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The transverse high frequency conductivity of size-quantized films is calculated. It is shown that if 
the thickness d of the film is sufficiently small the conductivity will be considerably smaller than that 
of a bulky sample. This results in pronounced anisotropy of the dielectric properties of the film. In 
particular, propagation of an electromagnetic wave polarized perpendicular to the film plane may be­
come possible. An experiment is proposed which should make detection of the anisotropy possible. 

As is well known, quantum size effects can occur in 
thin metallic and semiconducting films. They appear 
whenever the quantization of the motion of the conduc­
tion electron in a direction normal to the film becomes 
significant (we assume this direction to be the z axis). 
The influence of size quantization on the static conduc­
tivity has been considered in the literature with suffi­
cient detail (see, for example, the review UJ). However, 
the discrete character of the transverse motion of the 
electrons can also affect the high-frequency properties 
of the film. In particular, if the following conditions are 
satisfied 

T <eo, 

ftoo~ eo, 

(1) 

(2) 

(3) 

(where Eo = 11 2 h2 /2md2 is the energy of the size quan­
tization, w is the frequency of the external electromag­
netic field, and 11 is the collision frequency), one should 
expect an appreciable decrease of the component O"zz(w) 
of the high-frequency conductivity. 

This effect should lead to an appreciable difference 
between the high-frequency properties of the film and 
those of a bulky sample. In particular, if the indicated 
inequalities are satisfied with a sufficiently large mar­
gin, O"zz can reach values that are characteristic of 
dielectrics, and in this case the propagation of an elec­
tromagnetic wave polarized in the direction of the z axis 
becomes possible in such a film 1>. Estimates show that 
in a film of thickness d R: 5 x 10-6 em made of a mater­
ial with m RJ 10-2 m 0 , equations (1) and (2) are satisfied 
when T < 30°K, w << 1013 sec-1• Such an effective mass 
is possessed, in particular, by Bi (along the trigonal 
axis) and by InSb, in which the mobility is quite high, so 
that (3) is well satisfied. 

We now proceed to a quantitative consideration of 
the problem. We start with the calculation of O"zz· We 
note beforehand that the transverse conductivity of the 
size-quantized films was calculated in the resonant 
region (hw R: l 2Eo, l = 1, 2, 3, ... )l2J and in the quasi­
classical region (hw ~ Eo) lS J. We are interested in the 
case (2). 

We shall neglect in the calculations the spatial dis-

1>By polarization we mean here the direction of the intensity of the 
electric field of the wave. 

persion. The validity of this procedure will be proved 
later. We represent the high-frequency electric field E 
by the vector potential 

A=A,=i..:._eiwte•'Eo=i..:._E; s--++0. (4) 
(J) (J) 

In the space of the eigenfunctions of the unperturbed 
Hamiltonian 

1 ( :rr.lz) "¢• ~ 1 = --= ei(k.x+kuY> sin - , l = 1, 2, 3, ... 
X y l'lf2d d 

the perturbation operator V =- (e/mc)Apz has matrix 
elements 

(k.,k~liVIk.'k.'l')= 4eft E-ll_'_6(k.,-kx')6(ky-k~') (5) 
mrod l2 -l'2 

at l and l' of different parity, and 

(k.,kuliVIkx'ku'l') = o 

when l and l' are of the same parity. 

(5') 

Using the density-matrix method[4J, we obtain an ex­
pression for the current density in the form of the per­
turbation-theory series 

j, = i : {~ /o(en)¢,: (P,- :A) \('n + (ift)-t ~Uo(e.)- fo(e.,)] 
N .~ 

t 

X ~ (nl V(t') In') exp[it' (ron- ro.,)] dt' IJl,.! (P~- : A) 

X1Jln exp [it(Wn•- OOn)] +., .} , (6) 

where nand n' are the sets of all the quantum numbers, 
En= flwn are the corresponding energies, and fo(E) is 
the Fermi function. 

Let us average (6) over z and retain only the terms 
.linear in E: 

ie2 {"' 1 1 16ft "'' ( ll' )2 11zz =- 2 2 d LJ J J /o(e• h z)dkxdku +- LJ -.-- • 
l'l moo t x Y md2 l,l' 12- l'' 

/o(e•x•vz)- /o(eA.,Ayl') 
x n -dk,dk, J 

00 + ft-l(eA .,A yz- 8A .,k y!•) 

The prime at the summation sign denotes here that we 
are summing only terms in which l and l' have different 
parities. In the derivation of (7) we have taken the limit 
ass- +0. 

By virtue of (2), the second term in (7) can be expan­
ded in a series in flw/E 0• The zeroth term of the expan­
sion cancels the first term completely. This is clear 
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from physical considerations, for when Eo- co we should 
obviously have jz - 0. The linear term is an odd func­
tion of l - l' and yields 0 upon summation. We confine 
ourselves to the quadratic term of the expansion: 

CJ = _ 8ie•n•w 2_''(_1_1'-)2 ('(' fo(ekxkul)-fo(8kxkyl') dk dk. (B) 
zz rr,2m2d3 l, ~· [2 -['2 JJ (ekxkyl- Bkxkyi')3 x Y 

To obtain the final results, let us consider individual 
particular cases. 
·· Assume that the condition Nd3 ~ 1 is satisfied, which 
is equivalent to the inequality l; >> Eo (N-carrier den­
sity, /;-level of the chemical potential). By virtue of 
(1) it is obvious that in this case the electron gas should 
be regarded as completely degenerate. In the lowest 
order in Eo/?;, the calculations yield 

.e2md2w (3N)'/, 
CJzz = t 12n1i2 -;:;- ' 

If we take into account the scattering of the electrons, 
by introducing th~~ collision frequency v, then it is 
necessary to replace w in our expressions by w- iv. 
By virtue of (2), we can choose for v the value of the 
collision frequency for the static conductivity. This 
quantity (more accurately, the relaxation time 7 = v-1) 

was calculated by Tavger and Demikhovskil for scatter­
ing by acoustic phonons[5 ' 6J, and by Sandomirskil for 
scattering by a o--like impurity potential [?J. 

The final expression for a zz has in this case the 
form 

e2md2 ( 3N )'/, 
CJ.zz = 12nfi' --;- (v + iw). (9) 

We now consider the case Nd3 < 31T/2. By virtue of 
(1), only one level of the size quantization will then be 
filled. The answer will not depend on the degree of de­
generacy of the electron gas, and therefore for simplic­
ity in the calculations we shall assume the degeneracy 
to be complete. Then the Fermi energy is equal to[aJ: 

n21i2 n21i2dN 
1; = 2md2 + -----;_- · 

Ta~ing this into account, we obtain 
256e2mdtN 00 412 

a,=- •n• (v + iro) L; (4l"-1)•. 
n 1~1 

Since the series eonverges very rapidly, we can confine 
ourselves with good accuracy to the first term. We then 
obtain 

1024 e2mdtN 
Ofzz = 243n•h2 (v + iw). (10) 

It should be noted that if in a given substance there 
is a group of heavier carriers, which makes no notice­
able contribution to the conductivity of the bulky sample, 
then it is necessary to take their presence into account 
in the case of a size-quantized film. If the conditions 
(1)-(3) are not satisfied for these carriers, then the 
contribution made to Ozz by this group of carriers, cal­
culated for example by means of the formulas of[3 J, may 
turn out to be larger than the values (9) and (10) obtained 
by us. If (1)-(3) are satisfied for them, then their pres­
ence can also be significant because azz ~ m. We shall 
henceforth assume that the second group of carriers is 
missing. 

Let us proceed to the propagation of electromagnetic 
waves in our film. From the point of view of the dielec­
tric properties, this film can be regarded as a uniaxial 

crystal with an optical axis coinciding with the normal 
to the film. Two types of waves are possible in it: 
ordinary and extraordinary[9 J. The first of them is 
polarized parallel to the surface of the film, i.e., per­
pendicular to the plane of incidence, which we denote by 
xz. This is the ordinary damped wave, the same as in 
the bulky conductor with conductivity axx = ayy (which 
generally speaking differs from the conductivity of a 
bulky sample of the same material). We shall not con­
sider this wave. 

The extraordinary wave is polarized in the plane of 
incidence. The dispersion law for this wave is of the 
form 

eGa w2 
Xo~ + 4ni-;;z Xo(CJzz + CJxx} 

- ( ~) 2 
WCJzz<Yxx- XQwk2 - 4ni ( CJzzkz' + CJxxkx2} = 0, (11) 

where K 0 is the lattice part of the dielectric constant. 
In the case k = kx we obtain the usual expression: 

w• w 
kx' = Xo-+4ni-CJzz. 

cz c2 
(12) 

Such a wave can have quite small damping. For exam­
ple, for a film n-lnSb (JL ~ 3 x 105 cm2/V-sec[10J) of 
thickness 3 x 10-6 em at N ~ 2 x 1014 cm-3 , the order of 
magnitude of Im k/Re k is 10-2 (in such a film, only one 
level is filled and a zz is calculated by means of form­
ula (10))2 >. 

We now have to prove that it is legitimate to neglect 
the spatial dispersion. This can be done when 

'Ak, ~ 'A max n:x;;w I c; 1'2mDCJzz I c2 } ~ 1, 

dkz ~ J1i2nWCJxx I c2 ~ 1 (13) 
(It is the mean free path). As a rule, these inequalities 
are satisfied quite well. For example, for the already 
mentioned InSb film or for a Bi film with d ~ 10-5 em, 
in which axx ~ 5 x 102 Ohm-1 cm-1 and It ~ 4 
x 10-5 cm[HJ, the inequalities of (13) are violated only 
at such frequencies, for which (2) no longer holds. It 
should be remembered that in (13) it is impossible, 
generally speaking, to substitute directly the experimen­
tal value of axx characterizing the static conductivity, 
and it is necessary to introduce a factor (1 + w2 T 2t\ 
which takes into account the temporal dispersion. 

The conductivity anisotropy described in the present 
paper can be observed experimentally in the following 
manner. Let us imagine a waveguide partitioned longi­
tudinally with a dielectric substrate on which a size­
quantized film is deposited. The presence of the film 
will cause attenuation of the radio waves propagating 
along the waveguide. The attenuation coefficient is[12 J 

a= ;c( ~ImxEE*dS )/(Re~[E,H*]eds), (14)" 
sn s 

where E and H are the field intensities in the waveguide, 
e is a unit vector along the waveguide axis, Sis the 
waveguide cross section, Sn is the transverse cross 
section of the film, and K is its dielectric constant. If 
a wave with E parallel to the film is excited in such a 

2>1n view of the lack of experimental data on the mobility in thin 
films of InSb, we have chosen for estimating purposes the mobility in a 
bulky sample. In a film, obviously, JJ. is smaller. This changes corre­
spondingly the estimates for N. 

*[E,H*] =EX H* 
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waveguide, then for such a wave a ~ ax:xd/cL (L-width 
of waveguide). For a bismuth film with d R; 10-5 em, in 
the em band, this yields a ~ 1. On the other hand, if E 
is perpendicular to the film, then a ~ O"zzd/cL, i.e., 
smaller by several orders of magnitude. Such a differ­
ence in the attenuations can be readily observed. 

In conclusion I wish to express deep gratitude to 
Professor L. E. Gurevich for directing the work and 
for valuable remarks, and the staff members of the 
radio physics department of the Leningrad Polytechnic 
Institute, v. v. Gur'ev and B. Ya. Pavlov, for various 
consultations. 
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