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Rayleigh scattering of electromagnetic waves in He* at T < 0.6°K and in weak solutions of He® at
T < Ty is considered. The shape and intensity of the Stokes and anti-Stokes satellites are obtained
and the total damping decrement of the photon flux in a medium is determined.

THE application of the method of fluctuation theory
(see') to the kinetic equation, as was first done by
Abrikosov and Khalatnikov for pure He®!?! makes it
possible to obtain the differential and total extinction
coefficients in Rayleigh scattering of electromagnetic
waves in He® in weak solutions of He® in He* at low
temperatures, to which the present paper is devoted.
We consider classical scattering, i.e., haw < kT,
where NAw is the change of the energy of the incident
photon upon scattering, and T is the temperature of
the medium. The incident wave is assumed to be mono-
chromatic. The results can be extended to the quantum
case (RAw > kT) in exactly the same manner as is
described in?,

The differential extinction coefficient is given by the
well known formula®®:

dh =

® 23 dQ

- —iqr —_ 2 —_—

T § 68 aa(r)eia dV| -~ (14 cos?0) = ddo, (1)
where |q| =(2w/c)sin(6/2), q is the scattering vec-
tor, 0 is the scattering angle, w is the frequency of
the incident wave, c is the velocity of light,
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and 6&(r, t) is the fluctuation of the dielectric con-

stant of the medium. The bar denotes averaging over

the fluctuations. The Fourier component of 5&(r, t) with

respect to time is defined in the same manner as inl2),

1. RAYLEIGH SCATTERING OF ELECTROMAGNETIC
WAVES IN He? AT T < 0.6°K

Owing to the small polarizability of helium, it can
be assumed that 5& = (9 &/8p)6p, where p is the
density of the liquid. Then

0& \?

l Séé’Am(r)e"'ﬂ'dV ’zz (0—9) |80a0, a]2 (1.1)

Here 8pAw,q is the Fourier component of the density
fluctuation with respect to r and t. Thus, the problem
reduces to a determination of |8paw,ql% It is known (%]

that when T < 0.6°K, the He® can be regarded as a
pure phonon gas. Let us write the kinetic equation for
the phonon distribution function n = no + én:

d6n  96n 0H Ong 0H

o =I(6n)+y(p,1,1).

on=—
ot dr dp dp Or

(1.2)

Here H = €(p) + p*Vg is the phonon Hamiltonian*],
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y(p, r, t) an arbitrary ‘‘extraneous’’ force, p the
phonon momentum, and vg the velocity of the super-
fluid motion. The collision integral will be taken in
the form that conserves the total energy and the mo-
mentum :

1 -
I(6n)= —-;—(6n—6n—36ncosﬂcosﬂ).

We take the Fourier transforms of (1.2) with respect
to r and t, change over to dimensionless variables
o’ = qu,Aw/p and vs = (vg)q,Aw/S, where s is the
speed of sound, and represent 6ng A (p) in the form!®;
dng, p0 = »%?—(g%épq, Ao+ €v(cos ¥) ) .
After simple transformations and after integrating
(1.2) with respect to p, with weight ep® we get
(2 — cos ®)v(cos B) + wup’ + cos? Ovs + (@ — Z) (vo+ vi cos #)(1.3)
= Y (cos 9) / 2igsn?h3TC pp,
where

0.
Y(cos8)= § ya,a0(p)eptdp, § %ezpz dp — —272hSTC pn,

pds ~ Ao N ~( 1 >
U=—, o=—, Ii=oll—= y

sop qs iAot
qv=gqucos® vo==v, vi=3vcosd. (1.4)

We now calculate Y(cos ¢)Y(cos 6") and then, solv-
ing the kinetic equation together with the continuity and
superfluid-motion equations, we get |pq, Awl? The
entropy per unit volume of the phonon gas ist);

S=k § [(1+n)In(1 4+ n)—nlnn] du. (1.5)
Varying (1.5) with respect to n, with allowance for the
energy conservation law, and retaining the first non-
zero term in powers of &n, we have for the rate of
change of the entropy

—6?&% = —1 S—?E-Gnéhdr
no(l+no) T ° an, P

We expand 6n(p, r, t) and y(p, r, t) in a series of
spherical functions

§——n§ 1.8)

n
D AnmPym(cos §)eimo,

n=0m=-—n

L£5n= Z

& Ong

oo n

y= Z Z yn™P2™ (cos §) eim®,

n=0 m=-n

where ¢ and ¢ are the polar coordinates of p. We
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substitute (1.2) in (1.6) and obtain after integrating
with respect to Tp, with allowance for (1.4)

1 £ n

1 \ 2(n-|m|)!
- DY T bl E A,
= 4nzﬁ3T[n=0 1 AT = A Bt (r—|mp!
><(2azmTcph A:m + Ynm)A,,—m] (m#0 for n—1), (1.7)

where Ynm | yﬁ“ep2 dp. Following the general theory of
fluctuations, we represent (1.7) in the form

§=— DX mzm (1.8)
We put m
2 =Ye®, E°=VYi, ™ 2n2h3TCp,.- + Y.m (1.9)
n=1 m%%0;, n=2...;
it then follows from (1.8), (1.9), and (1.7) that
- Ay ™(n 4| m|)! _
X, = ST on ) (= [T n=0,1,.... (1.10)
From the requirement
En = — D yams KXo 4 ¥,
we get, comparing (1.9) and (1.10):
N =10, yu®=
VI b o (20313 )2 C i (21 4 1) (n — | m |)!
“(nt|m])!
n=1 m+%0;, n=2,3....
Hence
Yo Yo — YO YP=0, Y.m Yo = k(Ynm +ymm')

2 (202A3T)2 Con (21 + 1) (n — | m|) !
t(n+|m|)!
X BB, e (£ — ') 8 (r — ).

X8(t—1t)do(r—1r')=

(1.11)

It is known from the theory of spherical functions
that

Py (cosy)==Pnr(cos¥cos®¥ + sinVsin ¥ cos(p— ¢’))

mg L(n+ 1 Z : ; :P ™ (003 8) Py (cos ¢) eim@=9),  (1,12)
> (2rn+ 1) P (cos y) = 28 (cosy — 1). (1.13)

n=0

Summing (1.11) with the aid of (1.12) and (1.13), we
obtain

Y (cos9),
2kCpn

Y (cos )

= (2n2h3T ) 2 —22026 (cos & — cos &) — 1 — 3cos B cos 0], (1.14)
We write down the equations of continuity and super-

fluid motion':

——+d1v (ovs + § prdus) = 0, (1.15)
v,
-E+V<Mo+ S ndrp> 0. (1.16)

Generally speaking it is necessary to introduce in
(1.16) an ‘‘extraneous’’ potential, but in the tempera-
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ture region under consideration its mean value over
the fluctuations is equal to zero!®l, Equations (1.3),
(1.15), and (1.16) constitute a complete system of
equations describing He®. We take the Fourier trans-
forms of (1.15) and (1.16) with respect to r and t, and
change in these transforms to dimensionless variables.
After averaging (1.3) over cos ¢, we get

—30’ +j =0, (1.17)
- 1/0P . -
—mj+§<~é;)T p'—%(suvo-;-mw):o, (1.18)
- 1~ 1o - 1
7 . 8 : Y d
oup g ep T gy hen = mzhaqsrcphs (xi (1.19)

[2+(& —)ln ] vo+ (6—2%) (— 242 a)vi + (uo Ina) o’

1 t Y@@ Ja
F(— Flng)j = .20
+Z(—2+Z1lna)j GO ) T — 2 d )
where 7 is the pressure, and
Ingd=1I ,Z..+1 ’ ps+on=0p, j= ‘E’i‘vs“’_en-vn .
Z—1 0 0 !

The left side of (1.17)—(1.20) coincides, as it should,
with the corresponding system in!®J, Solving the ob-
tained system with respect to p’ and averaging it over
the fluctuations with the aid of (1.15), we obtain, after
rather laborious calculations,

pakT|024ul2| 4

6|D|2(pgs?)r | 2—1 (1.21)

VT =

where

—In?2Gd—3(—2+2%1na)?

3D = — (0 —uy¥s) {2 + (0 —2)In'a + 36 (®—72) (— 2+ zln a)}
+ (pn/0) {(@* — urg¥/s?) [2+ (@ — ) Ina— 3wz (— 2 + z1na)]
+ 30 @ +u) [2(—2+zlna) 4 ulna]— o @B +1) [0@2 + (0—72) Ina)
—3u(@—72)(—2 +zlna)]}

is the determinant of the system (1.17)—(1.20), accu-
rate to terms linear in pp/p =10™.T% u? = (®:7/9p)r
is the compressibility. Substituting (1.21) in (1), we
get finally

b [ 0B\ pnkT|@%4ul2| 4 _
ah — (——) : —In?
12\ 0p )~ 6|D|A(gsH)% | 2 —1 ¢
d
-3(—2+zlna)2|-i-(1+cos29)£dm. (1.22)

The form of formulas (1.21) and (1.22) greatly sim-
plifies in different limiting cases. It will be shown that
(1.21) has &-like singularities corresponding to scatter-
ing by first and second sound. Let us examine these
singularities.

First sound. Let at first Aw7 > 1. When @ =~ 1,
which corresponds to the first sound, (1.21) takes on
the dispersion form

( ZkT) 3npn (2 +1)%/4p
%/ (0 — us?/s2)? + (3mpn (1 + 1)%/4p)?

lp"[2=

kT
z“—pg{a(Am — Uieog) T 8(A6 - 1eog) ] I(1.23)

We note that when T = 0.5°K we have pp/p = 107°, In
(1.23) we have

oo = o+ 5(0n /p) {Pum + 1)*In 2AwT) — 3u — 2},

The line width is determined by the quantity
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Y )w(pn/p)(u + 1)% We recall that u = (p/s)ds/8p
~ 2.7,
Let now AwT <K 1, and then
Ip,|z=( 2“)_ */s(pn/p) (24 1)*A 07
gs% / (02— u?/s%)2 4 [/5(pa/p) (u + 1)?AwT]

kT
~ —’:)—Sz—[a(Am — wig) + 8(Ao + uq)],

(1.24)
where

u1=uw+%<3u+1)2‘;—".
Second sound. Near & =1/V3 and when AwT < 1,

which corresponds to second sound, (1.21) takes the
form

i ,12_< VST)nkT(Eiu—i—i)Z) 4A0T/15

o= 8¢s3p2 (02 — ug2/s?) + (4bot/15)2
3npnkT\ [ 3u+1

z( "p‘;sz )( Bt )[6(Aﬂ)—uzq)+6(Aﬁ)+u2q)] (1.25)

where
Uy = V3[1——(3u2+2u+1) ]

Comparing (1.23) and (1.24) with (1.25), we see that
scattering by second sound is weaker by a factor pp/p
than by first sound, and in the calculation of the total
extinction coefficient it can be neglected. Let us inte-
grate (1.22) approximately:

(1.26)

- 98\ okT
- 6“6"(59 ) sz
From the condition iAw <K kT it follows that w < 10",
Putting w =10'® and T = 0.5°K, we have

h= (8&/9p)p2x 10™* cm™

2. RAYLEIGH SCATTERING OF ELECTROMAGNETIC
WAVES IN WEAK DEGENERATE SOLUTIONS
OF He® IN He*

He® forms a Fermi liquid when T << TF, where
kTp= u is the chemmal potentlal of He® at 0°K. For
a 5% solution of He® in He®, for example, TF ~ 0.3°K.
The phenomenological theory of such a Fermi liquid is
given in!”), Calculation shows that the presence of pho-
nons can be neglected accurate to terms of order
pn/p = 10™T*, Let us write an expression for 6 &:

08 8 0
=(2e § 8p, — [ 2Ps .
o8 (asu) GP‘JF(@P ) Pa= (0p4> (94 (093 )(gépa)

According to the experimental data 8p,/dps~ 1.6. We
assume that p; < p,s (@3 and p4 are the densities of
the He® and He® particles). We can therefore assume
that 68 ~ (88/8p4)p, 0pa.

Let us write the kinetic equation for the distribution
of the Fermi particles n = no, + 6n:
5 o6n  3dn Oe 6noj‘ ,. 9sn(p’) p s 2.1)
n=— +I5§_-¢§; ) g due = (6n)+y. 2.
) is the Landau function, and we assume

Here f(p, p’
fo. According to[”, the energy

for simplicity that f =
spectrum is

o() = eo(ps, o)+ 5, + § 1o, 0) on () ey,

where m* is the effective mass of the Fermi excita-
tion, Am = m* - m;.
We take the collision integral in the form

I(an)=—-—i-(5n—87——3éncosacosﬂ) 2.2)

(¢ is the angle between p and the scattering vector q).
The fluctuation of the random force is calculated in
the same manner as infz], the only difference being that
the collision integral is taken in the form (2.2). For
the rate of change of the entropy we have

t’m [Z(8n)+ y]

= — —_—d
(=) tpdV

1
+7 § 1, p’)b(r—r’)énl(én’)drpdrp'dVdV’},
no(1 — ng) = kT6(e — ).

All the quantities change near the Fermi boundary,
and we therefore put

2.3)

on = on*(8, ¢)6(e — p), y=y°(%, ¢)6(c —p)

(8, p—polar angles of the momentum vector p). We
expand 6n€(s, @) and y€(#, @) in series of spherical
polynomials:

one(9,9) = >, D) AnmPp™(cos®)eimo, 2.4)
n=0m=—n
V(0,¢)= > D) yn™Pam(cos 0)eime, 2.5)

n=0 m=—-n
Substituting (2.4) and (2.5) in (2.3) and integrating with
respect to d7p and the unit volume, we obtain as the
result

s=1(%).{2 3

n=1 m=-—n-

(n+|m|)! /An"'
@n+1) (—[m[)I'\

— y"m)An—m

d
_(1+Fo)!/o°Ao°—’/sy1°A1°}, Fo=<—1—p) fo

% ) (m==0npun=1).

Proceeding in exactly the same manner as in Sec. 1,

et
vee 2kT / de

e O @) =21 (%)

X[28(cos & — cos 9')— 1 — 3 cos ¥ cos ] 2.6)

To obtain the complete system of equations describ-
ing the solution, we add to (2. 1) the equatlons of con-
tinuity and of superfluld motion'*

%+div<p4vs+SPndTp)=0v @.7)

(m+§n—~d1.,) 0. 2.8)

Averaging (2.1), (2.7), and (2.8) over ¢ and taking
their Fourier transforms with respect to r and t, we
obtain after some calculations

1 1 w m. ,

[1—*"5;—<FO_E)W]V0+?V1+2u2m_‘aWD
! — \ }I:;,A—m(z)dz (2 9)

2iepqur ) z—§ . .
i-
< +§> _1v1+ 2 Am s:—ﬁ& yﬁ,Am(Z)dz,
- (2.10)
—ﬁ%xavo—é%—w—awvs:o, 2.11)
—%autzavo + u?(1 + pz)p’ — av, = 0. (2.12)
Here
P (%= __pd (0% .
(l_m,‘sz(apk)’ ﬁ——ﬂusz(m)’ 0 = 11qVr,

~ Ao ~ 1 s2 Ps
W =—"), = 1— ), u2=—, T =" )
t=o < vp? (ms/mu)ps+ ps
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and we have introduced the dimensionless variables
p' = (8pa)g, Aws> Vs = (Vs)q,Aw, Vo=V, and v,
=3v cosd. In addition,

oy 5, BT

W= 1+?ln E—1°

We solve the system (2.9)—(2.12) with respect to p’
and average the result over the fluctuations with the

aid of (2.6). After rather laborious calculations we ob-

tain
dxmy (o + Am/m,)2Awt/15m (Aw>? 4 1)
(02 — us?/vg?)? + A2

3zkT ( de )

)P =—"7—
mr“qser

d‘[ e=N

where
A = 4dami(a 4+ Am [ mi)?Aot [ 15m* (Ao + 1).

The numerator of the fraction in (2.13) determines the
width of the line both when AwT < 1 and when AwT
>> 1. In both cases

—_— kT
[ aol® = =218 (80 —wia)+ (A0 +mg)], (2.14)

where

s
uy=s4z—

o (e 50) +e=5).

Substituting (2.14) in (1), we get

(n)ﬁ)ng ag 2
dh = 12ncis? <77H> [6(Aw —uig)+ 6(Aw + u1g)]-

3 dQ
-Z(1+c0329)zﬂ—dAco. (2.15)

(2.13)'

Integrating (2.15), we return to (1.26). We note that
(1.26) coincides with the results obtained in'® and [®!
for the hydrodynamic case and in!® for a nondegenerate
solution of He® in He*,

In conclusion, I am grateful to I. M. Khalatnikov for
suggesting the problem and for useful remarks.
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