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It is shown that in nonlocalizable theories with an exponential growth of the vacuum expectation values 
in momentum space, the Wightman functions retain a number of the proper_ties ~haracte.ristic of loc_al­
izable field theories. It is found that the holomorphy domain of these functwns m coordmate space In­

cludes real points-the Jost points. The existence of Jost points enables one to introd_u~e the concept 
of quasilocality, and to prove theorems about the equivale_nc~ of weak lo_cal commutat1v1ty ~nd CPT 
invariance and about the connection between spin and stahshcs. The ex1stence of asymptohc states 
is proved for a special class of nonlocalizable theories. 

1. INTRODUCTION 

THE goal of this article is to investigate the properties 
of Wightman functions in quantum field theories in which 
the vacuum expectation values of the fields may increase 
exponentially in the momentum representation. For such 
theories it is already impossible to introduce the condi­
tion of locality or microcausality in the usual form, since 
the basis function :spaces necessary for a formulation of 
these theoreies are in the x-representation spaces (quasi) 
of analytic functions and do not contain finite (vanishing 
outside a finite region) functions. Therefore theories of 
this type are essentially nonlocal or nonlocalizable. 

There are many reasons for the interest in nonlocal­
izable field theories. In the first place one cannot ex­
clude the possibility that the principle of microcausality 
is not valid over small distances. It is true that one can 
violate microcausality while remaining within the limits 

h th . [1] of localizable theories. Investigation of sue eones 
leads to the conclusion that one can apparently avoid the 
appearance of unphysical singularities in the i~teraction 
amplitudes only by introducing into the theory mterme­
diate states with an indefinite metric which, in turn, 
produces certain unsolved problems. Secondly,_ in re~ 
cent years considerable progress has been achwved m 
the development of an axiomatic theory of localizable 
fields, £2 3J equivalent to the principle of locality 
(Jaffe l3J) or microcausality (Mel'man l2J ). 1> 

The mathematical apparatus developed in these ar­
ticles may without difficulty be generalized to nonlocal­
izable theories. This, of course, opens new possibilities 
and removes a number of limitations inherent in local­
izable theories. For certain models the introduction of 
nonlocalizable fields permits one to construct, within 
the framework of perturbation theory, a Lagrangian for­
mulation of S-matrix theory which is free of ultraviolet 
divergences (see the articles by Efimov[s,aJ). In nonlo­
calizable theories, due to their leading to a broader 
space of functionals the theorem about the global nature 

I> See articles [ 4 -6 ] for attempts to generalize Melman's formulation 
to the 4-dimensional case. We also note the work of Solov'ev [7 ) where 
a more general class of spaces is considered than in [ 3 ) , permitting a for­
mulation of the spectral condition and microcausality. 

of local commutativityl9J turns out to be invalid.2 > As 
Voronov showed, [1oJ in nonlocalizable theories the well­
known Lehmann-Symanzik- Zimmermann theorem about 
decrease of the vertex part does not hold which, in par­
ticular, enables one for a number of simple dispersion 
models to find nontrivial solutions without the vanishing 
of the renormalized charge. In addition, in nonlocaliz­
able theories one can generalize the dispersion relations 
without encountering any contradiction with existing ex­
perimental data. (sJ Finally, the whole series of essen­
tially nonlinear unrenormalizable Lagrangians consid­
ered in articles £8 ' 11 ' 12J leads to a nonlocalizable type of 
matrix elements. From a purely heuristic point of view, 
it would be incautious to neglect such possibilities. 

In Sec. 2 of the present article a formulation of the 
Wightman postulates for nonlocalizable fields is consid­
ered on the basis of an assignment in the p-representa­
tion of a topological space of basis functions on which 
the field operators (and the Wightman functions) are 
defined. The basis space is chosen so as to guarantee 
the formulation of the spectral conditions; however, in 
the coordinate representation the basis space already 
does not contain finite functions. In Sec. 3 the analytic 
properties of Wightman functions in a nonlocalizable 
theory are studied. Just as in the case of localizable 
theories, the key to the solution of the questions appear­
ing here is the consecutive utilization of the spectral 
conditions and of invariance under the Poincare group. 
It turns out that along with the essential differences 
from localizable theories (the principal one of which 
is associated with the absence of the usual concept of 
locality) there are many common features between both 
classes of theories; the most important being the exis­
tence of an analogue of the Bargmann-Hall-Wightman 
theorem which here also leads to the presence of real 
points of holomorphy for Wightman functions. From 
here arises the possibility to formulate the condition 
of quasilocality (or Z-locality for brevity) for the non­
localizable functionals under consideration. This con­
dition in a natural way generalizes the usual locality 

2lThis theorem, originally established for a theory of moderate growth, 
allows an immediate generalization to the case of strictly localizable fields 
considered by Jaffe. [9 ) 
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condition to the language of Wightman functions and goes 
over into it in the limit when the region of nonlocality 
vanishes. 

Further, in Sec. 4 it is shown that starting from the 
analytic properties of Wightman functions one can prove 
a theorem about the equivalence of CPT invariance and 
weak local commutativity (WLC), and one can also prove 
a theorem about the connection between spin and statis­
tics. Concluding remarks are collected together in Sec. 5. 
The validity of the reconstruction theorem [131 is men­
tioned. For a special class of nonlocalizable theories 
one is able to prove a theorem, important for the physi­
cal interpretation of the theory, about the existence of 
asymptotic states or the S-matrix (the Haag-Ruelle 
theorem;[141 in this regard also see the examples of 
nonlocalizable theories in [151 ). An instructive example 
is analyzed, characterizing the analytic properties of 
the two-point Wightman function in a nonlocalizable 
theory. 

One must emphasize two properties which are es­
sential for nonlocalizable theories. The first-the ex­
ponential growth of the Wightman functions is, as fol­
lows from the results of this work, apparently the 
limitingly-admissible situation from the point of view 
of physical interpretation since in the opposite case 
these functions (and all other Green's functions in the 
x-representation) will not have real points of holomor­
phy, and also such important physical characteristics 
as CPT invariance and WLC, and the connection between 
spin and statistics lose their meaning. The physical in­
terpretation of such a theory will be extremely difficult 
even if such a theory is possible in general. The second 
property is the essential and so far unsolved problem of 
all nonlocalizable theories (and nonlocal theories also)­
the question of whether microcausality is satisfied. 

We note that one of the first attempts at a Wightman 
formulation of unrenormalizable and, in particular, non­
localizable theories in the language of analytic function­
als was undertaken in the articles by Khoruzhil. [181 How­
ever, in these articles the important question about the 
holomorphy domain of the Wightman functions in such 
theories was not raised. 

2. SPACE OF BASIS FUNCTIONS. WIGHTMAN 
FUNCTIONS 

Let us consider for simplicity the theory of one scalar 
neutral field with mass\ m > 0. The field is described by 
operator-valued generalized functions A(q}) (in symbolic 
form A(q}) = J d)>A(p)q}(p)) over the space of basis func­
tions !Ill (R4 ) (the basis space is defined below). (Here 
and below a tilde denotes the Fourier transform of the 
corresponding quantity.) It is assumed that all of the 
Wightman axioms are satisfied except locality. [l3l In 
particular, it is assumed that the operator A(qJ) is de­
fined on a dense domain D of the Hilbert space H of 
states which include the unique cyclic vacuum state 
vector >lro, i.e., the set of vectors 

'¥ = A(cft) .. · .A(<J;n)'fo 

is dense in H. 

(1) 

Let us denote by !Ill (R40) and C (R40) the countably 
normed, complete, linear kernel spaces of basis func­
tions in the p- and x-representations, respectively. We 

assume that convergence (or topology) in !Ill (Rill) is de­
fined by the following family of norms: 

\llp\lk = sup g(kllpll2) IDmq>(p) I, (2) 
p;m...:k 

where k and m are integers, 

IIP\1 2 = ~ IIP;\1 2• IIP;\11 =PI02 +P;2• 
i=l 

lim sup [c,,n2(v + n)!]t!2 ('+n) = p, (3) 
'""""' n 

where lim denotes the limit of the sequence from above. 3 > 

The function g(e) = I; c 11t2 V; c 11 ;:: 0, co> 0 is an entire 
v=o 

analytic function of first order growth and type p with 
respect to t. 

The space w. (R40 ) consists of all q}(p) for which the 
family of norms (1) is finite: 

!lll(R•n) = {tp(p): \\q>\lk < oo, k = 1,, .. }. (4) 

It is obvious that the space of finite functions K c !Ill. 
The space C(C40 ) is defined as follows: 

C(C4n) = {<p(z): <p(z) = F[q;](z), 'QJ(p) E!N(R'n)}, (5) 

where F denotes the Fourier-Laplace transform. 
As Jaffe showed, [31 the space C(R40) contains a dense 

set of finite functions if and only if 

S 1ng(t2)dt (6) 1 + t2 < oo, 
0 

or 

~ ic•I'IV < ""· (7) 
v=O 

In our case these conditions are not satisfied (owing to 
(2)); the space C(C40) consists of entire analytic func­
tions. Since it does not contain finite functions, locality 
may not be formulated in the usual way.4 > 

Invariance under the Poincare group means 

U(a, A)A(qi)U'(a, A)=) .A(p)eiP•q>(Ap)d4p. (8) 

Here U(a, A) is a unitary representation of this group in 
H; a is the 4-vector of the translation; A<= L! (L! is 
the restricted Lorentz group). 

The Wightman functions 

YPn(<p7, ... , <P'n) = ('fo, A~J) ... A(<pn)'fo), -<p;(p) E!N(R4) (9) 

are continuous with respect to each argument of the 
poly linear functionals, by virtue of the nuclear theorem 
these functionals can be uniquely extended to general­
ized functions over the space !Ill (R4n): 

:if'n(cPl=(7fn(Plt• .. ,Pn) i(pj, ... ,p~n)). (10) 

According to the general theory, [171 a Wightman function 
admits a representation in the form 

In g(kllp 112 ) _ 
3)This means that lim II II = p y'k. 

llpll~oo P 
4>First we shall in general avoid conversion to the x-representation. 

In Sec. 3 we see in what sense one can talk about the quantities of the 
theory in x-space. 
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(11) 

where ~(p) are bounded, measurable functions. Below 
for convenience instead of the functionals, Yn (q}) given 
by expression (11) we shall use the generalized func­
tions Yrn(p) and write 

1f',.(~)= ~ 1f'n(PF···>Pn)~(Pt>···iPn)(dp). (11') 

Let us note certain basic properties of ~n(p). From the 
property of translational invariance (see Eq. (8)) for 
A = 1 it follows that 

1f' n (~) = 1f' n(~eipa) = ~ 1f' n(Pt, ... , Pn)exp {i ~ p;a }.P(Pt, ... , Pn) (dp). 
i=i 

Or, in the language of the generalized functions 'i'Pn (p ), 

1f',_ (pt, ... , Pn) = (2n)' ~c~ Pi) Wn-t(P" Pt + p,, ... , Pt + · · · + Pn-t) 
"1=1 

==(2n)~.s( :8 Pi) Wn-l(qt, ... ,qn::l), q;= Pi· (12) 
i=1 i=i 

From the spectral conditions it follows that 

suppWn-1 (q~, ... ,q,._1) c (r+)"-1, (13) 

where 

(r+)"-'={q:q;2 >0, qw>O, i=1, ... ,n-1}. 

3. ANALYTIC PROPERTIES, JOST POINTS, AND 
QUASI LOCALITY 

It is best of all to formulate the restrictions on the 
growth of Wightman functions in the language of the gen­
eralized functions Wn-1 (q1, ... , ~-1 ). Using (12) one can 
write the functions jpn ((/}) in the form 

1f',. (ip) = ~ W n-1 (qt, .. •, qn-t)1]i( qi, · • •, qn-l)(dq) == (W n-1, 1]i) == W n-1 (1ji). 

(14) 
Here n n-1 ; 

1j:(q,, ... ,q,._,)=(2n)') ip(pt, ... ,p,._i)b(~p;) 115( q;- ~Pi) (dp) 
i~i i=! i=t 

= (2n)•q;(ql, q,- q1, ... qn-1- qn-2,- qn-t) 

is a basis function belonging to !lJl (R4<n-1l). Therefore 
Wn-l}) admits the representation (11): 

Wn_t(~)= ~ (dq)g(kllqll 2 ) 2; Pm(q)Dm~(q), (15) 
m~k 

where k and ,.e are in general different than in (11) or in 
(2), and the Fm(q) are bounded, measurable functions. 
By the growth of Wn-1(q) we shall understand the type of 
growth p.fk of the functions g (kllqllz). ~The quantities Pn 
and kn may be different for different Wn_1(1/J ). We shall 
assume that 

lim Pn l'kn = l > 0. (16) 

In the opposite case the domain of nonlocality, which is 
characterized by T, will grow with an increase in the 
number of variables in a Wightman function, which 
hardly has any physical meaning. 

The spectral conditions (12) allow us to extend the 
functional 71'0), andl consequently also :7P(q}), to a broader 

class of functions. Let us consider the extension of the 
functional 

(17) 

where the t'i = ~i- i '1/i = zi - Zi_1 are chosen so that 

l']w>I'IJd+l, i=1, ... ,n-1. (18) 

An extension of the functional exists since it follows 
from Eq. (15) that as llqi II - oo 

g(kllqll 2) < exp(l +e)~ llqdl 

with arbitrary E > 0; consequently the integral in (15) 
converges with if;(q) = e-iqt if Zllqill s '1/iqi, which is 
satisfied for 

(l];o -I 'l]i I )2;;:::, 2l2 == l2• 

It follows from the relativistic invariance of W(t) 
that the functional (17) also exists for 

'1 E VA1 = {'11 (Al'];)o > IA'IJd + l; i = 1, ... , n -1}, A E L+t· 

One can write the domain V~ in the following equivalent 
form: 

VA1 ={'111J;-lue:r+; i=1, ... ,n-1; u2 =1; ue:l'+}.(19) 

And what is more, according to a theorem of Vladimi­
rov[181 (Chapter V, p. 272, subsection 2), W(t) is a holo­
morphic function of t in a tube which is defined in the 
following way: 

T~-1 = giim~= (Im~t, ... ,Im~n-t)EU VA1 == V1; AEL+t}. (20) 
(A) 

The latter assertion follows from the fact that 

W(q)e-q" E s·, '1 E Vl, 

i.e., it is a functional of temperate growth. It is not dif­
ficult to verify that the domain vz is convex. 

In similar fashion it can be shown that 7f'(z) is holo­
nwrphic in the domain 

CJn1 = {z I (Im Zt, Im(z,- z1), ... , Im(zn- Zn-d) E V'}. 

Application of the Bargmann-Hall-Wightman theorem 
[13 ' 141 to the function W(t) gives: from the invariance of 
the function W(t) under Lorentz transformations A E L! 
in the domain Tb_1 it follows that it admits a single­
valued L+ (C)-invariant analytic continuation into a wider 
domain 

i.e., it is holomorphic for all 
~' E T~-t = g':~/ =A(:;;; A EL+(C); (:;E Tn-t; i= 1, .. ,, n -1}. 

Here L+ (C) is the complex Lorentz group. 
(21) 

The function 7f'n(z) correspondingly admits a single­
valued holomorphic continuation into the region 

CJ~= U A<1n1= {z':z;'=Az;; ZE<1n1, AEL+(C)}. (22) 
AEL+(C) 

A remarkable consequence of this extension is the pres­
ence of real points of holomorphy (Jost points) for 
Wn-1(t) and :YI'n(z). However, in the first place this do­
main is narrower than the domain of real points of holo­
morphy in a localizable theory and, in the second place, 
in contrast to a localizable theory it is impossible to 
directly determine the generalized functions 7f'n(x) and 
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iPn_1(~) for all x and ~ as the boundary values of the cor­
responding holomorphic functions if'n(z) and Wn-I(t") 
since in the present case the real domain does not lie 
on the boundary of the primitive domains of holomorphy 
a~ and Tt1. 

Now let us prove a theorem providing criteria as to 
which real point lies in the extended tube Tnl' . 

-1 

Theorem. In order for a real point p = (pl> .•• , Pn-1l 
to be a point of holomorphy of Wn-l(z), it is necessary 
and sufficient that a transformation A1 E L! be found 
which satisfies the inequalities 

I (A,,p,)o-lshtl < (A,p;),-lcht, i = 1, ... , n -1 (23) 

with a certain t. 
Proof of sufficiency. Let (23) be satisfied. The trans­

formation 

0 i 0 0 

A=(i 0 0 O)EL (C) 
0 0 1 0 + 

0 0 0 1 

(24) 

translates a point p into the domain Tl . Actually n-l 
Im AA Pi== 11i = (ph, pio, 0, 0). Using (23) and (19) we 
obtain the result that 11 -lu E r., i = 1, ... , n- 1, 
where u = (cosh t, sinh t, 0, 0). 

Proof of necessity. Let p E Tf:_l' i.e., let a transfor­
mation A E L. (C) exist such that 

Any arbitrary complex Lorentz transformation A E L. (C) 
is equivalent to one of two normal forms, l 141 i.e., 
A = A2ANA1 where A1,2 E L!. Only a transformation 
equivalent to 

- i sincp 0 

i~hx) cos <P 0 
0 ch X 

0 -ishx ch x 

(25) 

(cp and x are real) can transform a point t" E Tt1 into a 
real point. Condition (19) that 

'I']= (Im ANA!'Pi> ... , lmANAtPn-1) E VA1, 

with some A E L! in terms of the components of p, takes 
the form 

{(AI(li)I sin<p -luo; (AI,P;)osinq:>-lui; 

(A,p;)a sh )( -lu2; (A,p;)2 sh X -lu,} E r +· 

Hence, denoting uo = sin cp ·cosh t, u1 = sin cp • sinh t, we 
obtain the result that 

Pi! - l ch t ~ I p;o- l sh t I ; i = 1, ... , n - 1, 

i.e., condition (23) is valid for p. 
As l ~ 0 condition (23) turns into, as is not difficult 

to verify, a condition which is equivalent to the usual 
condition for Jost points in a local theory: 

The presence of real points of holomorphy for Wight­
man functions makes it possible to formulate an analogue 
of the locality conditions in a nonlocalizable theory. We 
shall call a theory quasilocal (or l-local) if all 7Pn(z) 
are symmetric functions in the domain of holomorphy. 

It is obvious that the condition of l-locality substantially 
extends the holomorphy domain of 7P(z). 

At real points of holomorphy the condition of l-locality 
gives 

fOr all X= (X!, ... , Xn) E f\e crn"· (26) 

We note that for the two-point function the condition of 
l-locality is automatically satisfied: 

if'2(x,; x2)- if'2(x2; xi) = 0, (x1 - x,) 2 < -ZZ. (27) 

An explicit example of the two-point Wightman function 
is given in subsection 5 of Sec. 5. 

Since there are no finite basis functions in coordinate 
space, it is impossible to formulate the condition of l­
locality in terms of the usual condition that the commu­
tator of two operators vanishes in a certain region. How­
ever, as l ~ 0 the condition of l-locality reduces to the 
locality condition for localizable theories in terms of 
Wightman functions, and in that case when the function 
g specifying the topology of the basis space satisfies 
condition (6), the symmetry of the Wightman functions 
is equivalent to the microcausality condition in terms 
of the commutator. 

The theorem about the global nature of local com­
mutativity, l 9' 191 from which it follows that for localiz­
able theories local commutativity follows from l-local­
ity, does not remain valid in the case of nonlocalizable 
theories in view of the transition to a broader class of 
functionals (see subsection 5 of Sec. 5 ). 

Qualitatively one can say that the principle of micro­
causality is violated in an l-local theory in the region 
-l 2 < e < 0 and "signals" can propagate with a velocity 
greater than c. Therefore one can say that the quantity l 
characterizes the region of nonlocalizability of the in­
teraction. 

In concluding this section we note that the condition 
of l-locality enables us even in the case of nonlocaliz­
able theories to distinguish two classes of theories: 
a class of quasilocal theories, and a class for which 
condition (11) is not satisfied. s> 

4. CPT INVARIANCE AND WEAK LOCAL COMMU­
TATIVITY. THE CONNECTION BE1WEEN SPIN 
AND STATISTICS 

The holomorphic property of YPn(z) and Wn-l(t") en­
sures the validity of an analogue of the CPT theorem 
in a nonlocalizable theory. It is convenient to formulate 
CPT invariance in the p-representation. We shall say 
that the theory of a scalar field is CPT invariant if 

(28) 

or 

(29) 

It is obvious that if one changes from the functionals 
~n(;p) to their Fourier transforms and associates with 
the functionals 

if' n (cp) = ~ if' n (x~o ... , Xn)cp(x,,. .. , Xn) (dx) (30) 

5lJn the general case a nonlocalizable theory (not quasilocal) goes 
over into a nonlocal (but localizable) theory as l-+ 0. 
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the generalized functions YY'n (x1, ... , xu), then in terms 
of these functions the conditions for CPT invariance, 
(28) and (29), are written in the usual way: 

(31) 

or 

Wn-d1;t, ... ,£n-!) = Wn-1(Sn-1, ... ,£1). {32) 

The condition of weak local commutativity (WLC) 
means: 

'1f" n (.r,, ... , Xn) = '1f" n (xn, ... , xi), 

(33) 

or 

Wn-1(S1, ... , Sn-d = Wn-1(-sn-1, ... ,-£,), 

(£" ... , Sn-1) E Re T ~-! (34) 

Theorem. If the WLC condition is satisfied in a (real) 
neighborhood of a point x ~ Re af:, then relation (28) 
(or (31)) is valid, i.e., the theory possesses CPT sym­
metry. Conversely, conditions (33) and (34) for WLC 
follow from conditions (28) and (32) for CPT invariance. 

First let us prove the last assertion. From Eq. (28) 
we quickly deduce that 

Yf"n(z~, ... ,Zn)~~ ~ Yf"n(p~, ... ,pn)exp{ -i_2; PiZi}(dp) 

(35) 

everywhere in a~ and, consequently, over the entire do­
main of holomorphy al;. Carrying out the transformation 
zi -z{ = Azi = -zi, A~ L.(C) in :rrn(-zn, ... ,-z1) 
we obtain 

in the domain of holomorphy al; and, in particular, in the 
real domain Rea{; and so forth. Now let expression (33) 
be valid in the real neighborhood of a point (x1, •.. , xu) 
E Rea/:. From the uniqueness of the analytic continua­
tion we conclude that 

Yf"n(Zb···,zn) =Yf"n(Zn, ... ,zi) =Yf"n(-zn, ... ,-zt) 

over the entire domain of holomorphy al;. Hence, taking 
(35) into consideration, we may write down 

~ (dz) ~[JP'(p~, ... ,pn)-Jii'(-pn, .. ,-p1)] 

x exp{-;_2; p,z,}<p(z~, ... ,zn)(dp)=O. (36) 

Here qJ (z1, •.. , Zn) ~ C(C"m) and the integration is car­
ried out along an arbitrary contour within the limits of 
the domain of holomorphy aA. Now let us choose the in­
tegration contour in (36) so that 1m Zi = 0, and 
1m (zi. 1- zi) = a> l, i = 1, ... , n- 1, and let us consider 

l= ~ (dz)exp{-i.2; p,z,}<p(z~, ... ,zn). (36') 

One can deform the integration contour up to the real 
domain. Then we obtain 

~ Jii'(p1 ,p2 ),~(p,,p,) (dp)= 0, ~ EIDl(R4•2), (37) 

Substituting (37) into (36) we finally find 

~ [Jii' n(p,, ... , Pn)- Jii' n (-pn, • · •, -p!)]~(p~, • • ·, Pn) (dp) = 0 {38) 

for arbitrary (p ~ IDl (Rm), which is equivalent to (28). In 
terms of the functions YJ"(x1, •.. ,xu) this means that (31) 
and (32) are valid. 

Let us prove the connection between spin and statis­
tics in an l-local theory. Let a scalar field be quantized 
so that /f"2 (z1, z2) is antisymmetric with respect to inter­
change of the arguments in the domain of holomorphy, 
i.e., it is quantized according to Fermi-Dirac statistics. 
Let us show that in such a theory all :rrn (z1, ... , zn) = 0. 
By assumption Yf"2 (z1, z2) = - Yfi'2 (z2, z1) in the domain 
a~'. Therefore W 1 (x1- x2) = - W 1 (x2- x1) for (x1- x2)2 
< -l2 • Comparing this condition with (27) we find that 
W 1 (x1- x2) = 0 at points of holomorphy on the real axis. 
Hence, due to the uniqueness of the analytic continuation, 
by repeating the arguments used for the proof of (38), we 
find that 

! = ~ (dx)exp{ -i .2; PiXi} <p(x,, ... , Xn) =~(Ph ... , Pn). 

or, in particular, 

~ Jii'(p,,pz)<f(p,)<p(pz) (dp)= IIA(<p)'I'oll~ = 0, 

~(p) EIDl!(R'). (39) 

From (39) it follows that A(;p)W"o = 0 and Yf"n (qh, ••• , <Pn.) 
= 0. In the case when other fields, Z-local or l-antilocal 
with respect to A((/J), are present one can show that A(q}) 
= 0 by using the Federbush-Johnson theorem. ll3-19J All 
of these results can be generalized without difficulty to 
more complicated cases associated with the presence 
of spins. 

5. CONCLUDING REMARKS 

1. In the nonlocalizable theory under consideration 
one can prove the reconstruction theorem. ll3J As a pre­
liminary we note that in an Z-local theory the cluster de­
composition theorem is valid: 

(lll, T(a)'I')- (lll, 'I'o)('¥0, 'I')= t(a) E S(R3 ), (40) 

where T(a) = U (a, 1). This follows from the results of 
article l20J where the specific properties of the basis 
function spaces were not used in the proof of formula 
00)::...., Therefore, starting from the given properties of 
YPn(<P) (including Z-locality), one can construct a sepa­
rable Hilbert space H, a continuous unitary representa­
tion U (a, A) of the Poincare group in H, a unique state 
W"o invariant under U (a, A), and a Hermitian scalar field 
A(;p) such that 

('I'o,A(p!) . .. A(pn)'I'o) = "iPn(p~, ... ,pn) 

with prescribed properties. The proof is carried out in 
the same way as in ll3,l4l, but only in the p-representa­
tion. 

2. For a narrower class of nonlocalizable theories 
one can without difficulty prove the existence of asym­
ptotic fields and the S-matrix (the Haag-Ruelle theo­
rem ll4J). s> For this purpose let us consider the trun­
cated vacuum expectation values JPJ'(;p) instead of Wn(;p) 
(for their definition see, for example, l 13' 14J). The rep­
resentation (11) is also valid for them. One can trans­
form this representation to the form 

6l A general proof of this theorem for a nonlocalizable field theory 
will be treated in a different place. 
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where the ffn(p) are measurable bounded functions. Or, 
introducing an obvious notation, we obtain 

Jr,.T(~)= ~ (dp)JronT(Ph· .,p,.)g(kJipl\ 2)~(pt, ... ,pn), (42) 

where ;r;rn(p1, ... ,Pn) is a generalized function of mod­
erate growth, satisfying the spectral conditions (13) and 
translational invariance (12). In the general case the 
usual locality conditions for the generalized functions 
i'f'~(x1, •.. ,xn) = F [lf'~(p)] • (xh ... ,xn) do not follow 
from l-locality. However, under the additional assump­
tion that If' on (x1, ... , xn) in (42) satisfies the local com­
mutativity property 

(43) 

or decreases sufficiently rapidly in a space-like direc­
tion (with respect to the distances (xi - Xj )2), the proof 
of this theorem practically does not differ at all from 
the usual proof. 

We note that the conjecture about the locality proper­
ties (43) of the functions li'on (x1, ... , xn) entering into 
(42) does not by any means imply that the nonlocalizable 
theory under consideration is constructed by means of 
a trivial generalization of a local theory of moderate 
growth, since in symbolic notation 

)f'nT(x!, ... ,x,.) = g)f'onT(x~, ... ,Xn), 

where g is an integral operator formally obtained by 
taking the Fourier transform of the operator g (kllp 11 2); 
the functions Jl' on (x1, ... , xn) cannot be identified with 
the Wightman functions of a local theory; in general 
they do not satisfy the requirements of positive defi­
niteness and relativistic invariance. 

3. The holomorphic properties of if'n (z1, ... , zn) 
permit one to manipulate with these functionals in the 
domain of holomorphy in the same way as with the usual 
functions. In particular, one can formulate the l-locality 
condition in a form which is very similar to the micro­
causality condition for a local theory: 

~ [)f' n (Xt, ... , Xn)- )f',.n (x!, ... , Xn)] q>(X!, ... , Xn) (dx) = 0, (44) 

if cp(x1, ... ,xn) E K-the space of finite functions, and 
its support is concentrated in the region Re aJ: where 
all (xi- xj)2 < -l2 , i ;;>< j = 1, •.. , n. Here the index 1r on 
if'n denotes an arbitrary permutation of the arguments. 

4. In obtaining all results of the present article, no­
where have we resorted to the explicitly relativistically 
invariant form of the generalized functions 7? n (p 1, ... , Pn) 

5. It is of interest to see how the singularities of a 
nonlocalizable theory appear in the example of a simple 
model for the two-point Wightman function. Let 

W,(q) = 8(qo)exp (il'l()e(q2) (q2)-''•, l > 0. 

In this case the function 

W2(z) = ~ Wz(q)e-iqz d'q 

For 1m z E r! (see (17)) can be explicitly calculated and 
is equal to 

Wz(z)= 1 {~+ 1 In l+l'~}. (45) 
2:rt2 (z2 + 12) ' z2- l'z• + 12 l-l'z2 + l2 

The branches of the radical and the logarithm in ~45) are 
chosen in the following way: 

for Re z 2 = x2 < -l2, 1m z2 = 0 

'fz2 + 12 = i'ji-(l• + Rez•); 

for Re z2 > 0, lm z2 = E: 

1 { 2! 1 
W,(x'±ie)= 2:rt2 (x2 +l2) x'±ie + l'l2 +x' 

·ln jl+{xi+lil ±~} 
l-l'x'-12 l'l•+ x' . 

It is easy to see that 
A. This function is holomorphic everywhere in the 

plane of the complex variable z2 except for the following 
singularities on the real axis: a pole at z2 = - l 2 ; a pole 
and a logarithmic branch point at z2 = 0. 

B. We have 

W2 (x'- iex0)- W 2 (x' + iexo) = 0, x' < -P., 

i.e., Wz(x2 ) automatically satisfies quasilocality. It is 
quite clear that the theorem about the global nature of 
local commutativity is violated. 

C. One can formally define the generalized function 
Wz(x) everywhere on the real axis as the following limit: 

Wz(x)= lim W2(z). 
r=,?-isx,; ,_.0 

But, in this connection it loses the property of relativ­
istic invariance in the region -l2 ::;:: x2 < 0. However, 
the functional 

ia+oo 

~ dz S dz0 W2(z)q>(z)=(2:n:)' ~ W2 (q)~(q)d'q 
ia-oo 

=(2:n:)'W2 (;), cp(q)E!!Jl(R') 

(the path of integration over zo may be arbitrary only 
it should pass above the point -1m zo = l) preserves the 
property of relativistic invariance. 

D. As l - 0 the function Wz(z) goes over into the 
Wightman function 

w: z -->-..!. _1_ 
z( ) 2:rt (z2)''• 

(46) 

for a localizable theory of moderate growth. The prop­
erties of W 2(z) will be considered in more detail in 
another article. 
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