
SOVIET PHYSICS JE TP VOLUME 29, NUMBER 5 NOVEMBER, 1969 

TWO-MAGNON ABSORPTION AND THE MAGNETOELECTRIC EFFECT IN A LINEAR 

CHAIN OF SPINS 

L. N. BULAEVSKil 

Institute of Chemical Physics, USSR Academy of Sciences 

Submitted November 29, 1968 

Zh. Eksp. Teor. Fiz. 56, 1657-1663 (May, 1969) 

An estimate is made of the intensity of two-magnon absorption in crystals with linear chains of local­
ized spins, and the frequency dependence of the intensity of this absorption is investigated. It is shown 
that in crystals with a one-dimensional system of spins and with symmetry that allows a vector, a 
spontaneous polarization, dependent on the spin state of the crystal, is possible. In this case the 
polarization depends on the magnetic field, and this effect can be observed experimentally in iminoxyl 
radicals. Similar effects are considered in polyradical molecules. 

THIS article considers two- magnon absorption [1 J and 
the nonlinear magnetoelectric effect[2 J in crystals and 
molecules with one-dimensional systems of localized 
spins. We consider only the case of antiferromagnetic 
interaction of nearest neighbors in the chain. Such a 
system, even in the case of an infinite number of spins, 
differs significantly in its properties from a three­
dimensional antiferromagnet, since at all finite tem­
peratures there is an absence of ferromagnetic ordering 
in it. Consequently, the calculation of the two-magnon 
absorption spectrum and of the characteristics of the 
magnetoelectric effect in such systems presents a spec­
ial problem. At present it is becoming timely because 
of the appearance of a large number of crystals, synthe­
sized on the basis of radicals or ion- radicals of the type 
TCNQ- (or TCNE-)[3 J, in which, apparently, there are 
one-dimensional systems of localized spins. Thus in 
systems of the type (dyetTCNQ-, the TCNQ- ion-radi­
cals, possessing one unpaired electron, form a system 
of filaments, in which exchange interaction of unpaired 
electrons in different filaments is practically absent, 
while along a chain the exchange interaction should be 
much stronger for neighboring radicals than for elec­
trons of radicals that are not neighbors. In iminoxyl 
radicals, the presence of a one-dimensional system of 
spins with antiferromagnetic interaction of nearest 
neighbors is confirmed by measurements of the magnetic 
susceptibility of the crystals[4 J. Finally, we remark that 
two-magnon absorption in a broader sense is the excita­
tion of spin states by an alternating electric field, and 
in this sense it exists also in polyradical molecules with 
a finite number of spins[5 J. In them there can also be a 
dependence of the dipole moment of a molecule on its 
spin state; that is, a nonlinear magnetoelectric effect. 

We shall suppose that in all these systems, just as in 
antiferromagnets [1J , the spin Hamiltonian and the effec­
tive dipole-moment operator, which determine the two­
magnon absorption and the magnetoelectric effect, are 
described in terms of a spin-% operator in the form 

de = ~ In, n+l ( SnSn+i - : ) , (1) 

" 

Deff = ~ dn, n+i ( SnSn+i - i (2) 
n 
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The operator Deff is different from zero only in crys­
tals without a center of inversion between nearest radi­
cals of the linear chain. This condition is satisfied by 
crystals in which different radicals, for example TCNQ­
and TCNE-, alternate along a filament. In this case, in 
crystals of any symmetry, nondiagonal matrix elements 
of the operator Deff, which lead to two-magnon absorp­
tion, are allowed. In crystals whose symmetry allows 
a preferred direction (a vector), diagonal elements are 
also allowed, corresponding to the occurrence of a 
spontaneous polarization dependent on the spin state of 
the system. (Finally, in crystals of this type there can 
also be present the usual polarization, independent of 
the spins.) In crystals of equivalent radicals, Deff is 
allowed only in the case of a symmetry that permits a 
vector. An example of such crystals is the iminoxyl 
radical [eJ. In these systems, two-magnon absorption is 
absent, and Deff leads only to a magnetoelectric effect. 

The order of magnitude of dn n. 1 in crystals can be 
estimated by considering the mechanisms that lead to 
the relation (2) [1 ' 2 J. Paper [1 J takes account of the con­
tribution to Deff from virtual transitions of an electron 
of an unfilled shell to excited levels of the same radical 
because of the dipole moment, and of the Coulomb inter­
action of the excited electron with an unpaired electron 
of the neighbor radical, which leads to exchange of spins 
and to return of the excited electron to a lower unfilled 
shell. Paper[2 J takes account of virtual transitions of 
an electron of an unfilled shell to a neighbor radical; 
the parameters of (1) and (2) are determined by the re­
lations 

In, n+i = 2~~. nH (1/En, n+! + 1/En+t, n}, 

d,, n+i = 2Dn, n+i~n, nH ( 1/En, n+i + 1/En+i, n) 

+ ~n, nH(Dn+i, n+i- Dn, n) (1/E~, n+t-1/E~+i, n), 

Dn,m= ~ Wn(r)erwm(r)dr, (3) 

where f3n n. 1 is the resonance integral for transition of 
an electrbn from radical n to neighbor radical n + 1, 
wn(r) is the Wannier function of an electron localized 
on radical n, and En n + 1 is the energy of the system in 
the excited state, wh'ich is equal to the energy of ioniza­
tion of radical n without the energy of affinity to the 
electron of radical n + 1 and the energy of repulsion of 
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unpaired electrons nand n + 1. If there is no center of 
inversion between neighboring radicals, Dn, n+ 1 or 
(En, n + 1 - En+ 1, n) are different from zero, and 
dn n + 1 R=< (0.1 to 1.) x doin n + JEn n + 1, where do is the 

' ' ' [1] atomic dipole moment and En, n + 1 "" 1 ev. Mechanism 
leads approximately to the same estimate of dn, n + 1. 
The value of dn, n + 1 for molecules will be estimated 
below. 

TWO-MAGNON ABSORPTION IN CRYSTALS WITH 
LINEAR CHAINS OF SPINS 

Allowing for the possibility of alternation in the sys­
tem of spins (the :interaction parameter alternates along 
the chain: I, yi, I, ... , y::::: 1), we write (1) and (2) in 
the form 

:!€ =I~ [ ( S,nS2n~t--!--) + v(s,nS2n+i--!--)], (4) 

Derr = d ~ [ ( S,nS,n-1- ~ )- y' ( S,nS,,+,- :) J (5) 
n 

and we find the dependence of the intensity of two­
magnon absorption on frequency in the Hartree- Fock 
(HF) approximation for the four-fermion Hamiltonian 
equivalent to the spin Hamiltonian (4) l7 ' 8 J. 

It may be supposed that the HF approximation gives 
correctly the qualitative characteristics of two-magnon 
absorption. A basis for such optimism is provided by a 
comparison of the results obtained in the HF approxima­
tion with those exact results that have been obtained 
recently for the Hamiltonian (4). In fact, the HF approxi­
mation reproduces quite accurately the triplet excitation 
spectrum E{k) (the single-magnon spectrum). For y = 1, 
we get EHF(k) = (1 + 2/7r) /cos kjl 7 '' 8 J; the exact value 
E(k) = (1r /2) /sin k I leJ differs from the Hartree- Fock 
value only by 4%. For y < 1, there are only numerical 
calculations of the single- magnon spectrum for ten 
spins UOJ , and a comparison of them with the HF ap­
proximation (l10J, Fig. 6) shows that it is more accur­
ate, the smaller y, and that it becomes exact for y = 0. 
Furthermore, the results of a numerical calculation of 
the magnetic susc•eptibility for 10 and 11 spins with 
y = 1 llll show that the HF approximation satisfactorily 
reproduces the behavior of the susceptibility at tem­
peratures T > 0.3 I. The dependence of the magnetic 
moment of the system on the magnetic field l12 l at T = 0 
also turns out to be qualitatively correct in the HF ap­
proximation. Quantitatively, the HF result is least ac­
curate for the susceptibility at T = 0, but even in this 
case we get for the susceptibility per spin in units 
4J.l 2/I (!l is the Bohr magneton) the value 0.140, whereas 
the exact value is 0.101. Finally, the energy of the 
ground state is determined in the HF approximation 
with an accuracy of about 5%. 

And so, we go over in (4) from the Pauli spin opera­
tors to the Fermi operators ak and {3k, which in the HF 
approximation for an infinite chain of spins are the 
operators of annihilation of quasiparticles with momen­
tum k and energies 

e""(k)= -e~(k)= e(k) 
a1 + a,cos2 (k/2) 

-.'1 + y2 + 2y cos k ' 

2{i 
X=--, 

1+y 

1 1 
a2 = 2y +- (1 +y) 2 E{x)-- (1- y) 2 K(x), (6) 

Jt Jt 

where E(x) and K(x) are elliptic functions. The spec­
trum of quasiparticles a and {3 consists of a lower 
{3-band, filled in the ground state, and an upper a-band, 
empty in the ground state. For y < 1, there is between 
these bands a gap ~ = a1(1 + y). To a magnon-an exci­
tation with z-projection of the total spin Sz = + 1 (-1) 
and impulse k-corresponds an extra quasiparticle 
(hole) in the upper (lower) band; the energy of the mag­
non is E (k). The quadratic part of the expression (5), 
which determines the two-magnon absorption at tem­
perature T = 0, has the form 

Deff = L; in(k) ( ak +!)k- !>k +ak), 
k 

d; sink 
xI k) = --;::c:=:::::==:o===;= 

l'1 + y2 + 2y cos k 

, 1 "s y(1+v'l+<v'+v'Jcoskdk {;=y+v -- . 
2n 0 -.'1 + y2 + 2y cos k 

(7) 

It is evident from (7) that excitation by an electric 
field with a wavelength larger than the period of the lat­
tice leads to transition of the quasiparticle from the 
lower band to the higher band without change of momen­
tum. This process corresponds to creation of two mag­
nons with momenta ±k and energy 2E(k). Thus the fre­
quencies of two-magnon absorption lie in the interval 
from 2~ to 2(a1 + a2)/(1 + y) (1i is taken equal to 1). The 
imaginary part of the dielectric permittivity has the 
form 

N '" N n2 (k) 
:<"(w)= 2Jt S x'(k)6[2e(k)-:-w]dk=2n de/dk , (8) 

0 

where N is the spin density, and where the value of k 
is related to the frequency w by the equation w = 2E(k). 
For a uniform chain (y = y' = 1), the frequency interval 
of absorption extends from 0 to Wo = 2(1 + 2/1f)I, and 

x" (·w) = .8Nd2 (1 + 1/n) 2 .v 1 _ w2 
• (g) 

Jtffio wo2 

In this case, the intensity of the absorption, which is 
proportional to wK " ( w), has a broad maximum at fre­
quency w0/..f2. In a strongly alternating system (Y = y' 
« 1), the absorption curve has the form of a sharp peak 
in the interval (2 ± y )I, 

x"(w)= gNd'y 1/ (w-21) 2 (10) 
4n/ V 1 - J2y' 

Figure 1 shows the functions K"(w) for y = y' = 1, 
0.8, 0.6, 0.4, and 0.2. For small (1- y), the value of 
K"(w) is very large in the region w :;:::. 2~. This is due to 
the fact that when y R=< 1, we get dE/dk = 0 not only at 
k = 1r, but also at some point near 1f. Presumably this 
peculiarity is due to the HF approximation, and it may 
be supposed that a more accurate calculation will greatly 
change the behavior of K "(w) in the region w :;:::. 2~. 
Therefore in Fig. 1 the curves for y R=< 1 in the region 
w :;::: 2~ are shown dashed. When y ~ 1, just as in a 
uniform system, the absorption is greatest at a fre­
quency of order wo/..f2 and decreases slowly with in­
crease of frequency. But its drop at low frequencies (of 
order 2~) in this case is abrupt. 

We note that if, in the linear spin system with uni­
form interaction (Y = y' = 1), there are defects-sites 
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without spin-of concentration c, then it is a statistical 
ensemble of chains of spins of finite length n, whose 
distribution function is c(1- c)n f':j c exp (-en) for c « 1. 
Therefore 

x" ( w) = Nc2 :;8 e-cnxn" ( w ), (11) 
n=i 

where K~(w) is the contribution from a chain of length n. 
In a chain of n spins, the minimum energy of two mag­
nons is of order 8I/n, and for such a chain K~(w) f':j 0 for 
w ::; 81/n. Then for small w, the contribution to K "(w) 
is made by chains with n > 8I/ w, whose contribution 
decreases as exp (-8ci/w) as w- 0. Thus the left edge 
of the absorption in a chain with defects is abrupt in this 
case also. 

We shall discuss only qualitatively the dependence of 
the two-magnon absorption on temperature. With in­
crease of temperature, its intensity drops, and this drop 
is fastest in the temperature range near I/2. At T >> I 
the absorption disappears, since every level of the 
higher and of the lower band is filled uniformly with 
quasiparticles with probability %. Thus the two-magnon 
absorption can be identified experimentally through the 
dependence of its intensity on temperature. 

In systems with a center of inversion between neigh­
boring radicals, the process of creation of two magnons 
may accompany the creation of optical phonons in an 
electromagnetic fieldr 131 • The intensity of this process 
is about five orders smaller than the intensity of phonon 
absorption in crystals with spin interaction I f':j 100°K, 
and the absorption frequencies corresponding to these 
two processes differ by a quantity of order I. This proc­
ess changes with temperature in the same way as does 
the two- magnon absorption. 

THE NONLINEAR MAGNETOELECTRIC EFFECT IN 
CRYSTALS WITH LINEAR CHAINS OF SPINS 

We consider only the most interesting case of a uni­
form spin interaction in crystals with equivalent radi­
cals. Crystals of iminoxyl radicals belong to precisely 
this class r41 • The mean value of the operator Deff 
makes a contribution to a spontaneous polarization P if 
the crystal symmetry permits a vector, and we get 

(12) 

where P 0 is the usual spin-independent polarization, and 
where the second term is proportional to the exchange 
energy of the spins. Thus the polarization P contains a 

term that depends on temperature in the same way as 
does the mean exchange energy. Its change with tem­
perature is most pronounced in an interval near I/2, and 
t.P f':j 0.2 Nd t. T/IraJ. The dependence of the polariza­
tion on the magnetic field H, in the HF approximation, is 
determined by the expressions 

IP-Pol =(SnSn+l-~) 
Nd 4 

cos rts cos2 ns 1 
=82--:lt--~-4' 

2pH ( 2 ) -= 1 +-cosns sinns+2s, 
I n ' 

(13) 

where s is the mean value of spin at a site. The depen­
dence of IP- Poi/Nd on J.LH/I is shown in Fig. 2. In 
weak fields and in fields H f':j I/ J.L, we get 

2Nd~t2HZ 
P(H)-P(O)= , 

f2(n + 1) 
~tH ~1 
I , 

(14) 

In the field range H f':j I/ J.L, the change of polarization 
with change of field H is 

!'J..P :::::< Nd p!'J..H ::::; (0.1-1) NdofJ. !'J..H::::; 10-s !'J..H, (15) 
1 En, n+! 

and in fields very close to I/ J.L one can get t.P / t.H 
f':j 10-\ Such fields are attainable in iminoxyl radicals 
with I f':j 2° K, and in them the dependence of polarization 
on magnetic field is presumably observable. 

TWQ-MAGNON ABSORPTION AND THE MAGNETo­
ELECTRIC EFFECT IN POL YRADICAL MOLECULES 

Excitation of spin levels by an electric field can be 
observed in polyradical molecules with a number of 
radical groups larger than two, in case neighboring 
radicals of a group are nonequivalent and the interaction 
between them is sufficiently large. Thus if radical frag­
ments A and B are combined into a triradical of the type 
A-B-A', the spin Hamiltonian and the effective dipole 
moment are determined by the expressions 

de= I(SASB + SA,SB) + I'SASA., 
(16) 

Deff = d (SASB- SBSA•), 

and the vector d is directed along the line joining A and 
A'. The absorption due to transition between two levels 
with spin % (excitation energy I- I') is determined by 
the imaginary part of the dielectric permittivity, K" 

= 1. 5 Nd2 / t.w is the line width and N is the density of 
triradicals. 

We shall estimate the value of d for radicals A-B 
joined to each other by a single a-bond. The contribution 

-0.2 

r.:f ~Hjl 
FIG. 2 
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to d comes from transitions of electrons from A and B 
on the a-bond joining A and B, as a result of the 
Coulomb interaction of electrons of different bonds. In 
the case of degenerate (with respect to spins) levels, in 
the second order of perturbation theory with respect to 
.7!' -the interaction between electrons of different 
bonds-the wave function contains the expression 

(17) 

In (17), ~is the operator of projection onto the space of 
the degenerate functions cpA(± %)cpB(± %)cpA- B(O), where 
cp A,B(± %) is the ground- state function of radicals of 
groups A, B with spin projections ± %, cpA_ B(O) is the 
ground- state function of the a-bond A - B (spin 0), and 
'Pio are the stable combinations of degenerate-function 
space. In correspondence with (17), the effective dipole­
moment operator for radicals A- B contains the ex­
pression 

nA-B=.9'D 1-.9' J'e' t-.9' .rtc'.9'=d(s s _ _!_) (18) 
eff :leo- Eo :leo- Eo A B 4 ' 

where Dis the dipole-moment operator of electrons 
A - B. One of the terms in (18) consists of the matrix 
element of D for transition of electrons from A to the 
a-bond A- B (of order do), exchange Coulomb interac­
tion of electrons of bond A- B with electrons in B (of 
order 1 eV), and the reverse transition of an electron 
from bond A- B to A, caused by the Coulomb interac­
tion of electrons of bond A- B with electrons A (of 
order 1 evusJ ). Intermediate states are states without 
an electron in A and with three electrons in bond A- B; 
their energies are of order 10 ev. Thus 
d ~ (10-2 to 10-3)p2do, where p is the spin density on 
atoms A and B, between which the a-bond A- B exists. 
Each extra 11- or a-bond between A and B diminishes d 
by about an order. For two a-bonds between A and B, 
I~ 10-3 to 10-4 eV, d ~ (10-4 to 10-5)do, and the absorp­
tion frequency may drop to the microwave range, in 
which the sensitivity of spectrometers is sufficient for 
observation of the absorption. 

In biradicals without a center of inversion, the dipole 
moment P of the biradical depends on the spin state and 
changes with temperature according to the law 

P=Po+d(StS:!)=P0 - a (19) 
1 +3exp(-l/T) 

At low temperatures and magnetic field, the dipole mo­
ment changes suddenly by the amount d on increase of 
the field intensity above the value I/ 11-· 

In closing, the authors thank the participants in the 
seminar of I. F. Shchegolev for discussions and for 
their interest in the work. 
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