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Rayleigh scattering of electromagnetic waves in He4 at T < 0.6°K and in weak solutions of He 3 at 
T < TF is considered. The shape and intensity of the Stokes and anti-Stokes satellites are obtained 
and the total damping decrement of the photon flux in a medium is determined. 

THE application of the method of fluctuation theory 
(seefll) to the kinetic equation, as was first done by 
Abrikosov and Khalatnikov for pure He3 [21 , makes it 
possible to obtain the differential and total extinction 
coefficients in Rayleigh scattering of electromagnetic 
waves in He4 in weak solutions of He 3 in He4 at low 
temperatures, to which the present paper is devoted. 
We consider classical scattering, i.e., tiD.w << kT, 
where ~w is the change of the energy of the incident 
photon upon scattering, and T is the temperature of 
the medium. The incident wave is assumed to be mono­
chromatic. The results can be extended to the quantum 
case (tiD.w >> kT) in exactly the same manner as is 
described in[21 • 

The differential extinction coefficient is given by the 
well known formula [3 1: 

------~ 

dh=~l 1 6~t.oo(r)e-iqrav! 2~(1+cos2 8) dQ d!J.w, (1) 
12n2c' V J 4 4n 

where I q I = ( 2w/ c) sin ( ()/2 ), q is the scattering vec­
tor, () is the scattering angle, w is the frequency of 
the incident wave, c is the velocity of light, 

1 lo 

6~ t.oo (r) =lim---= S 6~ (r, t) eit.oot dt, 
to--"00 l/to 0 

and o~W(r, t) is the fluctuation of the dielectric con­
stant of the medium. The bar denotes averaging over 
the fluctuations. The Fourier component of o IW ( r, t) with 
respect to time is defined in the same manner as inr21 • 

1. RAYLEIGH SCATTERING OF ELECTROMAGNETIC 
WAVES IN He4 AT T < 0.6°K 

Owing to the small polarizability of helium, it can 
be assumed that o ~ = (a ~jap) op, where p is the 
density of the liquid. Then 

I~ 6~,..,(r)e--iqrav I"= (~:)"I6Pt.oo,ql 2• (1.1) 

Here OPD.w, q is the Fourier component of the density 
fluctuation with respect to r and t. Thus, the problem 
reduces to a determination of I OPD.w,q 12 • It is known[ 4 J 

that when T < 0.6°K, the He4 can be regarded as a 
pure phonon gas. Let us write the kinetic equation for 
the phonon distribution function n =no +on: 

. D6n Diin aH ano aH 
6n=-+-----=1(6n)+y(p,r,t). (1.2) 

at ar ap ap ar 
Here H = € ( p) + p · Vs is the phonon Hamiltonian [4 1, 

y(p, r, t) an arbitrary "extraneous" force, p the 
phonon momentum, and Vs the velocity of the super­
fluid motion. The collision integral will be taken in 
the form that conserves the total energy and the mo­
mentum: 

1 
1(6n) =-- (6n- 6n- 36n cos ttcos tt). 

"t 

We take the Fourier transforms of (1.2) with respect 
to r and t, change over to dimensionless variables 
p' = OPq D.wiP and vs = (vs)q D.w/s, where s is the 

' ' [ 5] speed of sound, and represent onq, D.w ( p) in the form : 

ano ( ae ) 6nq,t.m=a; ap 6pq,t.oo+ev(costt) . 

After simple transformations and after integrating 
(1.2) with respect to p, with weight Ep2, we get 

(z- COS tt)v(cos lt) + wup' + Cos2 -frvs + (~- z) (vo + Vt COS tt)(1.3) 
= Y(cos tt) I 2iqsn2h3TCph, 

where 

Y(costt)= ~ yq,Aoo(P)ep2 dp, 

pas !J.w 
u=siip' w=-qs• z=;(1--. 1 ) , 

!!J.W"t 

qv=qvcostt, v0 =v, vt=3vcostt. (1.4) 

We now calculate Y(cos J) Y( cos e') and then, solv­
ing the kinetic equation together with the continuity and 
superfluid-motion equations, we get I OPq,D.wl 2 • The 
entropy per unit volume of the phonon gas is[ll: 

S = k S [(1 + n)ln(1 + n)- nlnn]d-rp. (1.5) 

Varying (1.5) with respect to n, with allowance for the 
energy conservation law, and retaining the first non­
zero term in powers of on, we have for the rate of 
change of the entropy 

. \ 6n6n 1 s ae . 
8= -k J d-rp=- -6n1lnd-rp. 

n0 (1 +no) T ano 

We expand on(p, r, t) and y(p, r, t) in a series of 
spherical functions 

1 a 00 n 

--8 6n = .;8 .;8 Anmpnm(costt)eim'l', 
8 Ono n=O m=-n 

n 

Y = .;8 .;8 Ynmpnm(costt)eimq>, 
n=O m=-n 

where J and cp are the polar coordinates of p. We 

(1.6) 
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substitute (1.2) in (1.6) and obtain after integrating 
with respect to T P• with allowance for (1.4) 

. 1 [ ~ 2 ~ ~ 2(n+lml)! 
S=-- ~---A,.0Y,.0 + ~ ~ 

4rr,2/i3T 2n+1 12n-t1)(n-lml)! 
11==0 n=f m=-n 

(m>i=O forn=1),(1.7) 

where Y~ Jy~Ep2 dp. Following the general theory of 
fluctuations, we represent (1.7) in the form 

(1.8) 

We put 
n;m 

n = 1, m * 0; n = 2, ... ; 

it then follows from (1.8 ), (1.9 ), and (1. 7) that 

ture region under consideration its mean value over 
the fluctuations is equal to zero[6 l. Equations (1.3), 
(1.15), and (1.16) constitute a complete system of 
equations describing He4 • We take the Fourier trans­
forms of (1.15) and (1.16) with respect to r and t, and 
change in these transforms to dimensionless variables. 
Mter averaging (1.3) over cos J., we get 

-wp' +i =0, 

- 1 ( 81P) Pn -- roi+- - p'---(3uvo+ oovt)= 0, 
s• 8p T P. 

(1.17) 

(1.18) 

_ 1 _ 1 p, - 1 r 
roup'-t-oop'---vt+rovo= t.· Z/!3 TC J Y(.:r:).dx, 

3 3 p 'H:rt qs ph_f /(1.19 ) 

(2 -t(c:;- z)ln il] Vo+ ( c:;- Z ~8 ) (- 2 + Zlnii)Vt -t(u~ Jnil) p' 

+ -( 2-t_ln_). 1 } Y(.:r:) d /(120) z- z a J=-4. •li• ~c J---- x, • 
111 qs ph _1 z - x 

Xnm=- A,.-m(n+lmi)! ' 
2n•IPT(2n+ 1)(n-lml>! n=0,1, ... · (1.10) where .Gf> is the pressure, and 

From the requirement 
• m ~ mm'X m' + Y m Xn = - .:::J 'Vnn' n 1 n 

n',m' 

we get, comparing (1.9) and (1.10): 

iioo00 = 0, yu00 = 0, 

n = 1, m 4o 0; n = 2, 3 .... 

Hence 

X 6 (t _ t') 6 (r -r')= 2k(2n"li3T)2Cph(2n + 1) (n -lml>! 
-r(n+lml)! 

X6nn•6m, """"1'6(t- t') 6(r- r'). (1.11) 

It is known from the theory of spherical functions 
that 

P,. (cosy)= P,.(cos 'It cost}'+ sin t} sin t}' cos(<p- <p')) 

= ~ (n-lml>!p m(cos'lt)P m(cost}')eim(cp-cp') (1.12) 
m~n(n+lml}! n . n ' 

~ (2n-t1)P,.(cosy)=211(cosy-1). (1.13) 
n=O 

Summing (1.11) with the aid of (1.12) and (1.13), we 
obtain 

Y (cos 'It), Y (cost}') 

2kCp~ ) = (2n21i3T) 2 --[211(cos'lt- costl-') -1- 3cos 'It cos tt1. (1.14 
"t 

We write down the equations of continuity and super­
fluid motionr41 : 

(1.15) 

iiv, ( 1 iie ) -,- + V' !!o + J -;c- nd"tp = 0. 
qt Up 

(1.16) 

Generally speaking it is necessary to introduce in 
(1.16) an "extraneous" potential, but in the tempera-

z + 1 ., P• Pn \ lnil=ln-_-, Ps+!Jn=p, i= -v,+-vn . 
z-J P P 

The left side of (1.17 )- (1.20) coincides, as it should, 
with the corresponding system in[ 5l. Solving the ob­
tained system with respect to p' and averaging it over 
the fluctuations with the aid of (1.15), we obtain, after 
rather laborious calculations, 

- p,.kTi;;;•+ui'l 4 I ( IP'I 2 = --·-ln2 il-3(- 2 +Zlni1)2 1.21) 
6IDI"(pqs")"r ZZ-1 

where 

3D=- (ro2 -u102/s2){2 + (w- z) Ina+ 3w(w-z) (-2 + zln a)} 
+ (p,./p) {(oo2 - Ulo2/s2) [2 + (w- z) In a- 3wz (- 2 + zina)! 

+ 3w(w2 + u) (z (- 2 + zina) + uin a]- w(3u + 1) [w(2 + (w-z) Ina} 
-3u(w-z)(-2 + 'Zina)l} 

is the determinant of the system (1.17 )- (1.20 ), accu­
rate to terms linear in PniP == 10-4 .T4 ; u~0 == (a:f'jap)T 
is the compressibility. Substituting (1.21) in (1 ), we 
get finally 

oo 4 (80)2 p,.k1'l;"+ul'l 4 _ 
dh=·12n•c• Tp 6IDI 2 (qs")"r ·z2 -1 -In•a 

1
3 dQ 

-3(-2-tzlni1) 2 4(1+cos2 6)~dtloo. (1.22) 

The form of formulas (1.21) and (1.22) greatly sim­
plifies in different limiting cases. It will be shown that 
(1.21) has li-like singularities corresponding to scatter­
ing by first and second sound. Let us examine these 
singularities. 

First sound. Let at first ll.wT >> 1. When w ~ 1, 
which corresponds to the first sound, (1.21) takes on 
the dispersion form 

IP'I"=( 2kT) _ 3:np,.(u-j-1)"/4p 
qs3p (oo 2 - u1~2/s2) 2 + (3np,.(u + 1) 2/4p)• 

nkT 
~ - 2 [6(/loo- Ut..,q)+ 6(/loo + u,=q)]. 1(1.23) 

ps 

We note that when T == 0.5°K we have PniP ~ 10-5 • In 
(1.23) we have 

u100 = u10 + s(p,. / p) {3/.(u + 1)" In (Moo"t) - 3u- 2}. 

The line width is determined by the quantity 
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(%)1T(Pn1P)(u + 1)2• We recall that u = (p/s)asjap 
l:::l 2.7. 

Let now D.wT << 1, and then 

(1.24) 

U1=u10+~(3u+1) 2 Pn. 
4 p 

Second sound. Near w = 1/ !3 and when D.wT « 1, 
which corresponds to second sound, (1.21) takes the 
form 

-,-2 ( l'iiPnkT(3u + 1) 2 ) M(J)T/15 
IP I = 8qs3p2 (G> 2 -uNs')+(4/l(J)T/15) 2 

( 3npnkT) ( 3u + 1 )' "" ~ --4- [ll(/l(J) -u,q)+ll(/l(J) +u2q)],(1.25) 

where 
S [ 3 Pn J u2 =-= 1--(3u'+2u+1)- . 

l'3 4 p 

Comparing (1.2 3) and (1.24) with (1.2 5 ), we see that 
scattering by second sound is weaker by a factor PniP 
than by first sound, and in the calculation of the total 
extinction coefficient it can be neglected. Let us inte­
grate (1.22) approximately: 

h =~( iJ/C)'pkT. 
6nc• fJp s2 

(1.26) 

From the condition liD. w « kT it follows that w « 10 17 • 

Putting w = 1016 and T = 0.5°K, we have 
h l:::l (a ~jap)2p 2 x 10-4 cm-1 • 

2. RAYLEIGH SCATTERING OF ELECTROMAGNETIC 
WAVES IN WEAK DEGENERATE SOLUTIONS 
OF He3 IN He4 

He3 forms a Fermi liquid when T << TF, where 
kTF = J.1. is the chemical potential of He3 at 0°K. For 
a 5% solution of He3 in He4 , for example, TF l:::l 0.3°K. 
The phenomenological theory of such a Fermi liquid is 
given in[7 l. Calculation shows that the presence of pho­
nons can be neglected accurate to terms of order 
PniP = 10-4T 4 • Let us write an expression for o ~: 

6ft = ( ;E£ ) 6p4 + ( ~E£ ) 6p, = (!_!_) (11p,- ( 0P• ) lira) . 
P• P• "Pa •• op, "' op, ' <2 

According to the experimental data ap 4 /8p 3 l:::l 1.6. We 
assume that p 3 « P4 (cp 3 and P4 are the densities of 
the He3 and He4 particles). We can therefore assume 
that oli l:::l (a~jap4)p 3 iiP4· 

Let us write the kinetic equation for the distribution 
of the Fermi particles n = n0 + on: 

. i){jn i){jn iJe ano f i){jn (p') 
13n=-+----- f(p,p') --dTp•=l(lln)+ y.(2.1) at iJr fJp fJp fJr 

Here f( p, p') is the Landau function, and we assume 
for simplicity that f = f0 • According to[7 l, the energy 
spectrum is 

e(p)=eo(pa,p•)+ 2P', + lln:-pv,+ ).f(p,p')tJn(p')dTp•, 
m m 

where m* is the effective mass of the Fermi excita­
tion, D.m = m* - m3. 

We take the collision integral in the form 
1 ---

l({Jn) =--:{ (6n- {Jn- 3{Jn cos{} cos{}) (2 .2) 

( J is the angle between p and the scattering vector q). 
The fluctuation of the random force is calculated in 
the same manner as in[2 l, the only difference being that 
the collision integral is taken in the form (2 .2 ). For 
the rate of change of the entropy we have 

. {r6n[J(6n)+Yl 
S = -k J dTpdV 

no(1- no) 

+ k~ 5f(p,p')6(r-r')6nl({Jn')dTvdTp•dVdV'}, (2.3) 

no(1- no)= kT6(e- J-1). 

All the quantities change near the Fermi boundary, 
and we therefore put 

l)n = 6n•({}, qJ)Il(e- 1-1), y = y•({}, <p)tJ(e- 1-1) 

(J, cp-polar angles of the momentum vector p). We 
expand onE(J, cp) and yE(J, cp) in series of spherical 
polynomials: 

6n•({},qJ)= ~ ~ Anmpnm(cos{})eim~, (2 .4) 
n=Om=-n 

n 
y•({},rr)= ~ ~ Ynmpnm(cos{})eim~. (2.5) 

n=Om=-n 

Substituting (2.4) and (2.5) in (2.3) and integrating with 
respect to dTp and the unit volume, we obtain as the 
result 

S _ 1 (dTp) { = n (n+lml)! (Anm -y m)A -m 
-T de •=~ ~ ~ (2n+1)(n-lml)l 1: n n 

n-im--n-

Proceeding in exactly the same manner as in Sec. 1, 
we get 

2kT(de) Yq,t.w(ti)yq,t.w({}')=- d-
"t 't e=IJ. 

X [26 (cos{}- CJS {}')- 1 - 3 cos{} cos{}']. (2 .6) 

To obtain the complete system of equations describ­
ing the solution, we add to (2 .1) the equations of con­
tinuity and of superfluid motion [ 4 • 7 1: 

(2 .7) 

(2 .8) 

Averaging (2.1), (2.7), and (2.8) over J and taking 
their Fourier transforms with respect to r and t, we 
obtain after some calculations 

[ 1 ( 1) ] W m, , 1+-- F0-- W v0 +-v1+2u2-aWp 
~c:r ~c:r c:r m' 

I s 

+2M': ~Wv, = -. -1--) 1Jq, t.w(z) dz. (2 .9) 
m 21eFqvF _1 z- ~ 

( 1 ) 1 2 l!.m 1 (· • -+ ~ vo--3 v1 +-3 -, v, = --2-.-- J y,1,t.w(z)dz, 
a m !eFqvF _1 (2 .10) 

3 m8 - 1 m• ---X(J)Vo-----vl- wp' + v, = 0, 
2 m4 2 m4 · 

- 8/,u2xavo + u2 (1 + ~x) p'- ;;;v, = 0. 

Here 

P• ( fJeo) 
a= m,s2 ap. ' 

6=~(1--. -1 ), 
!/1..(1)1: 

(2 .11) 

(2 .12) 



852 D. M. SEMIZ 

1 ( 08) v(co~tt)=- -0 . c5nq,Am; 
ep nu 

and we have introduced the dimensionless variables 
p' = (15p4)q,Aw• Vs = (vs)q,Aw. llo = il, and 111 

= 3 ~. In addition, 

W=-i+!_In ~+ 1 . z s-1 
We solve the system (2 .9 )- (2 .12) with respect to p' 

and average the result over the fluctuations with the 
aid of (2.6). After rather laborious calculations we ob­
tain 

jp'l 2 = 3xkT (de) 4xm4 (a +,~m/m4) 2~Cil~/15m·(~Cil~2+ 1) 

m4v~qseF d~ •=~ (;;j2 - Ut2/vF2)~ + A2 (2 .13) 

where 

A= 4xm4 (a + !J.m / m4 ) 2~Cil't /15m*(~Cil~2 + 1). 

The numerator of the fraction in (2.13) determines the 
width of the line both when AwT << 1 and when AwT 
» 1. In both cases 

where 

np,kT I (c5p,jq,Aml 2 = -2-[cS(~Cil- Utq)+ cS(~Cil + Utq)], (2.14) 
s 

s [ m4 ( ~m)2 ~m J u1 =s+x- -. a+- +~--. 2m m4 m, 

Substituting (2.14) in (1), we get 

Integrating (2.15), we return to (1.26). We note that 
(1.26) coincides with the results obtained in[s] and[91 
for the hydrodynamic case and in r91 for a nondegenerate 
solution of He3 in He\ 

In conclusion, I am grateful to I. M. Khalatnikov for 
suggesting the problem and for useful remarks. 
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