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Stability with respect to constrictions of pinching in the electron-hole plasma of an intrinsic semicon
ductor is investigated with no external field acting upon the carriers. It is shown that for oscillations 
having a longitudinal wavelength that exceeds the pinch radius a weak instability develops by a mech
anism in which the self-magnetic field of the current plays an important role. 

1. INTRODUCTION 

THE pinch effect in a fully ionized gaseous plasma is 
known to be unstable witn respect to constrictions and 
helical perturbations. A weakly conducting liquid cylin
der is also unstable. llJ A similar instability of the pinch 
effect in solids might therefore be expected. l2 J 

Despite the qualitative analogy a solid-state pinch 
differs considerably from pinching in a gaseous plasma. 
The difference results not only from the greater carrier 
density in a semiconductor plasma, but mainly from the 
strong "frictional" interaction of electrons and holes 
with the lattice. The latter circumstance must also 
affect the stability of the pinch. The available experi
mental data indicate greater pinch stability than one 
would expect from an analogy with a gaseous plasma. In 
all the known experimental workl3 J oscillations of the 
voltage amplitude were damped out during one or, at 
most, a few pulses. Indirect evidence also exists for 
recovery of a pinch that had been destroyed by an ex
ternal magnetic field. l4 J 

We know of no special investigation concerning pinch 
stability in solid-state plasmas. In the present work an 
attempt is made to investigate pinch stability in the 
electron-hole plasma of an intrinsic semiconductor for 
the limiting case of zero applied magnetic field, when the 
effects of "friction" between carriers and the lattice 
are most pronounced. It is assumed that the electron 
mobility exceeds the hole mobility. Stability with res
pect to constrictions is investigated for a stationary 
state in which the longitudinal carrier-drift velocity is 
constant throughout the pinch cross section. A numer
ical solution of the equations for small oscillations 
showed that weak instability exists when kzao < 1, where 
a0 is the pinch radius and kz is the longitudinal wave 
number. The self-magnetic field of the current plays 
an important role in the development of the instability. 
When kzao > 1 the perturbations are completely sup
pressed by ambipolar diffusion. 

2. BASIC EQUATIONS 

We shall consider an infinite intrinsic semiconductor; 
we thus begin by excluding edge effects at the faces of 
the sample. We use cylindrical coordinates with an 
electric field applied along the z axis. We shall assume 
that in equilibrium, when carrier diffusion transverse 
to the self-magnetic field is balanced by their drift 
toward the center, all gradients are radially directed. 
For simplicity it will be assumed that the electron and 
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hole temperatures are identical, constant across the 
entire cross section, and invariant during perturba
tions.1> Carrier inertia will be completely neglected, 
and a quasi-linear plasma will be assumed. Carrier 
recombination and generation will also be neglected; 
the total number of electron- hole pairs per unit length 
of the pinch will be taken as constant. Friction between 
the carriers and the lattice will be taken into account, 
but interactions between the carriers will be neglected. 

We shall start with the equations of two-fluid hydro
dynamics. Then 

( 1 ) m:,pn 
0= +en E+-;;-[vn,pH] ---1:-vn,p-T'\/n, (1)* 

where m~,p is the (scalar) effective mass of electrons 

or holes, Tis the pulse relaxation time (Tn,p = T), His 

the self-magnetic field of the current, T is the carrier 
temperature, and n = p for intrinsic conduction (n and p 
are the electron and hole densities). The last relation 
is conserved for perturbations because of the quasi
neutrality. Assuming 

(1a) 

J..l.n » J..l.p• and therefore J..l.pH/c « 1, we derive from (1) 
the following expressions for the electron and hole 
velocities, accurate up to terms with (J..LnH/c)2 and 
(J..Lp/J..Ln)2: 

Vn= -11E-D '\In- f1 [ 11HEJ -D [ f.lH -~-~-l 
n c c n .J 

f.ln 'lin -vp=f!E-D-. (2) 
f.lp n 

Here and henceforth the kinetic coefficients lacking sub
scripts will pertain to electrons; J..L = eT /m~c is the 
electron mobility, and D = J..L T / e = TT /m~ is the electron 
diffusion coefficient. 

In our approximation holes do not contribute to the 
current, and to the same order of accuracy [up to 
(J..LH/c)2 terms] we have 

j = en11E'+ eDVn+e11n[ f.l~ E J + eD[ f.l: '\In J. (3) 

For holes continuity is conserved: 

!)It was shown in [5 ] that the carrier temperature is determined by 
the excitation energy kE>0 of the optical phonons, because the heating 
of the carriers is arrested by their emission of optical phonons. 

*[vH] =v X H. 
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on I at= -div nvp. 

Then Eqs. (2)-(4) together with Maxwell's equations 

divH= 0; 
4n 

rotH=-j 
c 

(4) 

(5) 

comprise a complete set of equations for our problem. 

3. EQUILIBRIUM 

In the equilibrium state the only non-zero current is 
parallel to the z axis: 

(6) 

which is accompanied in the given geometry by only an 
azimuthal self-magnetic field: 

2dn0 c D 
HO--------· 

~ - n0 dr 11 11E,0 ' 

here E~ is the longitudinal electric field in the pinch. 

(7) 

In accordance with (2) only electrons are acted upon 
by the magnetic field of the current. An indirect influ
ence of the magnetic field on the holes is manifested 
through the radial electric field with which the elec
trons confine the holes. In virtue of the quasi-neutrality, 
Eq. (2) shows that at equilibrium with v~ = v~ = 0 a 
radial electric field 

J.l ( J.lp) Er0 =---;;-E,0 H~0 1--, 
~c 11 

is set up and prevents motion of the holes away from 
the axis. 

(8) 

On the basis of (6) and (7) together with the second 
equation in (5) we easily determine that the equilibrium 
distribution of carriers along the radius of the pinch has 
the familiar form of a Bennett distribution: 

no= Nof, 
16 c2D 

f = -( 1 + p'),'' No= 2rre11v,o2 ao2 ' 

p == _!_; ao = ~~ ( NoT )'" . 
ao J,0 n (9) 

This result is consistent with the fact that we are inves
tigating the stability of the stationary state in which the 
axial drift velocity of carriers is uniform across the 
cross section of the pinch (v~ = const) and the total num
ber of carrier pairs per unit length of the pinch is also 
constant. 

4. PERTURBATIONS 

The stationary solution will be our zeroth approxi
mation. In the next approximation we write H = Ho + H', 
n = no + n', and cp = cpo + cp'. For the perturbations 
H', n', cp' ~ f(p) exp (-iwt + ikzz + imcp) Eqs. (2)-(5) 
yield in a linear approximation 

(pE0 +DV + [ J.l~o , J.1Eo+DV ])n'-no( DV +[ _!l:o , DV]) q;' 

= [~ V +DVno+ 11noE, !!H'.], 
4rrpe c · 

t'Dll- 11VEo+ iw~) n' + !!(VnoVq;')= 0; 
\ 1'-P (10) 

VH'=O. 

This derived system of five equations contains two 
unknown functions n' and cp', along with three compon-

ents of the magnetic field perturbation. It is easily seen 
that the coefficients of the unknown perturbations in the 
given system of equations can be used to form three 
independent dimensionless parameters differing in their 
order of smallness with respect to J..LHo/e. Equation (6) 
shows that our case J.LHo/c << 1 corresponds to large 
longitudinal fields E~ ~ (c/ J..LHo)(D/ J..Lao) and large mag
netic diffusion 

D - _c'_- D /(~)' _.!!:!__- vf( !!Ho )' 
m 4nJ.IeN0 c 4nnoT c 

On the other hand, perturbations with kzao ...._ 1 are of 
greatest interest. It follows from the third equation of 
(10) that in this region the magnetic field perturbations 
along all three coordinates are of an identical order of 
smallness. The relative perturbations of the potential 
and of the self-magnetic field of the current, which are 
induced by redistribution of the initial density, also have 
an identical order of smallness. Indeed, the current 
perturbation is proportional to the density perturbation, 
while j' /jo "'"' H' /Ho. Therefore n' /no "" H' /Ho. On the 
other hand, the density perturbation obviously leads to 
a proportional redistribution of the basic (unperturbed) 
longitudinal electric field, so that n' /no ~ cp' /aoE~ 
"" (J..LHo/c)(J..Lcp' /D). 

We shall here confine ourselves to simple constric
tion perturbations (m = 0), which appear to grow more 
rapidly than bending perturbations, just as in the case of 
a gaseous plasma. It is easily shown that in this case 
the redistribution of the density is associated only with 
a perturbation in the azimuthal magnetic field of the 
current. 

The previous primed notation will now be replaced 
by more convenient dimensionless quantities for the 
perturbation of the potential, cp = -ifJ..Lcp' /D, the density, 
n = n' /N0 , and the magnetic field, y = J..LH' /c. The 
equilibrium distribution of the self-magnetic field will 
be written as Yo = J..LH~/c. 

We now write (10) using the new notation and reduce 
all terms to an identical order of smallness. It must be 
remembered that in the new variables the perturbations 
have different orders of smallness. Thus the density 
perturbation is smaller by one order in J..LHo/c, and the 
potential is smaller by two orders, than the field pertur
bation. Mter dropping (J..LH0/c)2 terms and higher-order 
terms, a simple calculation yields the following system 
of differential equations: 

f :p (;) = xy; 

n+x<P=_!,_!l_PY; (11) 
p dp 

where x = kzao and Yo = 8p/(1 + p 2 ) in accordance with 
(7). 

In our case of an intrinsic semiconductor, when the 
phase velocity of the perturbation is zero, we write 
y = - i(wa~/D)(J..L/ J..Lp), and consider henceforth that y is 
a real quantity. 

The boundary conditions are obvious from consider
ations of symmetry and from the form of (11). For our 
constrictive type of perturbation the radial redistribu-
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tion of density is symmetric about the axis, so that 
(dn/dp)o = 0. On the other hand, the third equation of 
(11) requires y(O) = 0 in the vicinity of the zero point. 
Then (dcp/dp)o = 0, indicating that the corresponding re
distribution of potential is also symmetric about the 
origin. Our problem can be formulated with either of 
two kinds of boundary conditions at infinity. Thus if the 
sample is insulated by a medium with extremely small 
magnetic permeability, the perturbation of the current's 
magnetic field will vanish. On the other hand, if the 
sample is bounded by a shielding medium we have the 
boundary condition cp(pL) = 0. In the latter case the 
perturbation of the magnetic field does not necessarily 
vanish. We shall consider only boundary conditions of 
the second type, for two different cases: when the 
shielding layer is located at a distance which is four 
times the pinch radius, and when the distance exceeds 
ten times the pinch radius (so that the shielding layer 
does not restrict the growth and development of pertur
bations). 

The system (11) can be reduced to a single self
adjoint differential equation for the potential. Eliminat
ing n and y, and introducing the notation 

'A = X' -+ y I <1, a = 2x' - f, 

(12) 

we obtain 

1 (_()'£")" +~[(z(!-1)-Yo_ 1 ;-) p<p'_J' +(al"+B)!_=O, 
r f r 2r r- f f (13) 

where primes denote differentiation with respect to the 
radial dimension. 

We must now solve a boundary problem for the 
eigenvalues of a fourth-order self-adjoint linear opera
tor where the parameter A appears in an unusually 
general manner. lBJ With regard to the boundary condi
tions of (13) we can state that, in accordance with the 
foregoing discussion, for the investigated symmetric 
case all odd derivatives of the potential with respect to 
the radius must vanish, and we can assume cp = q/ = 0 at 
infinity. 

5. DISPERSION EQUATION 

We cannot obtain a general analytic solution for the 
spectrum of our boundary problem; numerical integra
tion was required. Before presenting the solution we 
shall attempt to determine nonrigorously both the class 
of eigenfunctions of (13) that we can expect to find built 
up and the corresponding responsible terms. We multi
ply the self-adjoint form (13) by cp and integrate subject 
to the boundary conditions. Then the expression for the 
increment can be put into the perspicuous form 

y x•-+ax'-+b 
-= -x'-+ . 
t, 2x2 -+ c 

(14) 

where 

c- --1-( ~·!_<¥_" +rr') a- --1-·· ((t- y,,2) '~''~\ 
- \<r'l!> \ - j · ' - 2(rr2//) 2 t /• 

b=--1 _;,!:=_\+-1.-((zt-Yo -··1) '!''_) 
\ 'If>\ f I <•r!f> 2r r' f . 

1 < ( Yo2 ) q;2 
\ --- t !-- -;. 

4 \rp 2//) 2 f ' 

00 

Here (f)= jfpdp. The signs and magnitudes of the co-

efficients a, b, and c will obviously depend entirely on 
the behavior of the potential cp/f. 

Equation (14) shows that short-wave perturbations 
are suppressed by ambipolar diffusion, i.e., y ~ - 2x2 • 

When (14) is expanded in reciprocal powers of x2 and we 
include one more term we have 

y;::; -2x2 -+ 2a. (15) 

The second term can be positive or negative (a > 0 or 
a< 0). 

For long-wave perturbations it is convenient to re
write (14) as 

y x• (a - c) x2 -+ b 
-=---+ -
4 2x2 -+ c 2.:~;2 -+ c ' 

(16) 

so that the sign and magnitude of the increment depend 
on the sign and magnitude of the coefficient b/c. 

Let us assume that cp/f is a slowly varying function 
(which follows from the numerical solution) and let us 
neglect its derivatives. In first approximation, assum
ing a constant potential, we insert cp/f = const into the 
integrals that appear in the expressions for a, b, and c. 
The integrals then vanish, so that a = b = c = 0. We see 
that the integrands in the coefficients a and c undergo a 
change of sign, exhibit a node, and at infinity approach 
zero from the negative-value side. This signifies that 
the coefficients a and c can be positive only for poten
tials that increase slowly from the z axis to the boun
dary. 

The sign and magnitude of b depend on three terms 
which in the case of a constant potential are completely 
canceled out, so that b = 0. When, as previously, we 
analyze the behavior of the integrands, we easily deter
mine that the second term makes a positive contribution 
for a potential that either increases or decreases toward 
the boundary; the third term can be positive only for a 
perturbation of the potential that increases towards the 
boundary, while the first term is always negative. Com
paring orders of magnitude, we easily determine for our 
case (where the numerical solution shows that the 
potential is almost constant, increases only slightly be
tween the axis and the boundary, and then drops to zero) 
the second term can be dominant, making b positive. 

Summing up, we find that a buildup is possible, gen
erally speaking, if the eigenfunctions of the boundary 
problem (11) include functions that increase slowly 
along the radius. It follows from the forms of a, b, and 
c that positive contributions come from terms which 
depend explicitly on the self-magnetic field of the cur
rent. 

The foregoing qualitative conclusions were confirmed 
by the numerical calculation. The boundary problem was 
solved to obtain eigenvalues for two second-order linear 
differential equations inn and cp; the variable y had been 
eliminated from (11). The iteration method was used to 
derive eigenvalues and eigenfunctions. Each equation 
was written in terms of finite differences and was solved 
by a run-through method. For the perturbations, "phys
ical infinity'' was in one case located at a distance equal 
to four times the pinch radius; in a second case its dis
tance was more than ten times the pinch radius. Figure 
1 shows the dispersion curves obtained for these two 
cases; the dashed curve represents the second case. 
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',, FIG. I. Dispersion curves. The 
', continuous curve represents the case 

~', of zero perturbations nand <P for ' •'z,J "z0u p = 4; the dashed curve represents 
~ the case of p = 10, when there is no 

boundary effect; 'Y = -i(wat1/D) X 
(JJ./JJ.p). 

FIG. 2. Reduced density and potential perturbations: (a) for x = 0.5 
and (b) for x = I. The continuous curve represents the case of zero per
turbations and <P for p = 4; the dashed curve represents p = 10, when 
there is no boundary effect; K = (<{J/f)/I(<P/00 1. 

The iteration process converged rapidly for x > 0.2, 
but no convergenee was obtained for x :s 0.2. Figure 2 
shows the behavior of the redueed potential ( qJ /f)/ I ( qJ /f)o I 
= K and the reduced density n/nmax for the two most 
interesting values, x = 1 and 0.5. 

6. DISCUSSION OF RESULTS 

In the region kzao < 1 of the dispersion curves (Fig. 
1) a buildup is observed, i.e., y > 0; larger increments 
are reaehed for the seeond case (the dashed curve). 
Figure 2 shows that the positive eigenvalues are as
sociated with eigenfunctions qJ of the boundary problem 
that grow slowly in the radial direction and that are 
nodeless, like the density perturbations. These nodeless 
density perturbations can evidently only occur in con
junction with a strong inflow of carriers along the z 
axis, thus producing a nonuniform positive density in
crement in the entire cross section. 

The following oscillation buildup mechanism is indi
cated reasonably by the foregoing discussion. If at some 
moment in some region of the plasma filament a density 
increment has appeared (on > 0), it is easily seen that 
in this same region the maximum weakening of the 
longitudinal field E~ will occur. Indeed, Fig. 3 shows 
that the field perturbation Ez = -ikzqJ' ,_ kzqJ, with 
qJ < 0, opposes the main field. However, the radial field 
perturbation E~ = -8q7' jar,_ -iBqJ/Br has been shifted 
one-half phase period from the density perturbation, and 
charges have arranged themselves in the regions a and 
b (shown in Fig. 3) with their maximum density in the 

E, FIG. 3. Field and charge distributions 
-.-J~=~~2::TI+::;;;;;. __ in a perturbed pinch. a and b-regions of 

• ~c'-- • _ __f.{ charge accumulation, with maximum 
E) = ' !+ __ charge density at the boundary. The 

crossed fields E~ and If$ induce particle 
drift to the right at a, and to the left at b. 

boundary layer. The radial field perturbation at a is 
directed outward from the center and will reduce the 
main field; at b, however, the radial field will enhance 
the main field, being oriented in the same direction. 
The crossed fields (the radial field perturbation and the 
self-magnetic field) will induce a continual transfer of 
new plasma portions through the boundary layer into 
the region with on> 0. Thus for the given potential 
distribution the buildup results from longitudinal 
Lorentz forces that contract the plasma through the 
surface layer and ultimately augment the initial pertur
bation. 

7. CONCLUSION 

It has been our purpose in the foregoing investigation 
to determine the characteristics of instability in a solid
state pinch when a strong interaction exists between 
carriers and the lattice. For this purpose we required 
the given model (which is not too much different from 
reality), where no external magnetic field is applied 
and there is a constant total number of carriers per unit 
length of the pinch. 

The numerical calculation has shown that in this 
model a pinch is unstable for constrictive perturbations 
with kzao < 1. For InSb below room temperature we 
find the characteristic growth time of this instability to 
lie in the interval T R=< 10-6-10-8 sec; here a 0 ,_ 10-2 em 
and Dp R=< 102-104 cm2/secYl The instability itself is of 
absolute character, with a real increment. Under ex
perimental conditions, however, since the growth incre
ment of the perturbations is small, an appreciable sta
bilizing role can be played by carrier recombination and 
generation. We have not considered these effects. 

At low temperatures, when impurities play a more 
important role, it becomes possible for perturbations to 
drift towards the sample faces in the direction of minor
ity carrier motion. [8 J In this case the character of the 
instability can change from absolute to drift type. 

In conclusion, the author wishes to thank B. B. 
Kadomtsev for directing this work, also A. v. Timofeev 
and 0. P. Pogutsa for useful discussions. 
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