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Rayleigh scattering of electromagnetic waves in He4 at T < 0.6°K and in weak solutions of He 3 at 
T < TF is considered. The shape and intensity of the Stokes and anti-Stokes satellites are obtained 
and the total damping decrement of the photon flux in a medium is determined. 

THE application of the method of fluctuation theory 
(seefll) to the kinetic equation, as was first done by 
Abrikosov and Khalatnikov for pure He3 [21 , makes it 
possible to obtain the differential and total extinction 
coefficients in Rayleigh scattering of electromagnetic 
waves in He4 in weak solutions of He 3 in He4 at low 
temperatures, to which the present paper is devoted. 
We consider classical scattering, i.e., tiD.w << kT, 
where ~w is the change of the energy of the incident 
photon upon scattering, and T is the temperature of 
the medium. The incident wave is assumed to be mono
chromatic. The results can be extended to the quantum 
case (tiD.w >> kT) in exactly the same manner as is 
described in[21 • 

The differential extinction coefficient is given by the 
well known formula [3 1: 

------~ 

dh=~l 1 6~t.oo(r)e-iqrav! 2~(1+cos2 8) dQ d!J.w, (1) 
12n2c' V J 4 4n 

where I q I = ( 2w/ c) sin ( ()/2 ), q is the scattering vec
tor, () is the scattering angle, w is the frequency of 
the incident wave, c is the velocity of light, 

1 lo 

6~ t.oo (r) =lim---= S 6~ (r, t) eit.oot dt, 
to--"00 l/to 0 

and o~W(r, t) is the fluctuation of the dielectric con
stant of the medium. The bar denotes averaging over 
the fluctuations. The Fourier component of o IW ( r, t) with 
respect to time is defined in the same manner as inr21 • 

1. RAYLEIGH SCATTERING OF ELECTROMAGNETIC 
WAVES IN He4 AT T < 0.6°K 

Owing to the small polarizability of helium, it can 
be assumed that o ~ = (a ~jap) op, where p is the 
density of the liquid. Then 

I~ 6~,..,(r)e--iqrav I"= (~:)"I6Pt.oo,ql 2• (1.1) 

Here OPD.w, q is the Fourier component of the density 
fluctuation with respect to r and t. Thus, the problem 
reduces to a determination of I OPD.w,q 12 • It is known[ 4 J 

that when T < 0.6°K, the He4 can be regarded as a 
pure phonon gas. Let us write the kinetic equation for 
the phonon distribution function n =no +on: 

. D6n Diin aH ano aH 
6n=-+-----=1(6n)+y(p,r,t). (1.2) 

at ar ap ap ar 
Here H = € ( p) + p · Vs is the phonon Hamiltonian [4 1, 

y(p, r, t) an arbitrary "extraneous" force, p the 
phonon momentum, and Vs the velocity of the super
fluid motion. The collision integral will be taken in 
the form that conserves the total energy and the mo
mentum: 

1 
1(6n) =-- (6n- 6n- 36n cos ttcos tt). 

"t 

We take the Fourier transforms of (1.2) with respect 
to r and t, change over to dimensionless variables 
p' = OPq D.wiP and vs = (vs)q D.w/s, where s is the 

' ' [ 5] speed of sound, and represent onq, D.w ( p) in the form : 

ano ( ae ) 6nq,t.m=a; ap 6pq,t.oo+ev(costt) . 

After simple transformations and after integrating 
(1.2) with respect to p, with weight Ep2, we get 

(z- COS tt)v(cos lt) + wup' + Cos2 -frvs + (~- z) (vo + Vt COS tt)(1.3) 
= Y(cos tt) I 2iqsn2h3TCph, 

where 

Y(costt)= ~ yq,Aoo(P)ep2 dp, 

pas !J.w 
u=siip' w=-qs• z=;(1--. 1 ) , 

!!J.W"t 

qv=qvcostt, v0 =v, vt=3vcostt. (1.4) 

We now calculate Y(cos J) Y( cos e') and then, solv
ing the kinetic equation together with the continuity and 
superfluid-motion equations, we get I OPq,D.wl 2 • The 
entropy per unit volume of the phonon gas is[ll: 

S = k S [(1 + n)ln(1 + n)- nlnn]d-rp. (1.5) 

Varying (1.5) with respect to n, with allowance for the 
energy conservation law, and retaining the first non
zero term in powers of on, we have for the rate of 
change of the entropy 

. \ 6n6n 1 s ae . 
8= -k J d-rp=- -6n1lnd-rp. 

n0 (1 +no) T ano 

We expand on(p, r, t) and y(p, r, t) in a series of 
spherical functions 

1 a 00 n 

--8 6n = .;8 .;8 Anmpnm(costt)eim'l', 
8 Ono n=O m=-n 

n 

Y = .;8 .;8 Ynmpnm(costt)eimq>, 
n=O m=-n 

where J and cp are the polar coordinates of p. We 

(1.6) 
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substitute (1.2) in (1.6) and obtain after integrating 
with respect to T P• with allowance for (1.4) 

. 1 [ ~ 2 ~ ~ 2(n+lml)! 
S=-- ~---A,.0Y,.0 + ~ ~ 

4rr,2/i3T 2n+1 12n-t1)(n-lml)! 
11==0 n=f m=-n 

(m>i=O forn=1),(1.7) 

where Y~ Jy~Ep2 dp. Following the general theory of 
fluctuations, we represent (1.7) in the form 

(1.8) 

We put 
n;m 

n = 1, m * 0; n = 2, ... ; 

it then follows from (1.8 ), (1.9 ), and (1. 7) that 

ture region under consideration its mean value over 
the fluctuations is equal to zero[6 l. Equations (1.3), 
(1.15), and (1.16) constitute a complete system of 
equations describing He4 • We take the Fourier trans
forms of (1.15) and (1.16) with respect to r and t, and 
change in these transforms to dimensionless variables. 
Mter averaging (1.3) over cos J., we get 

-wp' +i =0, 

- 1 ( 81P) Pn -- roi+- - p'---(3uvo+ oovt)= 0, 
s• 8p T P. 

(1.17) 

(1.18) 

_ 1 _ 1 p, - 1 r 
roup'-t-oop'---vt+rovo= t.· Z/!3 TC J Y(.:r:).dx, 

3 3 p 'H:rt qs ph_f /(1.19 ) 

(2 -t(c:;- z)ln il] Vo+ ( c:;- Z ~8 ) (- 2 + Zlnii)Vt -t(u~ Jnil) p' 

+ -( 2-t_ln_). 1 } Y(.:r:) d /(120) z- z a J=-4. •li• ~c J---- x, • 
111 qs ph _1 z - x 

Xnm=- A,.-m(n+lmi)! ' 
2n•IPT(2n+ 1)(n-lml>! n=0,1, ... · (1.10) where .Gf> is the pressure, and 

From the requirement 
• m ~ mm'X m' + Y m Xn = - .:::J 'Vnn' n 1 n 

n',m' 

we get, comparing (1.9) and (1.10): 

iioo00 = 0, yu00 = 0, 

n = 1, m 4o 0; n = 2, 3 .... 

Hence 

X 6 (t _ t') 6 (r -r')= 2k(2n"li3T)2Cph(2n + 1) (n -lml>! 
-r(n+lml)! 

X6nn•6m, """"1'6(t- t') 6(r- r'). (1.11) 

It is known from the theory of spherical functions 
that 

P,. (cosy)= P,.(cos 'It cost}'+ sin t} sin t}' cos(<p- <p')) 

= ~ (n-lml>!p m(cos'lt)P m(cost}')eim(cp-cp') (1.12) 
m~n(n+lml}! n . n ' 

~ (2n-t1)P,.(cosy)=211(cosy-1). (1.13) 
n=O 

Summing (1.11) with the aid of (1.12) and (1.13), we 
obtain 

Y (cos 'It), Y (cost}') 

2kCp~ ) = (2n21i3T) 2 --[211(cos'lt- costl-') -1- 3cos 'It cos tt1. (1.14 
"t 

We write down the equations of continuity and super
fluid motionr41 : 

(1.15) 

iiv, ( 1 iie ) -,- + V' !!o + J -;c- nd"tp = 0. 
qt Up 

(1.16) 

Generally speaking it is necessary to introduce in 
(1.16) an "extraneous" potential, but in the tempera-

z + 1 ., P• Pn \ lnil=ln-_-, Ps+!Jn=p, i= -v,+-vn . 
z-J P P 

The left side of (1.17 )- (1.20) coincides, as it should, 
with the corresponding system in[ 5l. Solving the ob
tained system with respect to p' and averaging it over 
the fluctuations with the aid of (1.15), we obtain, after 
rather laborious calculations, 

- p,.kTi;;;•+ui'l 4 I ( IP'I 2 = --·-ln2 il-3(- 2 +Zlni1)2 1.21) 
6IDI"(pqs")"r ZZ-1 

where 

3D=- (ro2 -u102/s2){2 + (w- z) Ina+ 3w(w-z) (-2 + zln a)} 
+ (p,./p) {(oo2 - Ulo2/s2) [2 + (w- z) In a- 3wz (- 2 + zina)! 

+ 3w(w2 + u) (z (- 2 + zina) + uin a]- w(3u + 1) [w(2 + (w-z) Ina} 
-3u(w-z)(-2 + 'Zina)l} 

is the determinant of the system (1.17 )- (1.20 ), accu
rate to terms linear in PniP == 10-4 .T4 ; u~0 == (a:f'jap)T 
is the compressibility. Substituting (1.21) in (1 ), we 
get finally 

oo 4 (80)2 p,.k1'l;"+ul'l 4 _ 
dh=·12n•c• Tp 6IDI 2 (qs")"r ·z2 -1 -In•a 

1
3 dQ 

-3(-2-tzlni1) 2 4(1+cos2 6)~dtloo. (1.22) 

The form of formulas (1.21) and (1.22) greatly sim
plifies in different limiting cases. It will be shown that 
(1.21) has li-like singularities corresponding to scatter
ing by first and second sound. Let us examine these 
singularities. 

First sound. Let at first ll.wT >> 1. When w ~ 1, 
which corresponds to the first sound, (1.21) takes on 
the dispersion form 

IP'I"=( 2kT) _ 3:np,.(u-j-1)"/4p 
qs3p (oo 2 - u1~2/s2) 2 + (3np,.(u + 1) 2/4p)• 

nkT 
~ - 2 [6(/loo- Ut..,q)+ 6(/loo + u,=q)]. 1(1.23) 

ps 

We note that when T == 0.5°K we have PniP ~ 10-5 • In 
(1.23) we have 

u100 = u10 + s(p,. / p) {3/.(u + 1)" In (Moo"t) - 3u- 2}. 

The line width is determined by the quantity 
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(%)1T(Pn1P)(u + 1)2• We recall that u = (p/s)asjap 
l:::l 2.7. 

Let now D.wT << 1, and then 

(1.24) 

U1=u10+~(3u+1) 2 Pn. 
4 p 

Second sound. Near w = 1/ !3 and when D.wT « 1, 
which corresponds to second sound, (1.21) takes the 
form 

-,-2 ( l'iiPnkT(3u + 1) 2 ) M(J)T/15 
IP I = 8qs3p2 (G> 2 -uNs')+(4/l(J)T/15) 2 

( 3npnkT) ( 3u + 1 )' "" ~ --4- [ll(/l(J) -u,q)+ll(/l(J) +u2q)],(1.25) 

where 
S [ 3 Pn J u2 =-= 1--(3u'+2u+1)- . 

l'3 4 p 

Comparing (1.2 3) and (1.24) with (1.2 5 ), we see that 
scattering by second sound is weaker by a factor PniP 
than by first sound, and in the calculation of the total 
extinction coefficient it can be neglected. Let us inte
grate (1.22) approximately: 

h =~( iJ/C)'pkT. 
6nc• fJp s2 

(1.26) 

From the condition liD. w « kT it follows that w « 10 17 • 

Putting w = 1016 and T = 0.5°K, we have 
h l:::l (a ~jap)2p 2 x 10-4 cm-1 • 

2. RAYLEIGH SCATTERING OF ELECTROMAGNETIC 
WAVES IN WEAK DEGENERATE SOLUTIONS 
OF He3 IN He4 

He3 forms a Fermi liquid when T << TF, where 
kTF = J.1. is the chemical potential of He3 at 0°K. For 
a 5% solution of He3 in He4 , for example, TF l:::l 0.3°K. 
The phenomenological theory of such a Fermi liquid is 
given in[7 l. Calculation shows that the presence of pho
nons can be neglected accurate to terms of order 
PniP = 10-4T 4 • Let us write an expression for o ~: 

6ft = ( ;E£ ) 6p4 + ( ~E£ ) 6p, = (!_!_) (11p,- ( 0P• ) lira) . 
P• P• "Pa •• op, "' op, ' <2 

According to the experimental data ap 4 /8p 3 l:::l 1.6. We 
assume that p 3 « P4 (cp 3 and P4 are the densities of 
the He3 and He4 particles). We can therefore assume 
that oli l:::l (a~jap4)p 3 iiP4· 

Let us write the kinetic equation for the distribution 
of the Fermi particles n = n0 + on: 

. i){jn i){jn iJe ano f i){jn (p') 
13n=-+----- f(p,p') --dTp•=l(lln)+ y.(2.1) at iJr fJp fJp fJr 

Here f( p, p') is the Landau function, and we assume 
for simplicity that f = f0 • According to[7 l, the energy 
spectrum is 

e(p)=eo(pa,p•)+ 2P', + lln:-pv,+ ).f(p,p')tJn(p')dTp•, 
m m 

where m* is the effective mass of the Fermi excita
tion, D.m = m* - m3. 

We take the collision integral in the form 
1 ---

l({Jn) =--:{ (6n- {Jn- 3{Jn cos{} cos{}) (2 .2) 

( J is the angle between p and the scattering vector q). 
The fluctuation of the random force is calculated in 
the same manner as in[2 l, the only difference being that 
the collision integral is taken in the form (2 .2 ). For 
the rate of change of the entropy we have 

. {r6n[J(6n)+Yl 
S = -k J dTpdV 

no(1- no) 

+ k~ 5f(p,p')6(r-r')6nl({Jn')dTvdTp•dVdV'}, (2.3) 

no(1- no)= kT6(e- J-1). 

All the quantities change near the Fermi boundary, 
and we therefore put 

l)n = 6n•({}, qJ)Il(e- 1-1), y = y•({}, <p)tJ(e- 1-1) 

(J, cp-polar angles of the momentum vector p). We 
expand onE(J, cp) and yE(J, cp) in series of spherical 
polynomials: 

6n•({},qJ)= ~ ~ Anmpnm(cos{})eim~, (2 .4) 
n=Om=-n 

n 
y•({},rr)= ~ ~ Ynmpnm(cos{})eim~. (2.5) 

n=Om=-n 

Substituting (2.4) and (2.5) in (2.3) and integrating with 
respect to dTp and the unit volume, we obtain as the 
result 

S _ 1 (dTp) { = n (n+lml)! (Anm -y m)A -m 
-T de •=~ ~ ~ (2n+1)(n-lml)l 1: n n 

n-im--n-

Proceeding in exactly the same manner as in Sec. 1, 
we get 

2kT(de) Yq,t.w(ti)yq,t.w({}')=- d-
"t 't e=IJ. 

X [26 (cos{}- CJS {}')- 1 - 3 cos{} cos{}']. (2 .6) 

To obtain the complete system of equations describ
ing the solution, we add to (2 .1) the equations of con
tinuity and of superfluid motion [ 4 • 7 1: 

(2 .7) 

(2 .8) 

Averaging (2.1), (2.7), and (2.8) over J and taking 
their Fourier transforms with respect to r and t, we 
obtain after some calculations 

[ 1 ( 1) ] W m, , 1+-- F0-- W v0 +-v1+2u2-aWp 
~c:r ~c:r c:r m' 

I s 

+2M': ~Wv, = -. -1--) 1Jq, t.w(z) dz. (2 .9) 
m 21eFqvF _1 z- ~ 

( 1 ) 1 2 l!.m 1 (· • -+ ~ vo--3 v1 +-3 -, v, = --2-.-- J y,1,t.w(z)dz, 
a m !eFqvF _1 (2 .10) 

3 m8 - 1 m• ---X(J)Vo-----vl- wp' + v, = 0, 
2 m4 2 m4 · 

- 8/,u2xavo + u2 (1 + ~x) p'- ;;;v, = 0. 

Here 

P• ( fJeo) 
a= m,s2 ap. ' 

6=~(1--. -1 ), 
!/1..(1)1: 

(2 .11) 

(2 .12) 
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1 ( 08) v(co~tt)=- -0 . c5nq,Am; 
ep nu 

and we have introduced the dimensionless variables 
p' = (15p4)q,Aw• Vs = (vs)q,Aw. llo = il, and 111 

= 3 ~. In addition, 

W=-i+!_In ~+ 1 . z s-1 
We solve the system (2 .9 )- (2 .12) with respect to p' 

and average the result over the fluctuations with the 
aid of (2.6). After rather laborious calculations we ob
tain 

jp'l 2 = 3xkT (de) 4xm4 (a +,~m/m4) 2~Cil~/15m·(~Cil~2+ 1) 

m4v~qseF d~ •=~ (;;j2 - Ut2/vF2)~ + A2 (2 .13) 

where 

A= 4xm4 (a + !J.m / m4 ) 2~Cil't /15m*(~Cil~2 + 1). 

The numerator of the fraction in (2.13) determines the 
width of the line both when AwT << 1 and when AwT 
» 1. In both cases 

where 

np,kT I (c5p,jq,Aml 2 = -2-[cS(~Cil- Utq)+ cS(~Cil + Utq)], (2.14) 
s 

s [ m4 ( ~m)2 ~m J u1 =s+x- -. a+- +~--. 2m m4 m, 

Substituting (2.14) in (1), we get 

Integrating (2.15), we return to (1.26). We note that 
(1.26) coincides with the results obtained in[s] and[91 
for the hydrodynamic case and in r91 for a nondegenerate 
solution of He3 in He\ 

In conclusion, I am grateful to I. M. Khalatnikov for 
suggesting the problem and for useful remarks. 
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