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Spectral diffusion and the phase relaxation produced by it in a magnetically diluted system of spins in 
a solid due to a random modulation of the secular part of the dipole-dipole spin interaction by the 
process of spin-lattice relaxation are considered. Formulas are derived for the decay of the spin
echo in the two- and three-pulse versions; these formulas are in agreement with the experimental 
data on electron spin-echo. It is shown that spectral diffusion from the paramagnetic particles 
closest to the chosen spin (the region of a relatively strong interaction) may be described by a 
Lorentzian-Markoffian random process. The dipole-dipole interaction of spins separated by a dis
tance greater than a certain critical value leads to homogeneous broadening of the ESR line and to 
an exponential decay of the spin-echo signals. 

l. In magnetic resonance experiments, magnetically 
diluted systems with a strongly inhomogeneous broad
ening of the spectrum, which is usually due to spin
orbit and hyperfine interactions, are frequently en
countered. Although in this case the magnetic dipole 
interactions of paramagnetic particles in practice do 
not influence the shape of the spectrum, important re
laxation processes which in the literature have been 
given the name "spectral diffusion"(l•21 are associated 
with them in the systems under consideration. The so
called approximation of "non-equivalent spins,"[3 J 
which corresponds to taking account in the dipole
dipole interaction of only the secular part which com
mutes with the Zeeman energy, is a valid approxima
tion for an investigation of the systems of interest to 
us. The Hamiltonian of the system may be represented 
in the form 

k k<n 

Ann = v'n ( 1 - 3 cos2 8hn) rnn - 3• 

(1) 

The first direct investigations of phase relaxation 
by the method of electron spin-echo (see, for exam
ple,r4J) led to interesting and unexpected results. A 
major one of these was the conclusion about the nature 
of the decay law for the stimulated echo (three-pulse 
method) of the form exp( -mTT), where T is the inter
val between the first and second uhf pulses, and T is 
interval between the first and third pulses. In this con
nection the decay law for the spin-echo (two-pulse 
method) has the exponential form exp{ -bT). In order 
to understand the results concerning the stimulated 
echo, Klauder and Andersonf2l invoked the existence of 
spectral diffusion in the same sense as discussed 
above; in this connection they were able to achieve ex
cellent agreement with experiment. However, in the 
case of spin-echo, the relaxation process under con
sideration led to a decay law of the form exp{ -mT2 ). 

Therefore it was conjectured in( 2 J that the experi
mentally-observed exponential decay is due to the so
called "instantaneous diffusion" which is associated 
with relaxation processes at the moment of action of 
the uhf pulses. 

H1 essentially causes only a shift of the resonance fre
quencies of the spins. The quasisecular terms of the 
dipole-dipole interaction Hamiltonian, which are omit
ted in the first approximation in (1 ), may be taken into 
account by using perturbation theory and lead to pro
cesses involving cross relaxation, providing exchanges 
of energy between spins with different resonance fre
quencies. Since such an exchange is most effective for 
a small difference between the frequencies of the in
teracting spins, the process of energy transfer in the 
space of frequencies carries a clearly-expressed dif
fusion characterYl Another relaxation process with 
the same name "spectral diffusion" was considered 
inr2 l, Already in the approximation (1) H1 may lead to 
a random modulation of the resonance frequencies of 
the spins if the finite lifetime of the spins in a given 
state due, for example, to spin-lattice relaxation is 
taken into account. Now there is reason to assert that 
this relaxation process at not too low temperatures 
turns out, as a rule, to be identifiable in the phase re
laxation in magnetically diluted systems. 

Systematic investigations of the electron spin-echo 
in systems containing free radicals, undertaken re
cently, [sJ led to the same qualitative conclusions with 
regard to the decay laws for the echo signals, but here 
it was shown that the mechanism of instantaneous spec
tral diffusion cannot explain the experimental results 
on spin-echo.r6 J At the same time in articlef71 and 
independently in article raJ one inadequacy of the theory 
of Klauder and Anderson was pointed out-this inad
equacy consisting in the fact that their theory does not 
describe the "narrowing" phenomenon which is well
known in magnetic resonance. 

In the present article the role of spectral diffusion 
in phase relaxation is considered within the framework 
of a somewhat different approach than the one used 
in [21 • A similar calculational scheme was recently 
discussed by Mims;[7 J however, the differences be
tween the model adopted in[7 J and the model adopted 
in the present work led to essential differences in the 

1037 



1038 G. M. ZHIDOMIROV and K. M. SALIKHOV 

results. This point will be discussed in more detail 
below. 

2. In the adiabatic approximation one can write the 
echo signal in the form [21 

I 

V(t)-( ( expi ~ s(t)ro,(tldt),),, (2) 
0 

where s(t) =1 for the free induction signal; s(t) = 1 in 
the interval ( 0, T) and s ( t) = -1 in the interval 
(T, 2T) for the spin-echo signal; s(t) =1 in the inter
val (0, T), s(t) = 0 in the interval (T, T) and s(t) 
= -1 in the interval ( T, T + T) for the stimulated echo 
signal. The averaging in (2) is carried out over the 
time (t) and over the ensemble of spins (k) excited by 
the uhf pulse; Wk is the resonance frequency of the 
k-th spin in the rotating coordinate system. 

3. Calculation of V(t) according to (2) for specific 
systems requires a knowledge of the nature of the 
corresponding random process w(t). For samples 
containing a sufficiently high concentration of spins, 
the conjecture that the ensemble average is normal[9 J 
or a Gaussian-Markoffian process is apprently valid. 
It is easy to show that for a normal process with a 
correlation function 

<[{J)(t)- lil] [{J)(t')- lil] > = f,.{J)2g(t- t'), 
f 

V(t)- exp[ -iw S s(t)dt] 
0 

!. D" 
)( exp . - ; S S s(t')s(t")g(t'- t")dt' dt"]. 

0 0 

(3) 

One can find the corresponding solution for the case of 
a Gaussian-Markoffian process in articles[2 • 10l. We 
note that in the limiting case of rapid spectral diffusion 
when 6.w 2 T~ < 1 formula (3) gives V(2T) 
~exp(-6.w2 Tl·r) for the spin-echo signal, and for the 
free induction signal it gives V(t) ~ exp(-6.w 2 T 1t). This 
corresponds to the well-known situation of the narrow
ing of a resonance line due to spectral diffusion.r9 J 

For magnetically diluted systems the nature of the 
random process w(t) remains obscure. Klauder and 
Anderson showed[2l that under specific assumptions 
w(t) is a Lorentzian-Markoffian random process; in 
this connection the conditional probability is deter
mined by the expression 

P ) 1 t.ro•h[f-exp(-t/T,)] 
(ro,tjroo =-· 

1t [ro- ro0 exp(- t/T1))2 + dro\ [1- exp(- t/Tt)]2 

(4) 

where 6.w 112 :is the line width due to the dipole-dipole 
interaction. [211 

A calculation of V(t) with Eq. (4) taken into con
sideration gives the following results: as T 1 - co the 
free induction signal is given by 

V(t)- exp (-f.ro•;,T,-•t2 ), 

and the spin-echo signal is given by 

V(T + 't') - exp (-t.{J)•;,T1- 1't'T); 

correspondin!~ly, as T - 0, one finds 
V(t) - exp (-t.{J)v,t), 

V (2't') - V ('t' + T) - exp ( -!lrov,2't'). 
(5) 

As T1 - 0 the rate of spectral diffusion becomes so 
large that a narrowing effect must appear in analogy to 
the way this is realized for a normal process. Such an 
effect is actually observed in spin-echo experiments in 
systems containing two kinds of paramagnetic parti
clesY•8l However, the theory of Klauder and Anderson 
does not predict this effect, apparently because the 
Lorentz-Markoff process (4) does not give a complete 
description of the spectral diffusion process in a mag
netically diluted system. 

4. The resonance frequency of a certain spin in the 
quasiclassical-stochastic-model approximation[2 l for 
the Hamiltonian (1) is given by 

(6) 

" 
where O'n denotes the eigenvalue of the operator 2S~. 
Spin-lattice relaxation causes random changes of a 
which lead to the time dependence of w(t). For a mag
netically diluted system the an(t) are, to a good ap
proximation, independent random quantities. Therefore, 
in order to determine V(t) given by expression (2) it 
is sufficient to know the law governing the random 
variation of a ( t) since, from expressions (2) and (6) 
we have 

I 

V(t)N (~~exp[~ A, .. ~s(t)cr(t)dt ])•)•· (7) 

For a spin S = 7'2 it is reasonable to assume that 
a(t) only takes the values ±1, where the probability of 
a change :in the sign of a ( t) in the interval ( t, t + dt ) 
is proportional to dt/Th i.e., a(t) is represented by 
a Poisson random process. For a Poisson process the 
probability that N(t) =m transitions between the two 
possible values of a occur during a time t is given by 

P(N(t)=m)=~(_!_)m exp(-_!_). (8) 
ml T, Tt 

A random quantity a(t) may be represented in the form 
a ( t) = a ( 0) ( -1 )N (t). The probability (8) for the number 
N(t) of transitions during the time t completely speci
fies the random process a(t) and enables us to find the 
time average of the quantity 

. . 
v(t) = ( exp( -;-A.ncr(O) S s(t) ( -1)N<tl dt)) . 

0 

If a(O) takes both values with equal probability (the 
high-temperature approximation), then introducing the 
notation I Akn I =2 6. we have 

e 
v(t) = (cos ( 6. S s(t) ( -f)N<tl dt)) 

0 

Expanding in a series, we obtain 
t t2 1t t2 

v<t>=~ <-1)'t. .. ~ at • ."S at.h-l ... s at,s(t,.) ... s(t,l<<-1>'>. (9) 
0 0 0 

where 1; = ~N(ti ). One can show that averaging the 
quantity ( ( -1 )l;) with respect to the distribution (8) 
leads to the expression 

((- '1)~) = exp{- 2Tt-1 (t2,- t2k-1 + ... + t2- It)]. 

Further calculations require a specification of the 
variable s(t), i.e., a concrete definition of the signal 
under consideration (compare with the definition of 
s(t) in formula (2}). 
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It is convenient to carry out the integration in (9) by 
changing to the Laplace transform v(p). One can easily 
evaluate the multiple integrals which are encountered 
during the calculations (see[ll] ). Omitting the simple 
but cumbersome transformations, we present the final 
results. For the free induction signal 

v(t) = (T,-~R-'shRt+chRt)exp(-tTc'), (10) 

where R2 = Ti2 - t:. 2 • It is easy to verify that the 
Fourier transform (10) gives the well-known formula 
for the spectrum when collapse of the hyperfine struc
ture of the spectrum occurs due to exchange_ll] 

For the stimulated echo signal 
v(T + ,;) = R-2 [exp (-2,;Tc1)(T1- 2 shR,; +R2ch2 R,; 

+RT1-'sh2R-r) +exp (-2TT1- 1)1\2sh2R,;]. 
(11) 

An expression for the decay of the spin-echo signal is 
obtained from (11) for the limiting transition T - T. 

Let us consider the cases of fast ( Ti1 > t:.) and 
slow ( Ti1 < t:.) spectral diffusion. For Ti1 > t:., the 
situation corresponding to narrowing, the free induc
tion signal will be given by 

(12) 

and the spin-echo signal is given by 

v(T + ,;) ~ v(2,;) ~ exp(- ~2 T1 ·2't"). (13) 

For Ti1 < t:. we have the following result for the echo 
signal: r T-' 

v(T +1:)- exp(- 2,;Tc') 1 ++sin21\t 

- 1/z[exp(-2(T -,;)T1- 1)-1](cos21\,; -1) }. 
(14) 

As is well-known, [121 in the case of the stimulated 
echo spin-lattice relaxation causes an exponential de
cay of the signal, exp{- ( T - T) Ti1}, where T - T is 
the time interval between the second and third pulses. 
Therefore, in order to observe the effects of spectral 
diffusion it is necessary that the relation ( T - T )Ti1 
< 1 be satisfied. Then one can represent expression 
(14) in the form (T11 < t:.) 
v(T+,;) ~ exp[ -2tT1- 1 + T~-• sin21\+(T-,;)T1- 1 (cosU,;-1)]. 

(15) 

5. The decay of the spin-echo signal in a magnetically 
diluted system is determined by formula (7). As al
ready noted, the averaging in this expression is carried 
out with respect to the time and with respect to all 
realizations (k) of the spins over the cells. The time 
averaging of the quantities Vk(T +T) which appear af
ter the product sign in (7) was carried out above. The 
statistical averaging of the quantities in (7) remains to 
be carried out. Let there be N spins and B cells per 
unit volume. Then the total number of different reali
zations of the distribution is equal to c~. Let us in
troduce the quantities w~, which characterize the oc
cupation of the k-th cell in the a-realization: wk = 0 
or 1. By definition one can write the average of (7 ) 
over all realizations in the form 

(16) 

In each realization Wk = 1 for N cells and Wk = 0 for 
B - N cells. The average probability that a cell is 
occupied in any realization is given by w = N/B. 

In order to carry out averaging of the type (16) in a 
statistical theory the line broadening was assumed to 
be an approximation of the following kind: 

1 B [ f B ]N 
CsN ~ Ilvkw~ ~ B ~ Vk . (17) 

a k=t k=t 

For a solid the inadequacy of this approximation is due 
to the fact that BN - C~ realizations are taken into 
account in which the multiple occupation of the cells is 
encountered. 

Another possible approximation for (16) is given by 

1 B r> B - B 

CN ~IT Vn'"• ~ ITvn'" ~ exp( iii~ lnvk ). (18) 
B a k=t k=i ' k=t 

The summation in the argument of the exponential func
tion is carried out over all Iattice sites. It should be 
noted that a method of averaging which is equivalent to 
(18) has been applied in order to calculate the moments 
of the resonance lines in a magnetically diluted 
system.rs] It is obvious that Eq. (18) becomes exact in 
the case N =B. On the other hand, Eq. (17) becomes 
exact for N = 1. In connection with the statistical line 
width of a magnetically diluted system, averaging ac
cording to (17) gives a result which is in agreement 
with the result which is obtained by averaging accord
ing to (18) for N/B < 0.01. Therefore the validity of 
one or the other method of averaging depends on the 
value of the ratio N/B. We note that for a given value 
of N the value of the ratio N/B may be different for 
different systems. As an example one can cite the case 
of a system containing free radicals in which the situ
ation involving a close distribution of radicals is not 
realized by virtue of their high reaction capabilities. 
In this case one can expect that N/B is sufficiently 
large for relatively low spin concentrations (B «:No, 
where N0 denotes Avogadro's number). Ionic crystals 
containing large hydrated spheres can represent 
another example of relatively large values of N/B. 

In the case under consideration, however, the situa
tion simplifies somewhat since one can easily verify 
that for small values of T and T both methods, (17) 
and (18), of averaging lead to the same result. In fact, 
in this case the asymptotic expansions (13) and (14) 
have the form v ~ 1 - a, a<< 1, and substitution into 
Eqs. (17) and (18) gives the same result, V ~ exp( -Wa). 

6. In the case of a magnetically diluted system un
der consideration, upon performing the averaging ac
cording to (18) one can represent the spin-echo signal 
in the form 

Ba B 1 

w(T+,;)-exp[w ~lnvn+iii~lnv~<]. (19) 
k " 

where B1 is the number of cells for which the condi
tion l:.kT1 :s 1 is satisfied, and B1 + B2 =B. Since 
t:. ~ r-3 , then the summation over the B1 cells reduces 
to a summation over all of the lattice sites inside a 
sphere of radius R0, which is defined by the relation 

(20) 
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In order to estimate the sums in (19) let us assume 
that for all sites B1 inside the sphere Ro the expan
sion (15) is valid for "k(t), and expansion (13) is valid 
for all sites outside the sphere Ro. Then (19) takes the 
form 

Replacing the lattice sums in (21) by integrals, with 
(20) taken into account we obtain 

V(T + 1:) ~ exp [ -m-,;T- 2b't"], 

8Jt2 
m = --_y211NTc' 

9l"3 ' 

4n 
b=-y2fiN. 

15 

(21) 

(22) 

The first term in (22) represents the contribution from 
spins which are localized inside the sphere R0 (the 
first three terms in (21)). A comparison with the 
theory of Klauder and Anderson shows that the spectral 
diffusion due to this group of spins apparently can be 
satisfactorily described by the model of a Lorentzian
Markoffian random process. The second term inside 
the argument of the exponential function in (22) is re
lated to the spins located outside the sphere R0 (the 
last term in (21)). It should be emphasized that the 
parameter b does not depend on T 1· 

In the two-pulse version the law governing the decay 
of the spin-echo has the form 

V(2T.) ~ exp (-2bT- mT2), 

and for the usual concentrations N ~ 1019 particles/ cm3 

and T1 2: 10-5 the decay law is exponential, i.e., 
exp( -2bT ). The obtained expressions give a good de
scription of the experimental data on electron spin
echo in a system containing free radicals. [sJ In the 
case of small values of T1, this model leads to a 
narrowing phenomenon, which is also observed experi
mentally. 

In the article by Mims[ 7 l cited above, the time vari
ation of a(t) was approximated by a Gaussian-Markof
fian random process. The latter approximation did not 
enable the author to show that, for a system of spins 
possessing a dipole interaction, a weak spin-interac
tion region exists which leads to an exponential decay 
law. This is the major difference between the results 
of the present article and the results of article[7 J. It 
should be noted that from a physical point of view the 
model of a Gaussian-Markoffian process (a process 
involving small steps) is hardly valid for the case 
S = Ya and apparently would be applicable only for 
S » Ya. 
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