wave function of the impurity contains, 
with a large weight, excited states of the crystal atoms 
that lie close to the impurity. If the overlap is small, 
then the presence of the dipole-dipole interaction be
tween the crystal atoms makes possible excitation 
transfer between the impurities via the dipole-dipole 
mechanism. The number of crystal atoms whose ex
cited states enter in the "blown up" impurity function 
increases with decreasing ~. Therefore the matrix ele
ment of the dipole-dipole transition increases with de
creasing ~ (see (34) and (3 5)). 

In the case of substitutional impurities, the interac
tion of which with the crystal atoms is large (17), for
mula (32) is valid. But if the interaction is small (19), 
then 

2n I +i ( a 12 a " I Via=lvival-- ~dr 3-1 ~ --'-.) (1-r2)-'h. (36) 
Raa3 _1 a11t at'~ 

The calculations in this section are valid only when 
Rcta < A., where A. is the wavelength of the electromag
netic radiation, corresponding to the excitation of the 
exciton. Indeed, the decisive values in the calculation of 
I are k ~ R~. When k < A.-\ it is necessary to take 
into account in the calculation of the exciton band also 
the delayed interaction.[? 10 l Thus, Eqs. (32), (34), and 
(3 5) are valid only when Rda < A., when I is determined 
by E:(k) at k ~ Rct~ >A. - 1. Since A. ~ 103 A, formulas 
(32)-(36) are valid for all practically interesting appli
cations (impurity concentration> 1015 cm-3 ). 

5, CALCULATION OF THE TRANSFER 
PROBABILITY 

We proceed now to calculate the probability of exci
tation transfer from the donor to the acceptor. We 
make the assumption, which is almost always satisfied 
in experiments, that the rate of excitation transfer with 
a given energy Ed is much smaller than the rate of es
tablishment of the equilibrium populations over all vi
brational states of the given electronic level, owing to 
the interaction with the lattice phonons. l 2 l Thus, no 
matter how the excited state of the donor is obtained, 
we should average over all the possible energies of the 
donor transition from the excited to the ground elec
tronic state (at the given temperature) and over all the 
possible energies of the acceptor transition from the 
ground electronic state to the excited state. The accep-
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tor has excited states with energies lower than those of 
the donor. Therefore the acceptor atom, once excited, 
goes over very rapidly (owing to the interaction with 
the phonons) to these lower states, and if the tempera
ture is sufficiently low, the population of the acceptor 
excited states with higher energies is close to zero. We 
can therefore disregard the inverse transition from the 
acceptor to the donor. Then, using the procedure de
scribed in r 2 J, we obtain the total transition probability 

(37) 

where Pd(.:l) and Pa(.:l) are the numbers of transitions 
produced when the donor becomes deactivated and the 
acceptor becomes excited, respectively, per unit energy 
interval. 

To make practical use of (37), it is necessary to 
know Pd(.:l) and Pa(.:l). However, Pd(.:l) and Pa(.:l) can
not be determined directly from experiment. The ob
served donor emission intensity or acceptor absorption 
coefficient at a definite frequency depend not only on 
Pd(.:l) and Pa(.:l)l, but also on the oscillator strengths of 
the corresponding transitions. Since at small values of 
.:l an important role is played in the absorption and 
emission intensities by the solvent parameters (in ac
cordance with the Rashba effect), the determination of 
Pd (.:l) and Pa (.:l) from the spectral intensities of the ab
sorption and emission becomes even more difficult. In 
order of magnitude we have 

pa(.!l) ~ 1/llE/m, Pa(li) ~ 1/llE :bs, (38) 

where 6E~m and 6~bs are the characteristic energy 
widths of the donor emission band and of the acceptor 
absorption band, respectively. Expressions (38) can be 
substituted in (37) if the edges of the donor emission 
band and the acceptor absorption band are weakly dif
fuse, i.e., Vda should change little in the frequency re
gion 6w in which the absorption or emission intensity 
changes in order of magnitude. From (24) we can ob
tain 

(39) 

where c is the relative impurity concentration. A sim
ilar inequality should be satisfied also by the diffuse
ness of the lower edge of the exciton absorption band, 
in order to be able to determine the quantity .:l. If (39) 
is not satisfied, then an exact calculation of Wda by 
means of (37) calls for exact knowledge of the behavior 
of Pd (.:l) and Pa(.:l). 

If (39) is satisfied, then formula (37) can be rewrit
ten in the form 

(40) 

Here .:lmin and .~max are the energy distances from the 
exciton absorption-band edge to the limits of the overlap 
of the donor emission band and the acceptor absorption 
band, and C is a coefficient of the order of unity. In the 
one-dimensional case, substituting (22) in (40), putting 
2V2(R/d)(.:lmin/E0) 112 > 5, and assuming that .:lmax=oo, 
we obtain 

W = C4 (2n'~(_!_i_)'!, li%;,neb' ex {- 2 ,r2.Raa (li.min)''-~_(41 ) 
da 1i R •E" 'E'" p r d e J 

da v emu abs o 

In the three-dimensional case, under the same assump
tions, we obtain 

Wd = C ,";-1i' a:r;,n \ exp {- 2 y'2 R~a Y f!li.min}. (41a) 
a 2 r 2it'1' t6E~m6E'~bs Rda " 

6. CONCLUSION 

The investigated excitation-transfer mechanism can 
be quite effective in the case of triplet-triplet trans
fer. r3 , 4 J In this case the usual (Forster) mechanism 
does not operate and if .:lis sufficiently small the trans
fer can proceed principally via virtual collective exci
tations of the medium, and is determined by formulas 
(22), (32), and (37). In the presence of a dipole-dipole 
exciton band, if the interactions Va and V d are suffi
ciently large, the energy transfer probability at large 
distances is proportional to Rei~, but the coefficient of 
R~ is determined by formula (32) and not by the For
ster-Dexter overlap integral. 

The efficiency of the excitation energy transfer, in 
the case of excitons with short-range action, does not 
depend on whether the minimum of the exciton band is 
located at k = 0 ao k * 0, if we disregard the interfer
ence between several minima. The triplet excitons are 
not excited by electromagnetic radiation. But if .:l is 
sufficiently small, the presence of an exciton band can 
be revealed by the increased rate of excitation transfer 
between impurities, even if it makes no contribution to 
the absorption spectrum of the crystal. 

We have considered a case in which the impurity 
level lies below the exciton band. It is possible to con
sider in exactly the same manner the case when the im
purity level lies above the exciton band. All the formu
las remained unchanged, but .:l must be taken to mean 
the difference between the energies of the excited state 
of the impurity and the upper edge of the band. 

Inasmuch as the transfer of excitation is not accom
panied by the formation of real excitons -excited states 
of the solvent atoms, the presence of different defects 
in the lattice, which scatter or capture real excitons, 
cannot exert an appreciable influence on the probability 
of excitation transfer between the impurity atoms. 
These defects influence W da only to the extent that they 
can distort the exciton spectrum, and such a distortion 
is as a rule small. In general, the main factor in the 
excitation transfer was not the ordered character of the 
medium, but the presence, near the excited impurity 
level, of a collective excitation of the atoms of the me
dium, which is delocalized as a result of the strong in
teraction between these atoms. In an ordered crystal 
these excitations are exciton, and in a liquid these are 
excited states for which k is a poor quantum number, 
but which nonetheless are delocalized. The described 
mechanism should then take place also in a disordered 
medium, but to calculate Wda it is necessary to know 
the probability characteristics of the excitation spec
trum of the medium. 

In conclusion, it is my pleasant duty to thank E. I. 
Rashba, A. S. Kompaneets, and 0. A. Karpukhin for 
fruitful discussions and valuable remarks. 
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