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The interaction between plasma turbulence and hydrodynamic (acoustic) turbulence is considered. It is 
shown that if the plasma waves are intense and characterized by stationary broad spectra the interac
tion is of a decay nature. 

AT the present time, the theory of nonlinear interac
tions in a plasma has been developed to a fairly great 
degree of detail. UJ However, up to the present time no 
consideration has been given to the effect of interac
tions between waves characterized by w » v (v is the 
frequency of binary collisions) with waves for which 
w « v. Interaction of plasma waves with low-frequency 
waves is of special interest because this interaction has 
been studied experimentally by a number of workersY'31 

Below, we consider in detail as an example, the inter
action of plasma waves and acoustic waves in a fully 
ionized plasma: specifically, we analyze the excitation 
of acoustic waves by the plasma waves. Here and in 
what follows we mean by the term "acoustic wave" an 
acoustic wave whose frequency is smaller than the 
electron-ion collision frequency ve and the ion-ion 
collision frequency Vi. We first consider briefly the 
linear properties of acoustic waves. 

1. DISPERSION PROPERTIES OF ACOUSTIC WAVES 

If the frequency of an acoustic wave is lower than the 
frequency of binary collisions wS « Veff the wave spec
trum is determined by the hydrodynamic equations for 
the plasma as given, for example, in[4J. We denote by 
ve and Vi the frequency of collisions between electrons 
and ions and all other plasma particles. It is important 
to note that in the region 

(1.1) 

the acoustic waves can propagate in an isothermal 
plasma. Since ws ~ lkslvTi if (1.1) is to be satisfied it 
is sufficient that 

(1.2) 

If Te/Ti ~ 1, then the first condition in (1.2) is more 
stringent. Assuming that the wave number lks I in a 
bounded plasma of dimension a is greater than 1/a, we 
can obtain a bound on the system dimensions: 

(1.3) 

where rD = vTe/w 0e is the plasma Debye radius while 
ND = (woelve) is the order of the number of particles in 
a sphere given by the Debye radius: ND ~ no(vTe/w 0e)3 

(no is the plasma density). 
The condition in (1.3) is satisfied under experimental 

conditions that are frequently encountered in practice. 
For example with no~ 1013 em-S, VTe ~ 108 em/sec, 

rD ~ 10-3 em and ND ~ 104 we find that a >> 10 em. 
This means that acoustic waves can propagate even in 
an isothermal plasma. Evidently, the excitation of such 
acoustic waves has been observed in a number of experi
ments (cf. for example[2 J ). At the present time experi
ments have been reported in which an investigation was 
made of the nonlinear interaction of acoustic waves with 
other kinds of plasma waves.[2,sJ However, there is no 
theory available for the nonlinear interaction of acoustic 
waves. 

The dispersion properties for ''collisional'' sound in 
an isotropic plasma can be obtained easily with the help 
of the dielectric constant of the plasma under collision
dominated conditions, as can be obtained from the equa
tions given by Braginskii'. [41 For a fully ionized plasma 
we find 

where 
(1.4) 

(1.5) 

(1.6) 

and 
2 

( k2vTe' k2vTe 6 )( 1 m. 1 ) x=1+ 0.51v.+1,22---1.73~-- -+-- , 
Qe Qe Qe ·We mi Wi 

k 2vT.Z ( iw i w it'lw ) 
We= -iw +i--- 1-0.97--1.71--1.73--., 

W Ve Q. l.~cQi 

k2vzT. 
w;=-iw+i--1

-· 
(J) 

{ iw iw ( 62 6 ) iw ( 6 )1. X 1-1.28--- 1+---0.71- +- 0.71-..o_ J, 
V; Q; Q;Qe Qe Qe Q; 

(1.7) 

where L is the Coulomb logarithm. We now consider 
the wave spectrum w~ and the damping rates y~ for 

collisional sound in the general case of a nonisothermal 
plasma (Te can be either larger or smaller than Ti)• 

1. If w~v e » k~ vJ.e, then 

(1.8) 

(1.9) 
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where me is the electron mass and mi is the ion mass. 
2. In the opposite limit w~11 e «: k~ vTe 

8 lk 1 1/ me( 5 T;) 1/ 5 T. 
WJr. = 8 V,, Vs=VTe y- 1+-- =Vri y-+- (1.10) 

m; 3 T. 3 T; 

{)" s {iie1E1 =- 8:n S(k, k., k2 )En,•E,,lei<k•-"'t)). 

X ll(k- k 1 - k2 )!lk !lkidk2, 

(2.2) 

'(")-. +. _ 016 me _ 1,92+0,64T./T; k2vT;2 X6(k-ki-k2)dkdkidk2; k={k,w}. (2.3) 
V~r. .. -"\'e y,, Ve- , --:-"•• y;- •j +T/T --

m" 3 e i 'Vi (1.11) We write the fields in the form 

The difference between the electron temperature and 
the ion temperature can be introduced only in the case 
in which the frequencies of interest or the growth rates 
are faster than the reciprocal times for temperature 
equilibration between electrons and ions due to colli
sions.~ "eme/mi (Eqs. (1.10) and (1.11)]. In the oppo
site limit we make use of equations (1.10) and (1.11) 
taking Te = Ti. We also note that in a narrow range 
w~v e ~ k2vTe the damping rate is of the order of the 
frequency. The region in which the acoustic wave can 
exist (1.8) and (1.10) lies on both sides of the critical 
wavelength for the acoustic waves ;\ * = 1/k* where 

1/m.( T·)-• ):' ~ rvNn y --:- 1 +_2 , 
m, T. 

(1.12) 

That is to say (1.10) holds when 

(1.13) 

and (1.8) when 

(1.14) 

The frequency of the acoustic waves (1.10) is greater 
than the quantity veme/mi when 

-v~-;---( 5--r;-) 
"A<;e:_rnNn - 1 +--T . 

me 3 e 
(1.15) 

It is then evident that satisfaction of (1.13) is a sufficient 
condition for introducing the difference in the tempera
tures Te and Ti in the frequency of the acoustic waves. 

In the region given by (1.14) the frequency of the 
acoustic waves in a nonisothermal plasma can be grea
ter than "eme/~ only when Ti :::P Te and 

(1.16) 

If (1.16) is not satisfied the plasma can be regarded as 
isothermal Te = Ti· 

2. EQUATIONS FOR THE NONLINEAR INTERACTION 
OF PLASMA WAVES AND ACOUSTIC WAVES 

We start from the equation 
8 , I 

iiieE =- 4:n J S(k, kh k.)En,EM~(k- ki- k2) · 

X ll(w - Wi- w2)dkdw dki dwi dk, dw2ei(kr-o>t), (2.1) 

where € is a linear integral operator for the dielectric 
constant. Since we are only interested in the interaction 
between acoustic waves (s) and plasma waves (l), we 
write the equations for the E l and Es fields separately:1> 

1>In obtaining Eqs. (2.2) and (2.3) we have neglected terms that do 
not satisfy the condition k- k2 - k 1 = 0. 

Ea.= ~E(k,t)exp{i(kr-Rsw~r.a.t)}dk (a=l,s), (2.4) 

where Re wk_ is the solution of the linear dispersion 

equation Re El (w, k) = 0 and Re w~ is the solution of the 
linear dispersion equation Ret:S(w, k) = 0. 

We consider the case in which the interaction between 
ss and ll waves can be neglected, in which case t:l and 
Es represent the linear dielectric constants. The exci
tation and interaction of l and s waves can only be dis
cussed in the case in which the correction to the fre
quency associated with this interaction is small com
pared with the frequency itself. If this condition is not 
satisfied there is a substantial change in the dispersion 
properties of the plasma at the frequencies being con
sidered. We shall not consider this latter case here. In 
accordance with the foregoing considerations, in the left 
sides of (2.2) and (2.3) we have 

Re e1(Re w~r., k) = 0, 1 I {)E• I -·-- ..,gRew~r.• Ea: iJt ' 

so that we need only consider the first term in the ex
pansion in the small parameter 

a=l,s. 

A similar expansion applies for the right sides of Eqs. 
(2.2) and (2.3), in which we neglect terms of order 
(aEa /Bt)/EO"Rew~ since taking account of these terms 
introduces corrections beyond the accuracy of the ex
pansion being used. In view of these remarks, we can 
now write Eqs. (2.2) and (2.3) and the approximate form 

(! + yl )E1(k, t) =- s~~k) ~ El(k!, t)E•(k2, t). 

X Si(k, kt, k2)eiA"'111(k- ki- k2)dkidk2, (2.5) 

( :t +v') E•(k2, t) =- s~:)) El(k, t)El(- ki, t). 

X S2(k2, k,- k.)-i<I.CIJII\(k- k1- k2)!lki dk, (2.6) 

where yl,s is the linear damping rate for the plasma 
waves ( l) and the acoustic waves (s) 

a . 
s"'(k)= w-Ree<'(w,k) I (2.7) 

Ow oo=Reroh.k 

Aw = Re(w~r.1 -ro~r.,l- w~r.,'), (2.8) 

while S1 and S2 are obtained from S(k, k1, k2 ) by integra
tion of Eqs. (2.2) and (2.3) with respect to frequency, 
making use of (2.4): 

S 1 (k, k,, k2) = S (k, Re ( ro~r..Z + ro~r.,S); k1, Re .ro~r.,l; k2, Re W~r.,'), 

s.(k2, k, -k,)=S(k2 Re(w~r.1 - W-~r.il; k, Rew~r.l;-k,,-Rero_k,z). 

Let us consider a rather intense packet of l-waves. 
Let ko be the mean wave number for the packet. We 
shall be interested in the dispersion relation for 
s-waves characterized by k = ks. We assume that the 
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vector ko ± ks does not fall within the range of wave 
vectors of the intense packet, that is to say, we assume 
that this vector characterizes a weak plasma wave. On 
the right side of Eq. (2.6) we then have the product of 
the amplitude of the strong wave E l 10>(k) and the ampli
tude of the weak wave (designated by 6El) 

6E1(k, t)E11°>(-k~, t) + El<0>(k, t)6El(-kt, t), (2.9) 

while Eq. (2.5) allows us to determine 6El(k) from 
E l 10>(k) if, on the right side, we neglect the contribution 
of 6 E l as compared with El 10> and if we neglect a jat 
as compared with the damping of the wave on the left 
side. As a result we obtain an equation that describes 
the excitation of s waves by strong plasma waves (this 
is discussed in greater detail in [SJ): 

( iJ ) 4(4 )~ dk dk' -+Y' E•(k.,t)=~ ~ I 1 [E1<0>(k,)]'EW•>(kt') 
at s' (k•J v' (k, + k.J 

XE•(k2 + k,- k,')exp{iRe(wk.'- w'k:+'wk,'- w"k,.rk,-k,')t} 

X "(k +f k )S2(k2,kt+k2,-k1)St(k1 +k2,k,',k.-i-k1 -k,'). 
;, I 2 (2,10) 

The equation that has been obtained is suitable for 
analyzing the effect of a infinitesimally narrow packet 
of l-waves: 

E1(k,t) =E1(t)ll(k-ko) +E''(t)~(k+ko). (2.11) 

In this case, if rapidly oscillating terms are neglected 
Eq. (2.10) becomes 

0 
6,1 lnE•(k,,t)+v' 

4(4n) 2jE1(t) j2 {S2(k2, ko + k.,_-ko)St(ko + k2, ko, k2) 

;•(k,) s1(ko+k•)y1(ko+k•) 

_ S2 (k2,k2-k0,ko)S1 (k2 -k0,-ko,k2)} ( 2.12) 
s'(ko- k•Jv'<ko- k,J · 

The nonlinear interaction described by Eq. (2.12) 
corresponds to the nonlinear excitation of acoustic 
waves. By virtue of the relation2> 

{J I ot ln E•(k2) I <;;; Wk,' 

we find that the nonlinear growth rate cannot be large 
and cannot vary rapidly with time. This means that the 
field associated with the intense packet varies rather 
slowly. A situation of this kind is reasonable for intense 
waves under conditions in which the waves are subject 
to excitation which is essentially equal to the damping, 
that is to say, when yl(ko) «: wS. The" indicated limita
tions determine the region of applicability of (2.12) if the 
intense waves exhibit a very narrow spectrum. We note 
that the nonlinear interaction between the s-waves them
selves can be neglected in the initial stage of the non
linear instability described by (2.12). As .far as the ll 
interaction is concerned we find that in obtaining (2.12) 
this interaction can be of importance only in the equa
tion that describes weak waves. But an interaction of 
this kind, linear in 6E, will correspond to the interac
tion of weak waves and strong waves for which w_ 
«: ve, IIi· As has been shown by the authors in[61 the 
nonlinear growth rates under conditions w_ << lie, IIi 
are smaller than yl(k) over a wide range of parameters. 

2llf this is not the case the notion of acoustic waves is not meaning
ful. 

Let us now consider the case of a rather wide fre
quency spectrum for the plasma waves, with the phases 
being random. Again we can isolate a region in which 
there are intense Z-waves and regions in which there are 
weak l-waves, retaining only those terms that are linear 
in the weak l-waves required in (2.9) along with the 
terms that are written, and taking account of terms such 
as E l 10>(k, t)E l 10 >(k1 , t). However, when averages are 
taken by means of the relation 

(E!(O)' (k, t)E~O>(k~, t)) = IE!(OJ(k, t) i'.S(k- k,) (2.13) 

we obtain an additional source of s-waves which is pro
portional to 6 (k2). If we are interested in s-waves 
characterized by k2 ;>< 0, the result can be obtained by 
averaging Eq. (2.10), making use of Eq. (2.13). The 
equation assumes the form 

( : 1 +v•)E•{k2,t)= 4 (4n~~~~;;•,t) ~ dk.jE'<">(k.,t)i'· 

(2.14) 

Results obtained by means of Eq. (2.14) are similar to 
those which have been obtained from Eq. (2.12). This 
can be understood because at low frequencies the inter
action of the high frequency waves is automatically 
averaged over the high frequency. For the slow change 
in the l-wave in the case being considered, a wide spec
trum is possible in general if the excitation and damping 
are balanced over a wide range of k1 vectors. 

We now consider the case in which the characteristic 
time for the nonlinear interaction of ll-waves is smaller 
than for the ls-waves. We assume that there exists, for 
these waves, a region of generation in which the excita
tion of waves is stronger than the damping and a region 
of absorption in which the damping predominates. Let 
the nonlinear effect of the ll-interaction be responsible 
for the spectral transfer of energy of the l-wave from 
the region of generation into the region of absorption. 
Furthermore, we assume that the distribution of l-waves 
remain stationary. This means that in the region of 
generation the excess of excitation over damping com
pensates for the loss of waves due to spectral transfer 
while in the region of absorption the damping of the 
waves is compensated by the influx due to the spectral 
transfer. Thus, in the absence of the ls-interaction the 
spectrum of l-waves is stationary. The presence of the 
ls-interaction leads to a slow change of this spectrum. 
Taking account of the ll-interaction in (2.2) and writing 
out the quantity (BEl jat)/E l Re wk we can obtain the 
nonlinear equation for the field E l which describes both 
the ll and ls interaction. 

We will assume that the interaction with s-waves only 
changes the correlation of a small number of l-waves. 
This is equivalent to the assumption that the s-waves 
interact effectively only with a small number of reson
ance l-waves (similar to the case in ordinary decay 
processes). As we shall see below, the results of the 
calculation verify this assumption. 

Averaging the equation for the s-waves over the en
semble of plasma oscillations and assuming that the 
spectrum of l-waves is quasistationarym we have (for 
details see[51 ) 

Q i'= 2(4rr) 2 r_dkdw~{IE(k-k2,a:')i• 
+ y s•(k•) J Q + L1wt s'(k) 
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_IE(k,~w 1 +w')l'}s'(kk-k k 'Q)S!(k kk -kw') 
£1 ( ki - kz) , 1 ' 2, 2, {!) ' .. z, ' 2 ' ' 

(2.15) 
S/(k,k- k2,k2, w', Q) 

= S/(k, Re w~-k,- w'; k- k,, Re W~--k,- w'; k,, Re w k;' + Q}, 
S/ (k2, k, k2 - k, w ') 

where C.w 1 = Re (wk-k2 + w~2 - wk_) « Q while 

[Es (k2, t) = JE2k2 , Q)e-int dt]. In obtaining Eq. (2.15) 

we have made use of the fact that in the approximation 
being used here 

for1 S,(k, k- k,, k,) = s1· (k- k,, k, -k,), 

which follows directly from the general expressions for 
the nonlinear second-order field polarizability. rei 

We now write the functions S,(k,, k2, k_) and 
S2(k_, k,, -k2) in explicit form:rsJ 

. noe3 lk-l (k1k2) 
Sl(k1,k,,k_)=!--~---~k~llk I' 

m?w 1w_w.(k-)>< 1 2 

. 1,71v,noe3 ILI (k1k2) S2 (k- k, -k2)= ,___ . 
' ' m.2 Q(L)Q.(k_)w~,2 lk,llk•l 

Here, e is the electron charge 

. I L 2 1 Vre2 ( "' . W- ) Q(k-)= 0.51ve + z 1- z2,96-Q 
W- e 

(2.16) 

(2 .17) 

and w_ = w 1 - w2 , k_ = k,- k2. For further simplification 
of the nonlinear dispersion equation (2.15) we assume 
that lk21/lk11 « 1. Expanding Eq. (2.15) to first-order 
in lk21/lkl and using Eqs. (2.16) and (2.17) we find 

4:n: S dkdw' { ~2 + iy' = ---- IE(k, w') 1'-IE(k, w' + ~w!) I' 
S'(kz) ~2 +~WI 

I a ) }1,71v.noe•(Rewk-k,-w')-1( k,k- k, )' 
- k, ilk IE(k,w') I' me4Vre"><R(k-)Q:;(k_)Woe ikTTk-k,l 

(2.18) 

3. INVESTIGATION OF CERTAIN PARTICULAR CASES 

As we have noted in Sec. 1, there are two regions of 
transparency for the acoustic waves, these regions being 
separated by a region of strong absorption. The further 
simplification of Eq. (2.18) is associated with the inves
tigation of excitation of acoustic waves in the transpar
ency regions. In the high-frequency region W-Ile 

« k~vTe we obtain the following nonlinear dispersion 
equation for the acoustic waves: 

"2 ( 5 T- )-1 1 ~w1 + Re wk' Q+iyk'(2)=-0.27wOe--·-- 1+~--'- Jdkdw'Q ---··· ' 
' k,'vr? 3Te ~2+~'>w1 

(3.1) 
Here, wk w = IE(k, w)I2/41TnoTe is the relative spectral 
density of the plasma waves while y~ is determined 
from Eq. (1.11) 2 

(3.2) 

As we have already noted above, in the limit n « C.w 
Eq. (3.1) describes the kinetic decay of the instability 
with a damping rate 

y(2) ~ 0,27:n:wOe ~~·~: .. :, S dk!lw'Qil(~w,). (3.3) 
2 UTe 

If y (2) > rt (2) the damping or excitation of the high
frequency acoustic waves will be determined by the non-

linear interaction.3 > It follows from Eq. (3.3) that a 
knowledge of the nonlinear growth rate y(2) depends on 
the sign of Q and when Q > 0 Eq. (3.3) describes the ex
citation of high-frequency acoustic waves by the plasma 
waves. 

In similar fashion we can obtain the dispersion equa
tion in the other transparency region, the low-frequency 
region w_lle >> k~vTe· However, in this case the quantity 
S,S2 (to a high degree of accuracy) is imaginary4 > so that 
an equation of the form of (3.1) describes the nonlinear 
real correction to the frequency ow. However, if we 
take account of the small real part in S1S2 there is a 
weak nonlinear instability. From the condition y(1) 
> y~(1) it follows that ow ?, w~, that is to say, there 
must be a strong change in the dispersion properties of 
the plasma at the frequency ws; this change cannot be 
described in the framework ofthe analysis given here. 

We now consider Eq. (2.12) and investigate the exci
tation of acoustic waves by a.narrow packet of plasma 
waves. Using Eqs. (2.16) and (2.17) and neglecting small 
terms of order w~/w oe' in the high-frequency region we 
obtain the acoustic waves 

a 3,42 VeWOe3 I E11' 1 
-dtlnEk,'(t)+ Vk,' = 3,16 k,4vr? 4:n:noTe \;'(k,) (2.7) 

{( _!<o_±_k_,_,ko )' l - l - ( ~- k,, ko )' (i) l_ l } 
X lko+k,lko (wk,+k, Wk,) Jko-kzlko ( ko wk,-kJ . 

- (3 .4) 

It then follows that when lk2l « lkol 
a 1,62 

atlnEk,'(t)+Vk.'= 1-j- 5/ 3T;/T. "•noTe. 
wz 

(3.5) 

As we have already noted above, the growth rate (3.5) 
must be smaller than w~2 but larger than y t so that 

(3.6) 

In the low-frequency region, as before, the primary 
feature is the real correction to the frequency w:

2
• 

4. DISCUSSION OF RESULTS 

A number of features of the effects considered here 
should be emphasized. 

1. First, the generation of acoustic waves can depend 
in a sensitive way on the correlation of the high-fre
quency waves, this being an important distinction be
tween these interactions and collisionless interactions. 
This feature follows from Eq. (2.18). In addition to the 
term (k28/8k)/E(k, w)l2, which is analogous to the term 
that arises in collisionless generation when t.w << w', 
there can be a term of the form (C.w8/8w)IE(k, wl2. 
Thus, the generation or damping of the low-frequency 
waves can depend on the frequency correlation of the 
ll waves or (in the usual sense) on the relative correla
tion time for two fields. 

2. A kinetic instability arises when n << C.w. In addi
tion to this, in accordance with Eq. (2.18) there can also 
exist a hydrodynamic instability when t.w << U. How
ever, in accordance with the assumptions that have been 
made, the indicated instability can only appear at short 

3>we emphasize again that the inequality ')'(2) «: wk~ must be satis
fied. 

4 lThe ratio ReS1 S2 /ImS, S2 ~ 'Yk0) I wk:(l). 
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wavelengths. Hence, in order for this instability to ap
pear it is necessary that, in addition to the intense 
stationary background, there exist an isolated beam of 
plasma waves whose spectrum does not overlap the 
primary spectrum. Such a beam of Langmuir waves 
must have an intensity much smaller than the intensity 
of the primary background, and the hydrodynamic insta
bility describes the generation of low-frequency waves 
due to this beam alone. We note, in passing, that a beam 
of this kind can actually arise in the case of an instabil
ity due to beams of transverse waves in a plasma. ll,al 

3. We emphasize that the excitation of low-frequency 
waves by plasma waves has an analogy with the two
stream instability of charged particles in the plasma. 
Attention has been called to this analogy in rs,IOJ • It may 
be assumed that the production of stationary spectra in 
turbulence due to excitation, for example, by the two
stream instability, proceeds in several stages: 1) exci
tation of plasma waves by the beam; 2) excitation of 
ion- acoustic waves by the plasma waves if T e » Ti; 
3) excitation of acoustic waves by ion-acoustic waves 
and plasma waves. The last stage of this process in a 
plasma of large dimensions with no magnetic field must 
always be the acoustic waves. We emphasize again that 
acoustic waves having the lowest possible frequency 
exist in any plasma (also where Te ~ Ti). Thus, the 
spectrum of the final stationary turbulence must include 
the development of acoustic turbulence. 

4. In conclusion we note that the growth rate for the 
excitation of acoustic waves is v~/k2vTe times greater 
than that charaeteristic of collisionless excitation. This 
feature arises from the fact that in the region of fre
quent Coulomb collisions the basic contribution to the 
excitation of acoustic waves ruJ is associated with a 
dissipative term of the form nomeve(Ve- Vi)2 , which 
appears in the equation for heat transfer, whereas in 
the collisionless plasma the important term is (VeV)Ve, 
which appears in the equation for momentum transfer. 
The ratio of th€~se two terms is of order v~/k2vTe' so 
that either one or the other plays the important role, de
pending on the limit being considered. 5 > Thus the insta-

5 lThis result can be obtained qualitatively another way. This feature 
has been called to our attention by L. I. Rudakov, who also proposed 
the name for the instability. 

bility being treated here might be called the nonlinear 
dissipative heat instability. 

In conclusion the authors wish to thank L. I. Rudakov 
for valuable comments. 
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