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The electrie conductivity of a metallic plate in a magnetic field arbitrarily oriented relative to its 
surface is considered. It is found that the distribution of the current over the cross section of the 
plate depends on the magnetic field component H1 perpendicular to the magnetic field. The resist­
ance tensor Pik is calculated and its dependence on H1 and H11 in investigated (H11 is the magnetic 
field component parallel to the surface of the plate). 

GuRZHifll has shown that a hydrodynamic mechanism 
of electric conductivity can exist in certain metals at 
low temperatures .. This mechanism is realized under 
conditions when the normal electron-phonon collisions 
are much more frequent than the collisions in which the 
total quasimomentum is not conserved, and the normal 
collisions themselves do not produce resistance. 

As the result of the frequent normal collisions, a 
local equilibrium is established in the system and its 
behavior can be described with the aid of hydrodynamic 
variables. In particular, to calculate the electric con­
ductivity it is sufficient to know the drift velocity of 
the electron-phonon gas u( r ). The hydrodynamic equa­
tions satisfied by u( r) were derived and investigated 
inrq for the case of a metal in an electric field, and 
in[ 2J for a metal in electric and magnetic fields. In the 
latter case, a plate was considered and the magnetic 
field was assumed parallel to its surface. 

In this paper we consider the hydrodynamic mecha­
nism of electric conductivity of a metallic plate with 
the magnetic field arbitrarily oriented relative to its 
surface. It turns out here that if the "radius" r 1 
= cpp/eH1 (pp is the electron momentum on the 
Fermi surface, HL is the component of the magnetic 
field perpendicular to the surface of the plate) is 
larger than the electron mean free path lep relative to 
the normal collisions with the phonons, then, as in the 
absenee of a magnetic field, a simultaneous drift of 
the electron-phonon gas is possible in the system. The 
motion of this gas is described by the hydrodynamic 
equations in which the external force is the usual 
Lorentz force, which is connected with the electric 
field and with the eomponent of the magnetic field H1; 
on the other hand, the component H11 parallel to the 
surface leads to a change in the viscosity of the elec­
tron-phonon gas. 

The character of the distribution of the current over 
the cross section of the sample depends on the rela­
tion between the lengths that enter in the problem. If 
r 1 » L » lep ( L ~ d2/lep1J is the length of the Brown­
ian path covered by the electron from the interior of 
the sample to its surface, d is the thickness of the 
plate, and 1J is a factor that takes into account the 
presence of the field H 11 ), then the current is suffi­
ciently uniformly distributed over the sample cross 

section. If L>>r1 >> lep, then an appreciable change 
of the current density occurs at a distance on the order 
of ( r 1lep1J )112 from the surface. When r 1 << lep, 
there are two characteristic scales of current varia­
tion, r 1 and lep· 
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The complete system of equations for the solution 
of the problem consists of the kinetic equations 

of {) !o e {)f ~ ~ ' 
v -;- + e (Ev) --c- +- [vH] ___:__ = lep" {/, N} +leV{/, N}, {1 )* 

Jr oe c Dp 

DN A ~ 
s i),-: = JpcN {/, N} + !J>'- {f. cY} (1 ') 

and the equation 
rotE= 0. (2) 

Here f and N are the distribution functions of the 
electrons and the phonons; v, p, E are the velocity, 
momentum, and energy of the electron; s is the 
velocity of the phonon; E is the electric field, which is 
the sum of the external electrostatic field and the Hall AN AN 
field; fo = [exp{(E- Ep)/T} + 1]-1 ; Jep and Jpe are the 
electron-phonon and phonon-electron collision opera­
tors; J~ and J 8 are operators describing collisions in 

which the quasimomenta of the electrons and phonons 
respectively are not conserved. 

The hydrodynamic equations can be obtained from 
(1) and (1 ') with the aid of the Chapman-Enskog 
method (see, for example,r3 ' 4 l). It is not particularly 
difficult to obtain in this case equations for an arbi­
trary cross section of the sample. However, when 
these equations are solved in the general ease, after 
elimination of the Hall field, we arrive at rather com­
plicated integra-differential equations for u( r ). We 
therefore confine ourselves below to the simplest case 
of a plate, whose thickness 2 d is much smaller than 
the remaining dimensions. 

It is easy to show that if the electron mean free path 
relative to normal collisions with the phonons, lep, is 
connected with the ''radius'' r 1 by the inequality r 1 
<< lep, then hydrodynamie flow of electron-phonon 
gas is impossible, for this gives rise to a Hall field 
that does not satisfy the condition curl E =0. We shall 
therefore assume that lep « r 1· 

We choose a Cartesian system of coordinates with 
the z axis perpendicular to the surface of the plate, 

*[vH] =v X H. 
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and with the y axis perpendicular to the magnetic 
field. We denote by H1 and H11 the projections of the 
vector H on the z and x axes. 

Writing the distribution functions in the form 

f = j(DI + f.ll + ... , N =N<"I+ N<'l+ ... (3) 

in accordance with the Chapman-Enskog procedure, we 
arrive at the following equations: 

8fo eH• 1 [ 8/<01 J A 

eE 1v -+--' . --v =l N{f"l N<OJ} 
' ' arc me . ap ·' cp ' ' (4) 

/peN {j<Di, N(OI} = 0; 

8f01 eiJ 11 [ 8j(11 J A v,-·--+-- --v =lev"'{f<'I,N<11}, az InC ap X 

(5) 

aN<"I A 

s d~ = l,p"' {/<'1, !V<tl}. 

We have represented the field Ez in the form Ez 
= Ez1 + Ez2; I Ez1 I » I Ez2l. It will be shown later 
that the need for such a breakdown is connected with 
the solvability of the equations of hydrodynamics (see 
(9) ). 

The solution of the pair of equations (4) is 

j(O) = [ exp{ E- €p; u(z)p} + 1 r! ' 
r ( hv -u(:)pl. ]-! 

1W1 = L exp\. ---1---~- 1 • 
(6) 

Here u is the drift velocity of the electron-phonon gas 
parallel to the plate surface. It can be shown that for 
typical metals with large electron density, the chemi­
cal potential and the temperature, and consequently 
also the electron density, can be assumed to be the 
equilibrium values (provided that we are interested 
only in the electric conductivity tensor). It also follows 
from (4) that 

lltl 
Ezi=----lly. 

c 
(7) 

The solution of the system of integral equations (5) 
for an arbitrary dispersion law entails appreciable 
difficulties. It was obtained in [2J for the case of iso­
tropic electron and phonon dispersion laws. We shall 
not write out the corresponding expressions for f< 11 
and N< 11, since they are too complicated. 

We now multiply (1) and (1') by the momenta p and 
q of the electron and phonon respectively, integrate, 
and add the resultant expressions. We obtain then 11 

div(pivf)c + div(q;sN)p 

+ ec-1([Hj_v ];j), + enEi = (pJcU), + (q;lp'1)p, (8) 
where 

( ) e == : 1 ~ ... dp, ( ) p ='= : 3 ~ ••• dq, 

n is the electron density. Substituting in (8) f =f< 01 
+ f < 11 and N = N< 01 + N< 11 , we obtain, accurate to terms 
of higher order in the small parameters Zep/ r 1, 
Zep/d, Zep/(zU-1= z~-1 + zU-I, where l~ and zU are the 

p p 
electron and phonon mean free paths relative to colli-

11Multiplying (I) and(!') respectively by the electron energy e(p) and 
the photon energy hv( q), integrating, and adding we arrive at the equation 
div u = 0. The same equation results from the requirement that the num­
ber of electrons be conserved. 

sions with momentum loss) 

(9) 

Here ~h = eH1/mc, yU = zUjvF, Vi= Vo'i)i, Vo 

,., vF lep is the kinematic viscosity in the absence of a 
magnetic field, and 1Ji is a dimensionless factor de­
scribing the influence of the longitudinal magnetic field 
H 11 • Accurate to coefficients of the order of unity we 
have 

'l]x = [1 + (/,pfrtl)"]-! + (/pe/lep} 2, 

'l]y= [1+4(l,p/rn) 2]-'+ (lveflev) 2, 

2l,p/rn ( lpe ) 2 

11' = 1 + 4(lepfrt1} 2 + lep . 

(10) 

In (10 ), Zpe denotes the mean free path of the phonons 
relative to normal collisions with electrons. It canoe 
shown (compared with[11 ) that Zpe/Zep ~ (T/®)\ so 
that the second term in (10) becomes appreciable only 
in exceedingly strong fields. 

From (9) and (1 0) we see the already mentioned 
essentially different character of the influence of the 
components of the field H on the motion of the elec­
tron-phonon gas. The component Hu changes the vis­
cosity of this gas, whereas H1 contributes to the ex­
ternal force acting on the gas. 

It is most important in the following that the fields 
Ex and Ey do not depend on z. Indeed, in our case of 
a thin plate, the dependence on the coordinates x and 
y can be neglected. It follows here from (curl E)y 
= 0 and (curl E)z =0 that 3Ex/3z =0 and 3Ey/3z =0. 
This makes it easy to solve the system (9 ). The method 
for finding the constants Ex and Ey from the known 
external field will be described later. 

The solution of (9) satisfying the boundary conditions 
ux (±d)= uy(± d)= 0, corresponding to diffuse scatter­
ing of the elect>:>ons from the surface of the sample, is 

where y = g 1rU, k1,2 are the positive roots of the 
equation 

(11) 

It can be verified, by directly calculating the expres­
sions for ux and uy from formulas (11 ), that the in­
equality d2/lu Zep1J » 1 (we recall that 1Jx ~ 1Jy) cor­
responds to a bulky sample, and in this case the normal 
collisions do not exert a noticeable influence on the 
transport processes. When d2/zUz ep1J « 1, the results 
depend on the relation between the "radius" r 1 
= CPF/eH1 and the diffusion length d2/Zep1J. 
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When the magnetic-field component perpendicular 
to the surface of the sample is sufficiently small, so 
that r i » d2/lep 11, the components of the current 
density h = neui depend on the coordinate z in accord­
ance with ii ~ 1 - (z/d)2• On the other hand, the com­
ponents of the average current 

are given by 

(13) 

The dependence of the tensor O"ik on the field Hi has 
in this case the natural form for weak fields: the 
diagonal elements O"ik coincide with their values in the 
absence of the field, Hi, and in the nondiagonal ele­
ments the effective mean free path is of the order of 
ueff)2/r i• where zeff is the mean free path which en­
ters in the expression for the diagonal components (see, 
for example[ 5l). 

On the other hand, if r i < < d 2/ lep 11, then the cur­
rent density varies with the coordinate z in accord­
ance with the law 

j,~E,exp{(1+i) izl-d I+E (14) 
(2r_Llep)'h(rJxt'Jy)'i•f Y· 

The expression for jy is obtained from (14) by making 
the substitutions Ex - Ey and Ey - -Ex. 

Figure 1 shows the dependence of the components 
j 11 = hcos (} + jy sin(} and jJJ. = -jxsin (} + jycos (} on 
the coordinate z. The v axis is chosen along the axis 
of the plate (the external electric field E11 ), the JJ. axis 
is perpendicular to v and z; (} is the angle between 
H11 and E 11 (in preparing the plots we took into account 
the fact that JJJ. = 0 ). 

The fact that the change of the current density oc­
curs at distances of the order of ( r ilep 11 )112 can be 

a 

Z=-d z=O z=d 

jl' b r¥ 

Z=-d ~'"' z=O 

FIG. I. Distribution of current density over the cross section of the 
sample when d ll> (ri/epT/)16 and rill> /ep: a-current density on the order 
of necEvd/Hi yr/epTI; b-current density near the surface on the order of 
necEvd/Hi yri/epTI, and in the bulk of the volume necEv/Hi. The cur­
rent oscillations on both diagrams have a period (ri/epT/)16. 

explained in the following manner. After colliding with 
the surface, the electron rotates around the magnetic 
field and penetrates into the metal. Since the electrons 
have a distribution with respect to the velocity Vz, they 
will "straggle" after passing a certain distance, and 
this will lead to an attenuation of the current. It is easy 
to see that the current attenuates at a depth at which 
the electrons rotate around Hi through an angle on the 
order of unity. Since the angular velocity of rotation of 
the electron around Hi is of the order of VF / r i, the 
electron will move, during the time that it rotates to an 
angle on the order of unity, in the absence of normal 
collisions, a distance on the order of r i from the sur­
face. But if normal collisions are present, the electron 
will move like a Brownian particle with a pace Zep 11, 
and during the same time it will move from the surface 
a distance on the order of ( r il ep 11 / 12 • Therefore 
the current connected with the collisions between the 
electrons and the surface will attenuate at just this 
distance from the surface. Together with the drift 
cE x H/H 2, which does not depend on z, this produces 
the picture shown in Fig. 1. The oscillations of the 
current with depth are due to the rotation of the elec­
tron around the magnetic field. 

The ex~ressions for the average current at 
(qlep17)1 2 <<dare of the form 

, nez f (r _!_lev) 'l't')y } 
jx=--r_!_)~=:--'~-~Ex+Ev, 

mvF ~ )'2d (t'Jxt')y) •;, 

, ne2 { (r _!_lep) 'l'r]x } 
Jv=--r_j_ -E,-:---:::.---Ey . 

mvF y2d(rJxt'Jy)'l• 

(15) 

It is now appropriate to note the following circum­
stance. Although all the calculations of the present 
paper, as already mentioned, pertain to the case r i 
>> lep• the considerations advanced above with respect 
to the character of the motion of the electron near the 
surface make it also possible to determine qualitatively 
correct expressions for the current density even when 
r i « lep· In this case the current connected with the 
collisions between the electrons and the surface has 
two characteristic attenuation scales (compare with[eJ ): 
r i and Zep· Indeed, the electrons for which vx, vy 
~ Vz "straggle" as the result of the distribution with 
respect to Vz, at a distance on the order of r i from 
the surface, i.e., the surface current due to such elec­
trons will attenuate at distances on the order of r i 
from the surface, and since zeff ~ r i for such elec­
trons, their contribution to the average current is of 
the order of rine~i/dmvF. On the other hand, the 
electrons for which vx, vy :::;; r i Vz/lep, will move a 
distance of the order of lep from the surface prior to 
turning around Hi through an angle on the order of 
unity. After normal collisions, they are knocked out 
from this group, i.e., the surface current due to such 
electrons will attenuate at a distance on the order of 
lep from the surface. Since zeff ~ ri for such elec­
trons, and their relative number is of the order of 
r i/lep. the contribution of such electrons to the aver­
age current is of the order of 

lep ne2 r _1_ 

d mvFr_1_ lep · 

Thus, when r i << lep we have, in order of magni­
tude, 
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, _ ne2 , { r J. , l 
Jx- TJ_-dEx+EYj• 

mvF 

, ne2 ( . rJ. ) 
7>=--rJ.) -Ex+-Euj· 

mvp t d 

(16) 

For convenience in comparing the results with ex­
periment, we write out the components of the resist­
ance tensor Pik in the coordinates system ( v, J.1., z) 
(we recall that the v axis is chosen in the direction of 
the external field, and J.1. 1 v, z ). 

Recognizing that JJ.J. = fz = 0, we have 

Ev = pvv}v, E~ = P~v}v, E, = P"Jv. (1 7) 

We emphasize that Ev is the external field, and that 
EJ.J. and Ez are the Hall fields. Simple calculations 
yield 

OxxGyy + axl 
!111 . 

Pzv = --- Slll 0, 
nee 

(18) 

(18 I) 

(18 II ) 

where aik is determined by formulas (13)-(16) and e 
is the angle between the axes v and x; in determining 
pz 11 , we used (7) and the fact that I Ez1 I » I Ezzl. 

Figures 2 and 3 show plots of Pvv and PJ.J.!I as func-

FIG. 2. Dependence of the tensor Pik on the field H1 at fixed H11. 
a)A1 -T6 d"2 ,A2 -T5hd- 117'll,A3 ~d- 1 ; b)B 1 ~d-2 T" 15 HU 2 , 

B2 - B3 - constants, with B2 /B3 = 6/5 ; c) C1 - d-2 T5 Hf2 , C2 = B3. 
The dependence of P!W on H1: b-at rn ~ /"fl, c-at lep ~ rn ~ lpe· 

FIG. 3. Dependence of the tensor Pik on the field Hn at fixed H1: 
a) D1 - T 5 , D2 - T 15 , D3 - T5 , D4 - T3, all Di- d-2 ; b) D' 1 -

T-2 ·5 , D'2 ~ T"12· 5 , D'3 ~ T7 · 5 , D'4 - T,o.s, all D\ ~ d-1 H1Yz; c) E2 ~ 

T"15 d-2 , E3 ~ T"5 d-2 ; E1 ~ E4 ~ H1, with E1 /E4 = 6J,. The dependence 
of Pvv on H II takes place: a) when r1 ~ d2 /lepl1, b) when r1 ~ d2 /l"fl11· 

tions of the components of the field H: Fig. 2 as func­
tions of H1. at fixed H 11 and Fig. 3 as functions of H11 
at fixed H1. 

It is seen from Fig. 2a that the diagonal component 
p 1111 tends to saturate with increasing H1, as is the 
case in the usual electric conductivity mechanism for 
metals with closed Fermi surfaces. However, in the 
hydrodynamic mechanism of the electric conductivity, 
there is an intermediate region in which the resistance 
has an unusual growth, p 1111 ~ H~2 • The nondiagonal 
component of PJ.J.v (Figs. 2b, c). as in the absence of 
normal collisions, is proportional to H1 at sufficiently 
strong fields H1. But the presence of normal collisions 
in the case of weak ( r II >> lep) and very strong 
( r11 < lpe) fields causes the region PJ.J.v = const · H1 to 
break up into two regions: p J.l.ll = B zH 1 and p J.J.ll 
= B3H 1 . It is seen from Figs. 2b and c that when r11 
> lep the increase of H11 leads to an increase of the 
region PJ.J.v = const · H1, and to a decrease when r 11 
< lep· It must be emphasized that the diagrams of 
Fig. 2b and c were plotted for angles e larger than 
rr/2. When e < rr/2, the regions PJ.J.v =const lie below 
the abscissa axis. 

We note that Fig. 2 does not show the dependence of 
PJ.J.v on H1 when r 11 < lpe. In this case (which is very 
difficult to achieve experimentally), the plot of 
PJ.J.v(H1) has the same form as in Fig. 2b, with B1 
~ d- 2 Hj"12 T 5 and Bz ~ B3 = const; the first two regions 
coming in contact when r1 ~ (d2/lepl0ep/rll)2, while 
the second and third regions come in contact when 
r 1 ~ ( d2/Zep) ( ®/T)8• 

The dependence of p 1111 on the magnetic field 
parallel to the surface (Fig. 3a, b) is determined by 
the value of the field H1. When r 1 >> d2/ l ep 1), the 
p 1111 ( H11) dependence has the same form as when H1 
= 0. On the other hand, if r 1 « d2/lep1), then the de­
crease of Pvv in strong fields H11 is slower than when 
H1 = 0. It must also be borne in mind that the inequality 
r 1 » d2/ lep 1) can go over with increasing H II into the 
inequality r 1 « d2/lep1J (see formulas (10 )). There­
fore it is possible to realize experimentally not only 
cases of the p 1111 (H 11 ) dependence shown in Figs. 3a 
and b, but also the intermediate case (i.e., in the region 
lpe < r11 < lep the decrease of p 1111 (HII) begins like 
1/H2 and ends like 1/H). 

Finally, a characteristic feature of the p J.l.ll ( H 11) 
plot is the presence at r 1. < d2/lep1J of a minimum 
(at e < rr/2) or a maximum (at e > rr/2) at the point 
r 11 ~ lep. Figure 3c shows a plot of p J.J.ll ( H 11) for the 
case e > rr/2. 

It was already indicated above that the exceeding 
complexity of the integra-differential equations (5) 
does not make it possible to obtain their solution for 
arbitrary electron and phonon dispersion laws. How­
ever, from the qualitative considerations advanced 
above it is clear that the results obtained for the iso­
tropic case are valid in order of magnitude for arbi­
trary closed Fermi surfaces and for an arbitrary pho­
non dispersion law. In formulas (13) and (15), and (16), 
r11. r 1, and lep should be taken to mean their average 
values over the Fermi surface. 

If the Fermi surface has open sections, the fore­
going picture of the electron motion will apparently 
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not occur (with the exception of the case when the open 
section is only in the z direction). 

The author is grateful to R. N. Gurzhi for guiding 
the present work. 
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