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A general class of nonstationary solutions in which the distribution function depends only on the veloc
ity and electric field potential is derived on the basis of self- similar solutions of the kinetic equation 
for a collisionless quasi-neutral plasma that were obtained previously. These solutions are similar 
to the Riemann solution for simple waves in ordinary hydrodynamics. 

IN previous researches of the authors and Parilskaya, 
self- similar solutions were investigated for the colli
sionless kinetic equation for the case of a quasi-neutral 
plasma. [1-3 J In the present work we shall show that one 
can construct even more general solutions on this basis, 
solutions which correspond to the Riemann solutions for 
simple waves in ordinary hydrodynamics (see, for ex
ample, [4 J, Sec. 94). 

We note that simple waves in a plasma were investi
gated previously only for the case of cold ions, when it 
was possible to describe them in terms of the equations 
of hydrodynamics .. [s-?J We shall consider the general 
kinetic case when the ions are described by distribution 
functions. 

In the one-dimensional case the kinetic equation for 
the ion distribution function has the form 

8g ag 1 ag a¢ 
--+u-----= 0 at 8£ 2 au a; . 

(1) 

Here the variables 

"- j;_ v 2:rtT._ 
b -- No M ' 

have been introdueed for convenience; M is the mass of 
the ions, v their velocity, fi the ion distribution func
tions, No the undisturbed ion concentration, ifJ the elec
tric field potential, Te the temperature of the electrons 
in energy units. H all the quantities change slowly over 
distances of the order of the Debye radius, then the 
plasma is quasi-neutral: 

Ne=Ni. (2) 

If the electrons are described by the Boltzmann distri
bution, which is the usual case, then it follows from (2) 
that 

(3) 

The assumption of a Boltzmann distribution for the 
electrons has no significance in principle and is used 
only for definiteness. Actually, the solution can be ob
tained for any stationary distribution of the electrons in 
which Ne is locally connected with ifJ· This problem has 
been analyzed in detail in[3,sJ. 

The solutions which we shall seek are characterized 
by the fact that th€~ function g in them depends on ~ and 
t only through the intermediate variable <J;: 

g(s, t, u) = g[1Jl(s, t), u]. (4) 

(In self- similar solutions, where g and 1/! depend only 
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on the combination T = ~/t, it is obvious that this is the 
case.) Substituting (4) in (1), we obtain 

or 

&g [a* +u~]-~ 8g a* =O 
aljl at 8£ - 2 au iis ' 

ii¢/at 1 agjau 
a1J:/o£ = 2 &g/ii1J: - u. (5) 

The right side of Eq. (5) by assumption depends only 
on <J; and u, and the left side, only on ~ and t. It is 
therefore clear that these expressions are certain func
tions of lj! only, which we shall denote by - T( <J;), so that 

and 

8¢/at 
·--;:--_- = --r(¢) 
d¢/o[; 

ag 1 ag 
(u--r)-_----= 0. 

otj; 2 au 

(6) 

(7) 

Changing in (7) to differentiation with respect to T, we 
get 

ag 1 ag d¢ 
(u-T)-_-_ ----=0. 

o-r 2 au dt 
(8) 

This is the same equation which was obtained in[ 1 J 
for g as a function of u and T = ~ /t. In our case, how
ever, the dependence of T on ~ and t can have a more 
general character. To make this dependence clear, we 
return to (6). we have 

whence 

(9) 

where p is an arbitrary function. If we set p = 0, then 
T = ~ /t, so that we are returned to the special case of 
self- similar motion. 

Finally, we see that in the class of solutions of Eq. 
(1), (3) found by us, the distribution function is an arbi
trary solution of the self- similar equation in the varia
bles u and T, where Tis connected with the physical 
variables ~ and t by Eq. (9), which contains the arbi
trary function p(T). In accord with (9), a straight line in 
the ( ~ , t) plane corresponds to each value of T. On this 
straight line, the function g has a constant value, g(T, u). 
(Naturally, in a problem with initial conditions, we must 
consider only t > 0.) 

If we solve the problem with initial conditions then, 
fort= 0, s = p(-r) 
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and T = q(O, where q is a function inverse top. Thus, 
our solution corresponds to the problem in which the 
distribution function at the initial instant is 

g[t = 0, £, u] = ga[q(S), u], 

where ga is an arbitrary solution of the self- similar 
equation (8), and q is an arbitrary function of ~ . If we 
recall that ga is determined by two arbitrary functions 
of the velocity u (the boundary conditions for T- ±oo), 
then we see that our solution depends on three arbitrary 
functions, two of u and one of ~. 

As in hydrodynamics, the relation (9) cannot have a 
meaning over the entire(~, t) plane. Actually, let there 
be an inflection point To on the curve p(T) :p"(To) = 0. 
Then, beginning at the instant of time t 0 = -p'(To), the 
dependence of Ton ~ becomes non-single-valued. In 
reality, for T f>! To, t R:: to, (9) can be represented in the 
form 

s· -"tot* = 't•t• - a."t* 3, 

,;' = 't- To, t' = t- to, £' = S- Toto- p(To}, a= - 1/•p"' (To). 

(10) 
We assume that a> 0, considering the solutions that 
were single-valued at the initial instant of time, and 
only became non-single-valued later. Equation (10) has 
one root for T( ~, t) for t* > 0 and three for t* > 0. At 
the same timet* = 0, T* =- (~ */a)112 so that the solu
tion has the form 

g = ga[To- (£*/a) '1>, u]; 

ag 
--+oo for s'-+0. &; 

In hydrodynamics at the time t = to at the points 
~ * = 0, a shock wave is formed, the intensity of which 
increases with increase in t. The hydrodynamic solution 
for t > t 0 in the entire space ~ no longer has the form 
of a simple wave. In similar fashion, in the kinetics for 
t > t 0 , the solution loses the form of a simple wave. 
Although its character for t > to is not completely clear 
at the present time, it is certain that the erosion of the 
sharp front, associated with the thermal motion of the 
ions, has an important value in kinetics. We note that 
the very fact of the formation of a front of infinite curva
ture in collisionless kinetics in the presence of a distri
bution of the ions over the velocity u is quite noteworthy. 

In conclusion, we consider a problem with boundary 
conditions as an example of the use of simple waves. 
Let a piston move in a plasma with velocity u0 (t). Ion 
recombination takes place on the surface of the piston. 
The ion distribution function is described by Eq. (1). 

The boundary condition here is 

g = 0 for u < uo = d'§o I dt (11) 

( ~ = ~ 0(t) is the law of motion of the piston). The condi
tion (11) expresses the absence of ions reflected from 
the body. The solution of Eqs. (1) and (3) with such 
boundary conditions can be represented in the form of a 
simple wave. Actually, the solution of the self-similar 
equation (8) ga(T, u) obtained inl21 possesses the prop
erty 

g. = 0 for u < r:. 

The function g = ga satisfies Eqs. (1) and (3). The boun
dary conditions (11) for them are satisfied if T = uo on 
the surface of the piston, or 

dso (12) dt= -.:; so(t)= t-.:+ p(-.:). 

The latter equations in parametric form (parameter t) 
determine the function p(T). Then Eq. (9) expresses the 
value of g at each point of the plane ( ~ , t) in terms of the 
solution of the self-similar equation. 

What has been said has a very simple geometric 
meaning. We construct the curve of motion of the piston 
~ = ~ 0(t) in the (~, t) plane. We now draw the tangent to 
this line in the direction t > 0. On these tangent func
tions, the distribution will have the value ga(T, u), where 
T is the tangent of the angle of inclination of the tangent 
to the t axis (see the figure). 

We note that just such a construction permits us to 
obtain a solution of the problem of the ion distribution 
close to the surface of a metallic body moving rapidly 
in the plasma. If the curve of motion of the piston or 
the contour of the moving body has a singularity, then 
the solution in the (t, 0 plane will have a weak discon
tinuity. The structure of such a discontinuity is studied 
inlsJ. 
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