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The shear modulus G is calculated for a triangular vortex lattice in rotating helium. The energy of 
normal oscillations of an arbitrary stable simple lattice is determined. In the long wave limit it is 
the same as the energy of transverse sound in a body with a shear modulus G. 

1. We consider in this paper the elastic properties of 
lattices of straight-line vortices in an ideal incom
pressible liquid. It was found earlier[l- 3J that triangu
lar and near-triangular lattices are stable against 
small perturbations. Such lattices could exist in rotat
ing He II. The oscillation spectrum of the vortex 
lattices is known[ 1 • 31 • In the long-wave limit, the oscil
lations of a triangular lattice propagate with a velocity 
s = Y2v'rn/27T, where r is the circulation of the 
velocity around the vortex and n is the angular velocity 
of rotation. Stauffer[ 3J considered the influence of the 
normal component of helium on the damping of the os
cillations. The energy in the rotating system was cal
culated for all simple lattices [4 1, The energy of a small 
deformation of a triangular lattice will be determined 
below, and we shall show that the long-wave oscilla
tions are similar to transverse sound in a solid. 

2. We start with a small shear deformation of a 
triangular lattice. Such a deformation leads to a vortex 
lattice which is close to triangular and has a larger 
free energy. The entire analysis will be carried out in 
a rotating reference frame, and the free energy is Er 
= E - Mn, where E is the kinetic energy of the liquid 
and M is the angular momentum. 

The triangular lattice is stable, meaning that we can 
use elasticity theory[ 5 J and describe the stiffness of 
this lattice by means of a shear modulus G. Owing to 
the high symmetry of the triangular lattice, this modu
lus should be isotropic. For the increment of the free 
energy as the result of the deformation we obtain 

bE,= Gs2 /2, 

where ~ is the deformation angle. We shall calr 1late 
below the modulus in accordance with the formula 
G = 8 2 Er/8~ 2• 

3. We introduce a complex coordinate z such that 
the position of each vortex can be described by a com
plex number zmn =2m w1 + 2n w2, where m and n 
are integers and w 1 and w 2 are complex quantities, 
which represent the half-periods of the lattice. For a 
triangular lattice 2 w2 = ( 1 + i 13) w1. Let us assume 
that only the half-period w2 is changed by the deforma
tion. Using the notation w2/w 1 = T =IT l~<P, we can 

readily obtain dr / d~ = ..f3{2 and 

dlnl,;l -y3 dqJ 3 
-as-- = -4 as 4 

The dependence of Er on the parameter r for a 
liquid density p = 1 and a velocity circulation around 
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the vortex r = 21T was obtained inf4 l. It is described by 
the formula 

oE, BE, 
o!n l1:l =- 2lm(cHJJtW2)N, ~=- 2Re(aw 1w2)N. 

where N is the density of the vortices per unit area 
and a is a complex number, defined by the relation 

III 
a= Q iiit +____:::____ Elt (0). 

W 1 12 Wt2 Elt1 (0) 

Here e 1 is the elliptic theta-function (roman numerals 
denote the order of the derivative). 

We can now calculate dEr/d~ =G~: 

dE,=___!!_:_ iiln 1,;1 + iiE, dqJ = -13Nlm(awt'). 
d£ iiln 11:1 ds a<P a; 

For g we get 

G = d'E, = -~Nlm d(awt'). 
d£2 2 d,; 

From the definition of a and from the differential 
equation for the theta-function[sJ we obtain 

n3 El1v (0) (eJ" (0) ) 2 

G= 32( Elt1 (0) - (Elt'(O)JZ)N. 

For the invariant g2 of the elliptic Weizstrauss 
functions, we can obtain from the Laurent expansion 
of the zeta function 

the expression 

- 2 _!!__ • ~ (Eli" (0)) 2 

g,_ CwJ ( 3 (8t1 (0)) 2 

but for a triangular lattice g2 =0 and a = 0, and when 
these relations are taken into account we obtain 
G=1TN/4, orfinally G=n/4, since 1TN= n. 

The velocity s of long waves is known[ll: s = Y2m, 
meaning that G =s 2. For a liquid density p "'- 1 it 
would be necessary to write 

G =vs'. 

This relation is typical of a solid, if s is interpreted 
as the velocity of the transverse sound. Here p the 
meaning of the density of the lattice (but not of the 
liquid, although they are equal). 

4. We now find the free energy of small oscillations 
of a vortex lattice (not necessarily triangular). This 
energy does not depend on the time, as can be shown 
by direct calculations. The displacements cmn of the 
vortices for normal oscillations are given by 
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Cmn = str~x( cos 6Jt- i Q: r sin 6Jt )cos(mcp + niJ1), 

where E is a small number, w = ...j 02 - r2, re2iX 
B(K) is the function defined[1l for each normal os

cillation with 

(cp6!2 -IJ1wl) In = x 1= in 1 QX, 

X is the wavelength on the complex plane. For t = 0 
we have 

Cmn = se-ix cos(mcp + n¢}, Cmn = -ise-iX(Q- r) cos(m<p + mp). 

Let us find the energy as a function of E. The 
velocity of the liquid at the point where the vortex is 
located, in the absence of a vortex, is cmn· To in
crease E by dE .it is necessary to shift each vortex 
by a distan~e e-1X cos (mq1 +nl/l)dE. Thi~ must be per
formed agamst the force ircmn = 21TE e-1x (O-r) 
cos (mqJ +nl/1), owing to motion of the liquid with an 
energy loss 21TE dE (0 - r) cos2 ( mq1 +nl/1 ). The mean 
square of the cosine is 7'2, so that the mean energy 
per vortex is 1TE 2 ( 0 - r )/2. 

In the long-wave limit, these oscillations are trans
verse. In the case of long waves of a triangular lattice 
the expression 1T(1T€/2X)2 is valid for the average en- ' 
ergy since IB(K)I co 0- 0 2 IKI 2/2Yl This energy can 

be compared with the energy of standing waves of 
transverse sound in a solid with a shear modulus G. 
In the long-wave approximation they are equal. 
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