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A method is proposed for observing superheated states of type-1 superconductors which are ordinarily 
in the instability region. 

J. The magnitude of the superheating field for bulk 
type-I superconductors has been obtained in a series 
of papers on the basis of the Ginzburg-Landau equa
tions. These calculations were carried out either nu
merically[11 or by asymptotic matching of solutions 
written down separately for large and small x[21 (super
conducting semispace in a parallel magnetic field with 
the x axis directed into the superconductor). In this 
paper we present a solution which utilizes only the 
smallness of the parameter of the Ginzburg-Landau 
theory K « 1. This solution contains no matching with 
which inaccuracies of the order of unity in the numeri
cal coefficients are possible. 

The initial system of one-dimensional Ginzburg
Landau equations is of the form 

with 

d2t/dx2 ~= x2[-(1- A2)/ + fl], x~ 1, 
a2A I dx2 =fA, 

dj/ rh lx~o = 0, f I x~+oo-+ 1, 
dA/dxlx=O = ll,, Alx~+oo-+0; 

(1) 
(2) 

here f(x) is the modulus of the order parameter, and 
A(x) is the vector potential. The first integral of Eqs. 
(1) and (2) is 

( dA )z= _i_ _ ___!_(df )' 2_(1-A•)f+..!:._. 
dx 2 x2 dx 2 

(3) 

The problem consists in finding a connection between 
the external magnetic field He and the value of the or
der parameter of the superconductor fo on the surface 
of a superconductor. 

Let us start from Eq. (2) which by the substitution of 
u = A' I A takes on the form (the primes denote deriva
tives with respect to x) 

u' = F- u2, ulx~+oc-+ 1. 

The solution of this equation has the following structure: 

u(x) = -f(x)- <p(x), f(x) ><p(x), 

where cp(x) satisfies the following equation 

QJ'- 2/<p - 'Jl' = - /', <pI x~+oo-+ 0. 

By virtue of the inequality f » cp which is fulfilled for 
all x (so far this inequality is an assumption but below 
it is confirmed for a sufficiently large range of values 
f0 ) one should in the exact equation omit the term cp2 
compared with 2fcp; following this, the equation is 
solved and yields 
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Cf(X)= exp[ 2 f fdx] rf'(x)exp[ -2 s fdx]dx. 
0 X 0 

Taking into account the obvious inequality f'(x) 2: 0, 
we find that o/o > 0 

lfo"""lf(O)= S /'(x)exp[-2 S fdx]dx. 
0 0 . 

(4) 

Utilizing now the definition u = A' I A = - f - cp and the 
corresponding boundary conditions, we write Eq. (3) at 
the point x = 0: 

whence 

1 [ H; J fo4 He2=-- 1----- f2+-
2 (/o + cpo) 2 0 2 ' 

fo 
H.Z=-(1-fo2). 

41fo 
(5) 

Relation (5) shows that in order to solve the set problem 
it is sufficient to express o/o from (4) in terms of He and 
f0 • To this end we shall first obtain the function f'(x) in 
the neighborhood of x ~ f~1 . In the indicated region of x, 
Eq. (1) reduces to the equality 

Assuming again that f' If = R(x), we have 

In this equation one can (as can be readily confirmed) 
omit the R2 term. In addition, 

H. 
A(x) lx~t,-• =- Toexp(-/oX). 

All the utilized simplifications separate the principal 
terms in the parameter K << 1. This accuracy is suffi
cient in itself. In addition the sought function f'(x) will 
then be integrated, a fact which improves further the 
accuracy of the approximation. 

Solving the simplified equation 

R' = x2H.Z/0- 2 hp (-2JoX), R(O) = 0 

and taking into account the equality f' = R(x) f0 valid with 
the same accuracy, we have 

·x.ZH 2 
f' (x) = 210; [1- exp(-2/oX)]. 

Substituting this value of f'(x) in (4), we find o/o 
= K~~ l8f~, after which (5) takes on the form 

(5a) 
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This expression coincides exactly with the correspond
ing result of Galalko. l2J 

With the aid of (5a) one can readily confirm that all 
the assumed approximations [ cp (x) « f(x) and R2(x) 
« K2A2(x)] are valid as long as f0 » K which is quite 
sufficient for determining the maximum superheating 
fields for which f0 = 1/-12. The graphical dependence 
of (5a) is shown in Fig. 1 where formula (5a) corre
sponds to the entire branch a-b and to a certain portion 
of the branch b-e in that region in which the inequality 
f0 » K is fulfilled. On further decreasing f0 the correct 
solution should tend to He = 1/-12. 

2. On going over from the branch a-b to the branch 
b-e the solution of the system (1)-(3) for the semispace 
in a given external field becomes unstable, a fact which 
can be confirmed by the use of the results of Galalko. l2J 

There exists, however, an artificial assumption de
scribed below with the aid of which some of the states 
of the branch b-e can be rendered observable. In this 
connection it becomes essential to solve the system 
(1)-(3) in the neighborhood of the point c where He:;(: He 
and f0 -;:;, K. 

Let us start from the solution of the auxiliary prob
lem in which there is no external surface and the bound
ary conditions are of the form 

f(x) lx~-oo-+0, 
A'(x) lx~-oo-+Hc, 

f(x) I x~+=-+ 1, 
A(x) lx~+=-+0. 

This problem was solved by Ginzburg and Landau l 3J for 
calculating the coefficient of surface tension on the ns 
boundary. However, they did not consider the region of 
small values of the order parameter since this range of 
values of f(x) is unimportant for determining the coeffi
cient of surface tension and one can restrict oneself to 
the appropriate estimates. For us, on the other hand, it 
is precisely the region of small values of f(x) which is 
important. 

Let us rewrite Eq. (3) expressing in it the parenthe
sis (1- A2 ) with the aid of (1) in terms off and f": 

%-2[ (1')2 _ //"] = '/2 _ (A')2 _ '/2/". (6) 

In this exact equation starting from - oo up to certain 
values of x the right-hand side is a small quantity com
pared with the left-hand side of (6). As the characteris
tic point up to which one can expect this smallness to be 
preserved one can specify the turning point of the func
tion A'(x), i.e., the turning point of the coordinate de
pendence of the magnetic field. The third derivative of 
the vector potential vanishes at this point, A111 (x) = 0. 
Calculating by means of (2) the derivative A 111 (x), setting 
it equal to zero, and placing the origin at the turning 
point, we find that at the origin the following condition 
should be fulfilled: 

f, 0 

FIG. I 

2/o' / /o = -Ao' I Ao; (7) 

f0 = f(O) and the primes denote the first derivatives. 
Thus the proposed structure of the solution is the 

following. In the region of positive x the functions f(x) 
and A(x) have the usual form 

f(x) = th [xx IY2 + £1, tb £; = /o, 

A(x)=Aoexp[-/oX], x>O. (8) 

For negative x the magnetic field is practically constant 
and the order parameter is described by Eq. (6) with the 
right-hand part discarded: 

A' (x) :::::: 1/l'Z, A = (x + l'ZAo) ry2, 

(/') 2 - !!" = 0, f(x) 1-+ 0, f(x) lx=O = /o. (6a) 
:r-oc 

The functions f(x) and A(x) and their first derivatives 
should match at the origin. In addition, condition (7) 
should be fulfilled. 

Equation (6a) is solved in the following way: we write 
the identity 

!" = _1_ _cl_ ( df )2 
2 df dx 

and introduce the notation (df/dx)2 = R(f), after which 
(6a) takes on the form 

I dR 
R(!)-2dt=O. 

Solving this equation and furthermore the equation which 
determines R(f), we find that 

f(x) = foecx, X< 0, 

where C is an arbitrary constant. Using this expression 
for f(x), we carry out the required matching including 
condition (7). As a result 

fo = 2'1•y%, Ao = -1 li2to, C = 2-'f<J'x. (9) 

The order of magnitude of f0 from (9), f0 ~ K 112, at
tests to the sensible nature of the chosen approximation. 
On the one hand, for such values of f0 the definition of 
f(x) of the form f(x) lx>o = tanh (Kxj-12 + ~)is still valid 
at the limit of applicability. On the other hand, the 
value of f0 is sufficiently small so that at the limit of 
applicability one can assume for x < 0 that the magnetic 
field is constant (for details see the Appendix). 

Let us now go over to the case of a semispace; to this 
end we introduce a free surface and transfer onto it the 
origin. The conditions 

A'(x) lx=O =He> 1 I y"Z; f'(x) lx=O = 0. 

should be fulfilled on this surface. In order to satisfy 
the conditions which have been set up, one must solve 
Eq. (6) and not (6a). This can be done if account is taken 
of the fact that for small deviations of He from He (H~ 
- 'i'2 « 1, see the Appendix) in the region up to the 
matching point x = A which is separated from the free 
surface by some so far unknown distance A one can as
sume He constant, as in the previous problem. Here 
the replacement (df/d."l:)2 = R(f) again turns out to be 
effective and the solution (6) is written as follows: 

f(x) =fochyx, y=x(Hl- 11,)'1'1/o, x~A.. (10) 
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Matching the solutions (8) and (10) for x =A where the 
matching point A is determined by the same condition 
(7) which is however already fulfilled at the point x =A, 
we find 

,1 2 
J..=-2'1 ,,InH• '/' 4X 2 e- 2 

(11) 

None of the numerical factors in (11) have any particu
lar significance and should be assumed to be of the or
der of unity. 

From the cited formulas (11) we note the expression 
for f0(He) which together with (5a) attests to the conser
vation of the sign of the derivative af0 /aHe > 0 on the 
entire line b-e (on the line a-b we have af0 /aHe < 0). 
We also note that the order of magnitude of A from (11), 
A» K-1/ 2 (K-1/ 2 is the distance at which the magnetic 
field after the point A is attenuated practically to zero), 
indicates that the obtained solution of (11) corresponds 
to a well formed ns boundary separated from the free 
surface of the superconductor by a distance A. 

3. Let us go over to the problem of the possibility 
of observing states corresponding to the branch b-e. 
As has been noted. above, for a semispace with a given 
external magnetic field these states are unstable. Ac
cording to Galaiko, (2 J the fluctuation shifts of the ns 
boundary as a whole into the superconductor are the 
most dangerous in this instance. In order to describe 
qualitatively the development of this instability, it is 
convenient to speak of the magnetic pressure of the 
external magnetic field He on the superconducting 
semispace. Say we are at some point He, f0 on the line 
b-e. The value of f0 characterizes the degree of defor
mation of the order parameter required to balance the 
magnetic pressure. Now let f0 decrease by means of a 
fluctuation by .:1f0, fa= f0 - .:1f0, i.e., the ns boundary 
shifts somewhat into the superconductor. Smaller f0 on 
the b-e curve correspond to lower magnetic pressures 
which they can resist. Therefore the initial pressure 
H~ /87T for the system after the fluctuation becomes ex
cessive, as a result of which the ns boundary moves 
even further into the superconductor. This will lead 
to a further decrease of f0, that is for a given He to an 
even greater nonequilibrium situation, etc. Two factors 
are important for the development of a given type of in
stability: the sign of the derivative af0 /aHe > 0 on b-e 
and the constancy of the external magnetic field He· The 
first of these factors is unavoidable since it is deter
mined by the properties of the Ginzburg-Landau equa
tions, but the second one which follows from the bound
ary conditions is in general not essential and can be re
moved if desirable. 

Let us consider, for example, a system of two super
conducting semispaces separated by a vacuum gap d. In 
such a system one can consider not the magnetic field 
in the gap to be given but the value of the magnetic flux 
<P = Her(He) [r(He) is the effective gap size including 
the geometric gap d and the region of penetration of the 
field into the superconductors] . A change of <P leads to 
a change of He in the gap. Therefore, just as in the case 
of one semispace, by increasing He we finally enter the 
region of instability. However, whereas in the case of 
the semispace the instability developed without bound, 

this does not take place in this case. The appearance 
of the instability corresponds to the nonequilibrium 
motion of the ns boundaries into the superconductors 
[to an increase of r(He)]. For a given total flux <P this 
motion will automatically be accompanied by a decrease 
of the field He. However, the field in the gap cannot take 
on values smaller than He· [According to (11), the field 
He = He corresponds to an infinite A, i.e., an infinite 
displacement of the ns boundaries from the free sur
faces. For a finite field in the gap He = He this would 
correspond to infinite flux in the gap which contradicts 
the initial assumption about the finite value of <P. Con
sequently, for finite <P, A should also be finite, and this 
is possible only when He> He.] It can thus be stated 
that the development of the instability will in this case 
cease for some finite r(He) and He> He· 

4. Let us now consider certain properties of the 
function He(<P) in the described system consisting of 
two superconductors separated by a gap d. The rela
tion between <P and He is readily determined with the 
aid of the formulas obtained above. 

In the region in which the value of f0 is not small, 
where relation (5a) is valid 

Ill = H.[ ~ + 2/0-'] , 

where o is the London penetration depth, o ~ 10-5 em, 
or 

(12a) 

(12b) 

Formula (12a) is for the a-b branch and (12b) is for 
b-e near b. In the vicinity of the point c 

~~> = n.[dl t~ + 2(J.. + r'(J..))J. 

Taking into account the expression for A from (11) and 
the inequality A» r-1(A), equivalent to H~- H~ « 1, we 
have hence 

[ d 2''· 2 ] l d 2 2 ] Ill = He -+'----="In---- ~ H. - +---=- In . 
6 ix H.'-'1• 6 l'x H.'-'/2 

(13) 

Figure 2 shows the graphic dependence He(<P). 
The line A-B corresponds to formula (12a) and the 

line B-C is partly described by formula (12b) and partly 
by (13); the region of matching on B-C is notched. The 
curve C- 00 is fully described by expression (13). 

FIG. 2 
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With increasing <P the representative point He moves 
along the curve A-B, reaches its maximum value Hsh 
at the point B (Hsh is the maximum superheating field), 
and then decreases abruptly to a value He(B 1) deter
mined by the equality 

([>,h+licDI =H.(B1 ) [~+~In 2 J. 
6ot>~-HI li l'x H."(B!)- 1/z 

Subsequently He moves along B1 - 00 approaching He 
asymptotically. 

In moving in the opposite direction He moves along 
the line oo -C up to the point C given by the condition 
a<PjaHe = 0: 

H,(C)=~(1+ 21i_), 21i_<1, 
i2 a)'x dl'x 

Cll(C) = ~-=-[!:._ + ~ln-cry~ J 
")'2 {J l'x 2i'J 

(14) 

At the point C a decrease of <P ceases to be consistent 
with the existence of the system in a state of weak super
heating (this is how we refer to states lying on the line 
C-oo). Therefore for a further decrease of <P it is es
sential to carry out the work in carrying the system 
over from the state of weak superheating (point C) to 
the state of strong superheating (point C1 ; the states of 
strong superheating are located on the line A-B). At 
the same time the magnetic field in the system increases 
abruptly from He(C) to He(C 1): 

1 2 li ay;-
H,(Ct) =--=:-+-=-In--, 

i2 l"x d 2·i'J 

after which it follows the line C1-A. Thus the cyclic 
variation of <P (0 - <P > <Psh - 0) is accompanied by a 
hysteresis behavior of He(<P ). 

The He(<P) dependences presented for monotonically 
increasing or decreasing <P do not touch the states on 
the line B-C of Fig. 2. In order to realize these states 
a nonmonotonic change of <P is obviously required. Let 
us rise along the line A-B into the vicinity of the point 
B. In this region the states corresponding to A-B and 
B-C differ little from one another, and it is here that 
fluctuation transitions from A-B to B-C and vice versa 
become therefore noticeable. However the line B-C is 
somewhat more convenient, since for given <P it corre
sponds to lower magnetic fields than A-B. Therefore, 
if one now starts to decrease <P, then the system will 
proceed with greater probability along B-C than along 
A-B. In addition to these two possible paths, there is 
in the vicinity of the point B a considerable probability 
of a break into states of low superheating onto the line 
C-oo which increases exponentially on approaching the 
point B. If nevertheless on decreasing <P the system 
turns out to be on the line B-C, a fact which is readily 
established from the values of He intermediate between 
A-B and C-oo, then further decrease of <P should bring 
it to the point C. 

In concluding this section let us consider the point C 
in somewhat more detail. According to (14) the location 
of this point is essentially determined by the ratio d/6. 
The requirement 26/diK < 1 cited in (14) and which 
bounds the possible values of d/ 6 from below is con
nected with the approximate solution of Eq. (6) and is 
therefore in principle not mandatory. In the general 

case the problem concerning small superheating also 
remains correct for 26/diK > 1. However, the approx
imations for describing the behavior of the point C in 
this instance utilized in this paper become rather un
suitable. 

5. Let us summarize. The results obtained above 
show that as regards type-I superconductors it makes 
sense to speak of two types of superheating states. 
States of strong superheating are marked by small de
formation of the order parameter and values of the 
superheating field large compared to He· In addition, 
in the problem of the semispace in an external field 
these states are stable. In Fig. 1 these states corre
spond to the line a-b, in Fig. 2 to the line A-B. 

Strong deformation of the order parameter and weak 
superheating fields He - He « 1 are characteristic of 
states of small superheating. In addition, these states 
do not have the usual stability and require for their 
existence certain artificial conditions. In Fig. 1 the 
states of small superheating are located in the neigh
borhood of the point c, in Fig. 2 -on the line C-oo. 
When <P is monotonically increased or decreased both 
types of superheating are sharply separated from one 
another by instability regions (the lines B-B1 and C-C 1 

in Fig. 2). 
In addition to these states there exists an intermedi

ate region (the line B-C). However, in the system which 
we have described the observation of these states, al
though possible in principle, is apparently difficult. 

The author is sincerely grateful to V. P. Galaiko for 
his attention to this work and for useful remarks. 

APPENDIX 

1. The solution for f(x) in the form 

/(x)Jx;;;.o=th( ; 2 x+s) 

is valid so long as f'(x) < e(x). For ~ ~ K 1 / 2 [see Eq. 
(9)] the inequality f' < e is fulfilled at the limit of ap
plicability up to x = 0. 

2. Let us write Eq. (2) for A(x) in the form 

u'=f(x)-u2, u=A'(x)/A(x). 

The solution of this equation in the form 

dA 1 - = const = ---=., 
dx 12 

1 
A= (x+l"2Ao)--:.-, 

l'2 
x~O 

corresponds to the assumption f(x) < u(x). The solution 
(9) obtained satisfies this inequality at the limit of ap
plicability. In fact at the origin f(x) ~ K 1/ 2 and u(x) ~ K 1/ 2, 

i.e., f0 ~ u0 • On the other hand, in the region of negative 
x the function f(x) decreases exponentially for x - - oo, 
whereas the ratio u = A' I A decreases in stepwise fash
ion, i.e., f(x) < u(x). 

3. In the case when He> 1/12 the solution (10) and 
(11) again assumes that in the region up to the matching 
point x = A the inequality f < u is fulfilled. At the match
ing point, just as when He = 1/12, the values of fA and 
uA are of the same order of magnitude. Therefore the 
inequality f < u will be fulfilled practically in the entire 
range 0 :'S x :'SA, if it is required to be fulfilled on the 
surface of the superconductor, i.e., f0 < u0 • Substituting 
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in this inequality the expressions for f0 and u0 from (11), 
we find that the inequality 

2 
(H.2-1/2)''•In---< 1, 

He"-1/. 

which is valid for H~ - ]'2 < 1 should be fulfilled. 
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