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Some problems of the nonlinear interaction of acoustic waves in semiconductors are considered. 
Dynamic equations describing the space and time behavior of the interacting wave amplitudes are 
obtained from elasticity theory equations in which the spatial and temporal dispersion of the elastic 
stress in an arbitrary crystalline medium are taken into account. These equations extend the famil­
iar Bloembergen equations to media in which the energy transfer from the waves to the medium is 
possible during the process of nonlinear interaction of the waves. The energy balance equations and 
the equation for the number of quanta are considered both for linear and nonlinear absorption. Non­
linear elastic responses of electronic origin are found for piezo-semiconductors with an arbitrary 
state of the electron subsystem. In the hydrodynamic approximation, an explicit form is found for 
the nonlinear admittances, with account of carrier drift in an external electric field. Under condi­
tions of sound wave amplification by drifting supersonic carriers, second harmonic generation and 
the transformation of transverse waves into longitudinal waves (TTL process) are considered. 

PROBLEMS of the theory of nonlinear interaction of 
acoustic waves in semiconductors have recently taken 
on a special interest in connection with the possibility 
of amplification and generation of acoustic waves by 
drifting supersonic carriers. l 1• 21 The fact is that there 
are two relatively strongly interacting subsystems in 
semiconductors and semimetals: the crystal lattice and 
the electron--hole plasma carriers. In a number of 
cases, the plasma contribution to the decrement (or in­
crement) of the sound waves plays a decisive role. Sim­
ple estimates show that under these conditions, the 
principal nonlinearity mechanism is of electronic ori­
gin and is connected with the reorganization of the sub­
system under the action of the electric field which ac­
companies the sound wave. Since significant dispersion 
is characteristic for the electron subsystem, it is nec­
essary to consider the theory of interaction of acoustic 
waves from the very beginning, taking both spatial and 
temporal dispersion into account. 

Under conditions of weak nonlinearity, the nonlinear 
elastic stress can be expanded in powers of the defor­
mation and limited to the first few terms. Such an ap­
proximation corresponds to renormalization of the 
phase velocity and decrement (or increment) of the 
wave as a result of nonlinear interaction, and also to 
allowance for the radiation of waves at the combination 
frequencies. The dynamic equations describing the be­
havior of the amplitudes and phases of the interacting 
waves in space and time are obtained by the Bloember­
gen method of contracted equations. la, 41 The theory 
developed in the present paper is valid only for powers 
of the sound waves less than the power corresponding 
to saturation of the nonlinear plasma properties con­
nected with the capture of carriers by the electric field 
of the wave. 

The interaction of acoustic waves in solids has al­
ready been considered both theoreticallyl 51 and experi­
mentally. l 61 However, the complete dynamic equations 
for the amplitudes, with account of spatial and temporal 
dispersion, were not derived in these researches. In 

the researches of [7J, the electron "concentration" 
nonlinearity was investigated theoretically for piezo­
semiconductors, but the authors limited themselves to 
the consideration of the established regime and did not 
solve the problem of the initial or boundary regime. 

In the first section of the present paper, we set up 
the general dynamic equations of the elasticity theory 
of crystals for arbitrary spatial and temporal disper­
sion of the linear and nonlinear elastic-modulus ten­
sors. The approximation of three interacting waves is 
then considered and the conservation laws for energy, 
number of quanta, and flux of acoustic phonons are then 
studied with account of nonlinear interaction. 

The problem is considered for piezo-semiconduc­
tors, where the effects of nonlinear interaction can play 
a significant role, especially under conditions of ampli­
fication of the acoustic waves. The general connection 
is found between the nonlinear elastic responses of the 
system and the corresponding nonlinear conductivity 
tensors of the medium, which are computed in explicit 
form in the long-wave approximation, when the fre­
quency of the waves is much less than the reciprocal 
of the characteristic relaxation time of the energy of 
the plasma carriers (electrons). The effects of har­
monic generation and the transformation of transverse 
waves into longitudinal waves are then considered un­
der the conditions of wave amplification. 

1. NONLINEAR EQUATIONS FOR THE AMPLITUDES 
OF SOUND WAVES 

The purpose of the present section is the formula­
tion of nonlinear equations for the amplitudes of sound 
waves in an elastic medium with arbitrary spatial and 
temporal dispersion. 

The equations of elasticity theory for the displace­
ment vector have the form 

(1.1) 

where p is the density, aij the elastic stress tensor. 
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For weakly nonlinear and homogeneous medium, the 
coupling between the deformation tensor uij and the 

stress tensor can be represented in the form 
oo t tn-1 

<J ij == ~ ~ dr 1 ••. dr n ~ dt1 . . . ~ dtn 
n=i 

(1.2) 

Equations (1.2) represent the material equations for 
weakly nonlinear, homogeneous crystalline medium; the 
nuclei s<n> are the corresponding nonlinear admit­
tances of the system; here sijl~jl is the linear elastic­
modulus tensor with account of spatial and temporal 
dispersion. The admittances introduced above are ob­
viously symmetric relative to the permutation of any 
pairs of indices ikjk; furthermore, in crystals with 
definite symmetries, these tensors are invariant rela­
tive to the entire group of transformations permitted 
by the given symmetry class. 

We shall seek the solution of Eq. (1.1) in the form of 
a Fourier integral over time and space: 

u(r, t) = ~ iku(k)ei(qr-rot), (1.3) 

where k denotes the set of quantities ( w, q). Using 
(1.3), we obtain an expression for the transformation of 
the Fourier equation (1.1): 

(1.4) 

where 

L;;(k) ==- p ro 21l;; + 1/z [S1g~,(k)+ sl:lm( k)] q1qm (1. 5) 

is the operator of the linear dispersion equation; 

a IfL> is the nonlinear stress, which is determined by 

the second, third, and so forth terms of the expansion 
in (1.2). The operator Lij (k) is generally non-Hermi-

tian and satisfies the condition Lij (k) = Lij ( -k *) 

In contrast with the isotropic medium, the separa­
tion in crystals of waves into purely longitudinal and 
purely transverse is generally impossible: to each di­
rection of the wave vector q there corresponds a char­
acteristic wave whose displacement vector possesses 
both longitudinal and transverse displacement compo­
nents. Therefore, we must consider the eigenvalues and 
eigenvectors of the operator Lij (k), which are defined 
by the equations 

L;;(k)b;(k) = A-(k)b;(k), DetJL;;(k)- /,(k)I\;;J = 0 (1.6) 

We shall consider the case of nondegenerate eigenval­
ues when all three values of AQI (k) are different. The 
eigenvectors bQI (k) in the general case can also be 
complex: 1> their normalization conditions are written 
in the form b?(k)bf(k) = oQIQII, where b? is the vec­
tor that is the Hermitian conjugate of b?. Multiplying 
Eq. (1.4) by i>?(k) and using the condition of the ortho­
gonality of waves with different polarizations, we get an 
equation for the Fourier components of the amplitude 

!)For example, in the presence of gyrotropy in an elastic medium, 
the ba are complex and their imaginary parts describe the rotation of 
the plane of polarization. 

of the eigenwave uQI: 

A.a(k)ua(k)= ~ ~ d£<Z>A!!,a,(k,k~okz)Ua,(ki)ua,(kz) 

where d~< 2 > = dk1dk 26(k- k1 - kJ and d~<3 > = dk1dk2dk3 

x o(k- k1 - k2 - ka ), and A< 2 > and A<3 > are expressed in 
linear fashion in terms of the faltung of the tensors s< 2> 
and s<3 > with vectors bQI and q. 

In the linear approximation, when the amplitudes of 
the waves are small, Eq. (1. 7) reduces to the usual dis­
persion equation AQI(k) = 0. This equation determines 
the frequencies of the characteristic oscillations of the 
system and the decrement (or increment) of y Ql" For 
weak damping or growth of the wave (I y Ql/ wQII << 1), 
the equations for the determination of the eigenfrequen­
cies and decrements will have the respective forms 

Re Aa ( roa,q) == Aa1 (roo., q) = 0, 

( 
i)A_ I )-1 

Va(q)=- iJwaa. ImA-a(Wa,q). 

(1.8) 

(1.9) 

In linear theory, the characteristic oscillations are 
damped or growing oscillations whose amplitude is de­
termined by the initial and boundary conditions. When 
account is taken of the nonlinear properties of the me­
dium, the amplitudes of the oscillations are no longer 
determined by the external conditions only, but also by 
the interaction between the oscillation modes. The 
sound field in this case is conveniently written in terms 
of a set of wave packets for which a small scale in time 
and space corresponds to rapid oscillations with the 
wave vector q and frequency w Ql (q), while large scale 
corresponds to a slow change in the amplitude of the 
wave packets in time and space. 

Using the representation of wave packets, it is not 
difficult to obtain an equation for the slow changes in 
amplitude of the sound waves uQI(q, r, t). Multiplying 
Eq. (1. 7) here (written in terms of the variables q1 and 
w) by exp { i(q1 - q) · r - i [ w 1 - wQI (q1)] t} and integrat­
ing over dq1 and dw 1 in the vicinity of the center of 
gravity of the packet, we get, after successive trans­
formations, the nonlinear dynamic equation for the 
acoustic waves: 

iJua OUa ( iJAa1 
)-1 'V ..., "' 1,2) -,-+Yo.-= VaU" + i -- LJ 2.J .2J Aaa,a,(k, ± k1o ± k2) 

ot iJr iJwa. 
± ar, a2 Q1, Q2 

(1.10) 

where vQI = -(aA~/aq)(aA10/awQI)- 1 is the group veloc­
ity of the corresponding characteristic wave and Ilk 
= k ± k1 ± k2• The summation in (1.10) extends over all 
wave vectors q1 and q2 for which the conditions k ~ ± k 1 

± k2 are satisfied. These conditions determine the se­
lection rule or conservation law for the nonlinear inter­
action of the waves. The sign ± in the sum in (1.10) 
means that it is necessary to take the sum of all terms 
with different signs in front of the vectors q1 and q2• 

Similarly, nonlinear terms were taken into account in 
(1.10) that describe the interaction of a large number of 
waves. 

Equations of the type (1.10) are the ordinary dynamic 
equations for the amplitudes of the interacting waves, 
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which are well known both in nonlinear optics and in the 
theory of nonlinear effects in a plasma.[3• 4 • BJ However, 
the theory of the nonlinear interaction of acoustic waves 
in crystals is seen to be more complicated in compari­
son with the corresponding theory for electromagnetic 
waves. The latter is connected not only with the crystal­
line properties of the medium with relatively strong ab­
sorption but, as will be shown below, fundamentally with 
the absence of symmetry in the matrix elements A~~ 01 

1 2 

(see Eq. (2.11)), which in turn leads to the laws of con­
servation of energy of the interacting waves and of the 
number of quanta, which differ materially from the case 
of plasma and nonlinear optics. [3, 4 • BJ 

2. THREE INTERACTING WAVES 

We limit ourselves to the consideration of processes 
in which only three waves interact with one another. 
This means that we shall consider the transformation 
of waves of the type 01 1 + 012 ~ Ol3, where 01i character­
izes the types of wave. The conservation laws in ele­
mentary acts will evidently be 

Ul3 - WI - W2 = ~W, q3 - q1 - q2 = aq. (2.1) 

Here ~w and ~q are the frequency and wave vector de­
viations satisfying the conditions I ~w/wmin I<< 1, 
I ~qj~in I << 1. Under the conditions of exact synchro­
nism, aw = 0 and ~q = 0. 

Simple study shows[ 4 ' 5 J that under the conditions in 
which the characteristic oscillations can be regarded 
approximately as longitudinal (L) and transverse (T), 
processes allowed by the conservation laws (2.1) are 

T+T~L. T+L~L. (2.2) 

Moreover, interaction between oscillations of one type 
with parallel wave vectors q is also allowed within the 
range of limits on aq. For three interacting waves 
1 + 2 = 3, Eqs. (1.10) have the form 

where the operator D 1 = a/at+ VOil a/ar and 

·( fi'Aa.,' )-' (2) Va.,a.,a.,(k1,- k,z, k3 ) =- 2t fiwa., A.;;,a.,a.,(k.,- k2, k3 ). (2.4) 

Equations for the amplitudes u01 and u01 have a 
2 3 

form similar to (2.3) and can be obtained from (2.3) 
with the aid of the formal substitutions 1 - 2, 2 - 1, 
3- 3 for u01 , and 1- 3, 2- 1, 3- 2, -k2 - k1, 
* 2 u012 - u011, ~q- -aq, ~w- -aw for u013 • Usually, 

the dynamic equation of the interacting waves can be 
written in the form of equations for the modulus and 
phase of the amplitude, putting the complex amplitudes 
in the form u01 = A01 exp (icp01). Carrying out the sep­
aration in the set (2.3), we get 

D,A, = y,A, + W1A2Aa cos (e + x,), (2.5a) 
A,D~!pl = w,A.Aasin(e +XI), (2.5b) 

wnere 8(r, t) = <;03 - <;0 1 - <;02 + aq • r- ~wt and W1 and 
t, are the modulus and phase of the relation (2.4). 

The equations for the amplitudes A2 and As and 
phases <;02 and <;03 have a similar form and can be ob­
tained from (2. 5) by means of the formal substitution 
1- 2, 2- 1, 3 - 3 for A2 and <;02, and 1-3, 2- 1, 
3 - 2 and 8 - -8 for As and <;03• 

The dynamic equations (2.3) and (2.5), in contrast to 
the known equations in nonlinear optics (see the book of 
Bloembergen[ 4l), contain different phases Xi· Precise­
ly because these phases are different (their equality is 
obviously possible only in extraordinary cases), there 
are no solutions similar to the optical case for the the­
ory of nonlinear interaction of elastic waves. 

In particular, (2.3) leads to equations that describe 
the process of the self-action of the sound wave, leading 
to the emission of a second harmonic: 

DroUro = VroUro + Va.a.o.(k, -k, 2k)uro'U2roei(Aqr-Arot), 

(2.6) 

We now obtain the conservation laws for the total 
values of the energy of the waves and the number of 
quanta. For this purpose, we introduce the definition 
for the energy, energy flux, number of quanta and quan­
tum flux: 

fi'Aa' 
~a.(q, r, t) =- Wa.--lu .. (q,r, t) 1', Sa.(q, r, t) =V~a.(q, r,t); 

fJw"' 

N (q r t)- ~a.(q,r,t) P .. (q,r,t)=va.Na.(q,r,t). (2.8) 
a '' - hwa. ' 

From the dynamic equations (2.3), we obtain the bal­
ance equation for the total energy of the three waves in 
the medium: 

fJ~ fJS_"' -" 1 <'> _ iJt + ar - 2 ~ y .. ~"' "Im 1[w .. ,Aa., .. ,a.,(k1, k2, ka) 
" (2.9) 

where 

~= ~~"' S=~Sa.. .. " 
The balance equation for the number of quanta of the in­
teracting waves follows in the same way from (2.3): 

f) f) 
{ii(Na., + Na.,) + fJr (P .. , + P,,,) = 2 (ya.,Na, + ya,Na,) 

- ! Im {[A,f.~,a, ( k,, - k.., ka)- A/f;i:,a, ( ka, k, k,) 1 u<Z,. Ua,. U<>, ei(Aqr-Arol)} 

(2.10) 

and similar relations for N01 + N01 , which can be ob-
2 3 

tained from (2.10) with the help of the formal substitu-
tion of indices 1 - 2, 2- 1, 3 - 3. 

If the properties of the medium are such that the ma­
trix elements that characterize the nonlinear interaction 
of the waves in the medium satisfy the conditions 

A!,~,a,(kt,- k,z, ka) = A~~a,a.,(k,,- k,, k•) = Ali!;,a,(ka, k,, k,), (2.11) 

then Eqs. (2.9) and (2.10) give the usual laws of conser­
vation of energy and number of quanta with account of 
linear damping. In the case considered here, the rela­
tion (2.11) cannot be fulfilled, and therefore additional 
terms appear in Eqs. (2.9)-(2.11), describing the trans­
fer of energy from the waves to the medium by way of 
the various nonlinear mechanisms. Account of these 
terms is necessary in the low-frequency case when WT 

<< 1, where T is the characteristic relaxation time; in 
the given case, this is simply the relaxation time of the 
energy (temperature) of the electrons. 

We note that in nonlinear optics[ 4 J and collision-free 
plasma, when the frequencies of the interacting waves 
are much greater than the reciprocals of the relaxation 
times, the symmetry rule (2.11) is satisfied. Absence 
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of this symmetry for interacting acoustic waves leads 
to new qualitative characteristics of the solution of the 
equations for three-wave interaction; in particular, the 
system (2.5) no longer has three first integrals (in our 
notation, S, Pa + Pa , Pa + Pa ), on the basis of the 

1 3 2 3 
the existence of which the solution of the equations given 
by Bloembergenl 41 is constructed. Furthermore, a sim­
ple investigation shows that the stationary solutions (of 
the type of sinusoidal stationary waves) in the system 
(2.5) are shown to be impossible, while the fundamental 
reason for this lies in the fact that the phase of the 
waves B(r, t) is unstable when the time or coordinate is 
increased. 

3. CALCULATION OF NONLINEAR ELASTIC 
ADMITTANCES. THE CASE OF THE PIEZO­
SEMICONDUCTOR 

In semiconductors and semimetals there are several 
possible mechanisms for nonlinear interaction, both of 
lattice and of electronic origin. In the present paper, 
we consider the nonlinear effects of electronic origin, 
which play the decisive role for piezo-semiconductors 
in the majority of cases 21 We shall consider that fre­
quency region for which one cannot take into account 
the spatial and temporal dispersion of the lattice con­
stants; then the equations of motion will be 

o2u; OUm; oE, 
1\ "tz = Ai!mi -,.-- ~!,ii---. 

u uxz OXj 
(3.1) 

Here f3z, ij in the piezo "deformation" tensor,£ 91 E is 
the electric field accompanying the sound wave in the 
piezomedium; it satisfies the Maxwell equations 

oE; au;, 
eoTt-4n~;,;!at=-4nj;(r,t), rotE=O, (3.2) 

where j(r, t) is the current induced in the plasma me­
dium by the sound wave. Transforming to the Fourier 
representation and limiting ourselves only to terms of 
third order, we get an integral equation for the longitu­
dinal wave E(k): 

4nir r (2) ' 
E(k)~-- ooq~(q)u(k)+ J ds<2>on (k,k~,kz,E(kt)E(kz) 

ooen(k) 

- ~ ds<">ot1 (k, kt, kz, ks)E (k.)E (kz)E(ks) }. (3.3) 

Here f3i(q) = f3z imqzqm/q2 , a~~~ is the nonlinear longi­
tudinal conductivity of s-th order, and e 11 (k) = E0 

2>Nevertheless, it should be noted that lattice mechanisms of non­
linearity, for example, electrostriction, can be reduced formally to the 
same consideration. In the presence of electrostriction, the free energy 
of the crystal is written in the form 

t t A 

F = Fo + 2 AumjUHUm; + Bn 8t;E'iEj + ~l,ijElu.ij+ aij,lmEiEjUlmo 

As a consequence of the piezoeffect or the presence of an external 
constant field, electrostriction leads to the result that the equations of 
motion of the lattice and Maxwell's equations become nonlinear. Solving 
them, it is not difficult to obtain equations of the type ( 1.1 0). In dielec­
trics, especially in ferroelectrics, where there is an appreciable electro­
striction constant in addition to the piezoeffect, such a nonlinear 
mechanism can appreciably surpass the nonlinear effect associated with 
anharmonism and it should, in principle, just as in optics [ 3 •4 ] guaran­
tee the possibility of parametric amplification of the sound waves. 

+ 47Tiw-1a\~ 1 (k) is the dielectric constant of the crystal. 
Expressing the electric field E in terms of the dis­
placement vector u from Eq. (3.3) and substituting it 
in (3.1), we obtain the explicit form of the dispersion 
operator and the nonlinear elastic admittances for the 
piezo-semiconductor: 

£ .. _ _ ".S·· +[f..· . qlqm + 4nMq)~;(q)] 2• 
., - poo ., dmJ q2 sn(k) q' 

A (m) (k k k ) - (4n)m+l q~(q)b<>' (k) (lim q,p(CJI)b"•(k,)) F 
aa, ... am , 1, ••• , m - (k) (k) m• 

oo en • I • en I 
= (3.5) 

In (3.5), F is determined exclusively by the plasma 
properties and is expressed in terms of the dielectric 
constant and nonlinear conductivities of the carrier 
plasma. 

For the response of second order in the displace­
ment of the lattice, we have 

F 2 (k, kt, kz) = o~21 ( k, k~, kz), 

and for the third-order response 

<•> . 8n 3 

F3 ( k, k1, k2, k3) = on (k, k~, k2, ka)- 1 "3 ~1M,, 

where 

M OJ[21 (k, kt, kz + ks)o!f> (kz + ks, kz, ks) 
I = 11---"--'-.:.._:::.._:_:____::_'---"- '7-'':-'-;:-:-='c.__::_c..__:cc._ 

(ooz + ooa)e!!(k• + ks) 

(3.6) 

(3.7) 

while M2 and M3 are obtained from M1 by cyclic per­
mutation of the indices 1, 2, and 3 in these expressions. 

Equations (3.5)-(3. 7) show that the nonlinear elastic 
properties of a piezoelectric medium are completely 
determined by the corresponding nonlinear responses 
of the electron subsystem. These expressions are ap­
plicable to a plasma medium with arbitrary spatial and 
temporal dispersion; in particular, they can be used 
successfully both for the case of low frequencies, when 
ql> << 1, and also for high frequencies, when ql> >> 1, 
where I> is the mean free path of the carriers. 

As an example, we set down the expressions for the 
longitudinal admittances in the case of a solid-state 
electron plasma in the low-frequency region, where the 
equations of the hydrodynamics of a charged liquid are 
applicable for the description of the collective motions 
in such a system: 

~ e 1 3 

on (k k1 kz ks)= ------~B 
' ' ' mv 1'1(k),=1 •· 

Here 

and B2 and B3 are obtained from B1 by cyclic permu­
tation of the indices 1, 2, 3 in the quantities ki(wi, qi ). 
Here n0 is the equilibrium concentration of carriers 
(electrons), 11 is the effective collision frequency, m 
the effective mass of the carrier, 

/). (k)= 1- (qvd) + i VTe2CJl' 

00 00'11 
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where vTe is the thermal velocity, and vd = -eEd/mv 
the drift velocity .s> Substituting Eqs. (3.8)-(3.10) in 
Eqs. (3.5)-(3.7), we get the explicit form.of the nonlin­
ear admittances for the case of a piezo-semiconductor. 
It is seen from them, in particular, that the symmetry 
relations (2.11) do not hold. Physically, this means that 
nonlinear absorption of the energy of the wave takes 
place in the medium; this is connected with the pres­
ence of collisions. 

Similarly, general expressions can be obtained for 
the nonlinear admittances in the case of semiconductors 
with deformation interaction. 

4. GENERATION OF THE SECOND HARMONIC. 
TTL PROCESS 

Let us consider the simplest solutions of the set 
(2.6), which describe the second-harmonic generation 
and the process of the formation of longitudinal waves 
by coalescence of two transverse (TTL process) under 
the conditions of sound-wave amplification. 

We consider the problem in the half-space x > 0 and 
assume that at x - 0 the amplitude of the fundamental 
is Aw = Ao the amplitude of the second harmonic is 
A2w= 0. It then follows from the set (2.6) that for small 
x the current IWw~w!Ywl << 1, will be 

A.,(x) = Ao exp (yax / v,). (4.1) 

The solution (4.1) corresponds to the general linear the­
ory of the amplification of a wave with frequency w. 
Substituting (4.1) in the second Eq. (2.6) and using the 
condition on the phase cos ( -80 + x 2 w) = 1, we find the 
amplitude of the second harmonic: 

1 1 [ ( YawX) ( 2y.,x ) J ( ) A 2.,(x) =-W2.,A02 exp -- - exp -- . 4.2 
2 Y2w- 2y., v, V 8 

Using the value of the nonlinear conductivities, found 
above in the hydrodynamic approximation, it is not dif­
ficult to obtain the explicit form of the admittance 

where fJ. = e/mv is the mobility of the carriers, Vs the 
velocity of the corresponding sound wave, {3 the effec­
tive piezomodulus (for longitudinal waves, this is f3x xx; 
for transverse ones, f3x xy or f3x xz• depending on the 
direction of the polariza'tion vector, TJ 2 = 4 rr{32 / E0 pv~ is 
the corresponding electromechanical coupling constant, 
rD the Debye radius. In the derivation of (4.3), the dis­
persion of the sound waves has not been taken into ac­
count; therefore, vs(w) = Vs(2w). If we now substitute 
(4.3) in (4.2), then at small x, corresponding to the ini­
tial stage of the process of second-harmonic genera­
tion, the result obtained by Tell llll follows from (4.2). 
It is not difficult to determine the characteristics 
growth length of second harmonic from Eq. (4.2). 

In piezosemiconductors, when the nonlinear interac-

3)Nonlinear conductivities were obtained in the region w ~ llv, 
where 6 is the fraction of the transferred energy for each elastic collision 
po]. 

tion between the waves is significant, the process of the 
coalescence of two transverse quanta into one longitudi­
nal is possible, according to the scheme T(w') + T(w") 
,.: L(w' + w"). It follows from the conservation laws 
that the TTL process is possible for cos ( e /2) 
~ vT(w)/vL(2w), where e is the angle between the wave 
vectors of the transverse waves. We shall assume that 
the amplitude of the transverse waves is much greater 
than the amplitude of the longitudinal ones, I uTI >>I u L 1. 
Then, we can neglect the nonlinear terms in the equa­
tion for transverse waves if the characteristic distance 
at which the amplitude of the transverse wave changes, 
because of the TTL process, is much greater than the 
characteristics scale lx at which this phenomenon is 
considered. The solution of the stationary dynamical 
system (2.3) with boundary conditions uT(x = 0) = u0 

and uL(x = 0) = 0 for the longitudinal wave in the direc­
tion q Lll Ed will be 

where the "matrix element" V LTT of the process is 
equal to 

. (4n) 3 enw2wcDs(8/2) [ b 9 
VLTT= -! 4 3 3 ~,,xx ~x,ix ;Tcos2-2 peo vLvT 

9 ] 2( Vd . 9 VT .2 Ul) + ~ . b Tsin,2- 1- -cos-+ i-'-- · 
x, 111 1 2 VT 2 VT~ V 

r V:J 9 4n<ro J-2[ Vot 2noo 1-! X 1--cos-+i--(1+q2rv2) 1--+i--(1+4q2rv2) 
l VT 2 £oW VL EoUl 

(4.5) 

Here b T is the unit polarization vector of transverse 
waves. It follows from (4.5) that for the observation of 
the TTL process, the orientation of the crystal and the 
polarization of the transverse waves ought to be such 
that f3x xx * 0 and f3x ix bf * 0, simultaneously. 

The 'theory of nonli'near interaction of elastic waves 
in solids, considered above, can be applied with success 
also to electromagnetic waves close to the absorption 
and emission lines, when the dispersion plays a signif­
icant role. 

In conclusion, we express our sincere gratitude to 
L. B. Keldysh for useful discussions. 
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