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The problem of surface superconductivity in a state with nonvanishing total current is solved with the 
aid of the Ginzburg-Landau equations for H- Hc3 << Hca• The maximum value of the critical current 
in a direction perpendicular to the magnetic field (which lies in the plane of the sample) turns out to 
be 20% smaller than the value in the longitudinal direction, which is in agreement with the results of 
a numerical calculation. [ 3 l 

1. SAINT-JAMES and de Gennes[ 1 J theoretically pre­
dicted the existence of a superconducting layer at the 
surface of a sample in a magnetic field H, exceeding 
the upper field Hc 2 of a bulk superconductor. For plane 
boundaries in a parallel field they found that supercon­
ductivity is preserved up to a field strength Hc3 

= 1.69 Hc2 • Later on the phenomenon of surface super­
conductivity gave rise to considerable interest from the 
point of view of both experimentalists and theoreticians. 
Abrikosov[ 2 J calculated the value of the maximum su­
perconducting current (the critical current) which may 
be maintained in a surface layer. One of Abrikosov's 
results was an assertion about the complete isotropy of 
the critical current in the plane of the sample. In the 
present article we show that the critical current de­
pends on its direction relative to the applied field, i.e., 
the current is anisotropic, and we determine the nature 
of this dependence. Taking this fact into consideration 
allows us, in particular, to eliminate a certain discrep­
ancy between the value for the critical current obtained 
by Abrikosov and the results of a numerical calculation 
by Park.[3J 

2. We shall conduct the investigation on the basis of 
the Ginzburg-Landau equations[ 4 J in the range of field 
strengths Hc3 - H << Hc31 in which the quantity 1/J << 1 
serves as a physically small expansion parameter. In 
dimensionless form the system of Ginzburg-Landau 
equations for the order parameter 1/J has the form 

(iVIx+AJ'lJl=¢-j¢j'-¢, (1) 

(iV 1 x +A),.~'= o (at the surface), (1') 
-rot rotA= j, (2) 

i (2') i =I¢1'A+2~(•fV¢ -lJlVlJl"), 

where K is a parameter of the theory, j is the current 
density, A is the vector potential of the magnetic field, 
H =curl A. It is necessary to make the following sub­
stitutions in the final formulas in order to change to the 
usual units: 

'¢--+'¢I '¢o(T), X--+ X I {j (T), II--+ HI i2H,m, 

where l/J0 (T) is the value of the order parameter in the 
absence of fields and currents, o(T) is the penetration 
depth, and Hem is the critical thermodynamical field. 
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Let the superconductor occupy the half-space x ;:::0, 
and let the magnetic field H be everywhere parallel to 
the plane of the sample, x = 0. It is convenient to carry 
out the calculations in a gauge in which the vector po­
tential A only depends on x and lies in the same plane 
as H, and the order parameter 1/J (x) is real. Then Eqs. 
(1) and (2) take an especially simple form: 

-x-2d'lJl I dx2 +A'¢=¢ -lJl3, (3) 
(d¢/dx)x~o=O, (3') 

d'Aidx2 = j(x)= '¢2A. (4) 
We shall be interested in a solution of the problem 
which corresponds to the bulk of the sample being in the 
normal state, that is, 1/J(x) - 0 as x -- oo. 

For H = Hc3 one can linearize Eq. (3): 

-x-2d2¢o I dx2 + Ao2lJlo = ¢o, 

where the vector potential A0 in the zero-order ap­
proximation describes a homogeneous external field 
Hca· According to Eq. (4) 

Ao = H,a(x- xo)a, 

(5) 

(6) 

where a is a unit vector lying in the plane of the sam­
ple (a .L H). The choice of the integration constant x0 

determines the value of the field Hca· In Appendix A it 
is shown that the largest value for Hc3 is obtained upon 
fulfillment of the condition 

S A 0 (x)'¢02 (x)dx = 0, (7) 

that is, for the absence of any total current in the 
ground state l/J0 (x). An exact relation (see Eq. (A.4)) 
follows from Eqs. (5), (3'), and (7): xoHca = 1. By means 
of numerical integration Saint-James and de Gennes 
found that Hc3 = 1.69 Hc2• 1> 

3. Now let us determine the corrections to the solu­
tion under consideration which arise for H < Hc3 and 
also due to the fact that the total current does not van­
ish. The investigation will be carried out by the method 
of successive approximations. starting from Eq. (4), 

l)lt is easy to see that the value Hc2 = K corresponds to the choice 
x0 = 0. In this case the problem admits an exact solution of the form 1/1 0 

1/10 (x) = exp (- K 2 x212) (see [4 ] ). 
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let us write the vector potential A correct to terms 
"' 1/J~ in the following form: 

A = Ao +\;+A,, (8) 

where 

(9) 

and t is, for the present, an arbitrary constant vector 
lying in the plane of the sample. In the last expression 
the limits of integration are chosen so that the mag­
netic field at the surface of the sample will be equal to 
the applied field: (dA/dx)0 = H. The vector t, as will 
be evident from what follows, specifies the current in 
the system and in magnitude it may not exceed the value 
1/! 0 "' ,J1- (H/Hc3 ). The second term in (9) describes 
the inhomogeneity of the magnetic field as a conse­
quence of the superconducting properties of the surface 
layer ( 1/! 0 * 0). 

We seek a solution of Eqs. (3) and (3') in the form of 
the expansion 

(10) 

where 1/! 2 "' 1/J~, 1/! 3 "'1/J~, and so forth. From here, by 
substituting (8) into (3) and equating terms of the same 
order of smallness in 1/! 0 , we arrive at the following 
equations for the determination of 1/J 2 and 1/J 3 : 

-x-2¢/' + Ar, 2¢z- 1jl2 = -2 (bAo)~lo, (11) 
-x-2\jJa" + Ao"¢s- ~'a = -Z.(\;Ao) ¢2 - 2 (A,A,) \jJo- ~2~'o -\jlo1. ( 12) 

The solution of Eq. (11), satisfying the boundary condi­
tion (3'), has the form 

x d. xl 
\jlz(x) = 2x21jlo(x) \ __ x_,-} (bAo(x2 ) )1f02 (x2)dx2• (13) 

J "¢o'(x1) o 

One can easily verify this by performing the differenti­
ation and using condition (7). It will not be necessary 
for us to have an expression for 1/J 3 (x), and we shall not 
write it down in explicit form. 

4. According to Eq. (4) the total current J flowing 
along the surface of the sample is given by 

= 
J = }A(.2")'t'(x)dx. (14) 

Expanding this expression in a series in powers of 
1/J 0 (x) and again taking condition (7) into account, to the 
first nonvanishing approximation we find that 

J = b r "¢o2 (x)dx+ 2 IAo(X)"¢o(X)1jJ,(x)dx. (15) 

With the aid of Eqs. (13), (6), and (7) one can represent 
the obtained result in the form 

= 
J = {b + pa (\;a)} S 1jl02 (x)dx, (16) 

oo -i 00 X dX Xt 

P = 4x'(} "¢o2 (x)dx) S Ao(x)•h'(x)dx} --1 -} A 0 (x2)1jJ02 (x2)dx2 ,. 

0 •l'o'(x,) 
0 c 0 ( 1 7) 

For the case of a transverse current ( t II u.) expression 
(16) differs from the one used by Abrikosov by the pres­
ence of the second term. The origin of this term has a 
quite clear physical meaning and is connected with a 
change of the order parameter 1/J due to the influence of 
t, i.e., due to the current. The coefficient p deter-

mines the magnitude of the anisotropy of the surface 
layer which, in turn, is caused by application of the 
field H. 

In Appendix B is it shown that one can write an ex­
pression for p in the following simple form: 

"" 
p =- 1 + \jlo2 (0)/H,3} "¢o2 (x) dr, (18) 

where 1/J 0 (0) is the amplitude of the order parameter at 
the surface of the sample. In the literature, the quan­
tity 

= 
fl. =.Po-2 (0) ~.Po'(x)dx (19) 

is called the thickness of the surface layer; near Hc3 

it is "'1/ K (in ordinary units A"' ~ where ~ = 6 IK is 
the superconducting coherence length). Values of the 
function A(H) are tabulated in [SJ; for H = Hcs its ex­
act value is given by A = 1.007 I K. Thus, in our case 
the coefficient of anisotropy p is simply given by 

p = X/ Hcs - 1 ~ -0,41. (20) 

It remained for us to determine the amplitude of the 
order parameter 1/J0 ( t, H) which enters into expression 
(16) for the current. For this purpose let us consider 
Eq. (12) for the correction 1/!3 , and let us write down the 
condition under which it has a nontrivial solution satis­
fying the boundary condition (3'). This condition, as is 
well known, consists in the orthogonality of the right­
hand side of Eq. (12) to the solution 1/J0 (x) of the homo­
geneous equation (5) combined with (3). Omitting simple 
transformations we at once write down the desired re­
sult 

(21) 

where 

Q = [ r ¢o'(x)dx r{f "¢o'(x)dx- 2 fax[ f Ao(xi)¢o2 (x!)dx, ]'} (22) 
0 0 0 0 

Hence 

(24) 

The vector t entering into this expression may have 
an arbitrary direction (in the plane of the sample), but 
in magnitude, as is evident from (21), it should not ex­
ceed a certain value tmax· The greatest value of the 
function J(l;) in the interval 0 ~ t ~ l:max determines 
the value of the critical current Jc for the system. 
Starting from (24), by means of a direct calculation one 
can easily verify that 

2q [ q(1-JpJ) ]';,( H)';, lc 8)=- 1-- , 
( 3Q 3(1-JpJccs2 8) Hca 

(25) 

where cos e = (J • H) I JH. Here we have taken into ac­
count the fact proved earlier that p < 0 (see Eqs. (B.1) 
and (20)). The obtained angular dependence Jc (e) de­
scribes a monotonic decrease of the critical current 
from the value J 11 to the value J .L during a change of 
the angle e from 0 to 90°; the ratio J .L I J II is given by 
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hllu = l'1-IPI ~ 0.77, 

i.e., the anisotropy ~J /J c of the critical current 
amounts to ~ 20%. 

(26) 

During the derivation of expression (25) we did not 
make any specific assumptions except nearness of the 
field strength H to Hcs· Calculation of the coefficients 
q and Q must be carried out numerically. In order to 
determine the critical current Abrikosov used a varia­
tional method with a trial wave function of the zero­
approximation form I/J0 (x) = exp (- K2x2/2), which cor­
responds to an eigenvalue which, according to Eq. (A.2), 
is equal to E0 ~0.6 (the exact value is Eo= 0.59). In 
this case the result has an especially simple form: 

Q= (2/n)'hx(1-0.156x-2], q = 1. (27) 

1 [2n 1-lpl ]'" (1-H/Hca)'1• J,(S)=- - ' 
3 3 1 -I pI cos2 S x ( 1 - 0.156x-2 ) • 

(28) 

For the longitudinal current ( () = 0) this expression goes 
over into Abrikosov's formula. For the transverse cur­
rent (e = 90°) an additional factor v1- /p/ arises in 
comparison with the previous case; this factor deter­
mines the anisotropy of the critical current (see Eq. 
(28)). This conclusion is in agreement with numerical 
calculations of the transverse current carried out by 
Park. [s 1 As follows from the derivation given, the pres­
ence of anisotropy is associated with the fact that a 
surface layer exists only in the presence of a strong 
field (Hc2 < H < Hc3), which creates a preferred direc­
tion in the plane of the sample. In the absence of an ex­
ternal field the critical current will, of course, be iso­
tropic if the anisotropic properties (usually small) of 
the material itself are neglected. 

5. Expression (2 5) is quite general and is also appli­
cable for a determination of the critical current of a 
plane film in a parallel field whose strength is near the 
critical value. In order to do this, in the formulas ap­
pearing here for the coefficients it is necessary to re­
place the limits of integration 0 and oo by the values 
x = ±d (the thickness of the film is equal to 2d). This 
problem was first solved by Ginzburg and Landau[ 4 , 6 1 

for films with Kd << 1. They showed that to the zero­
order approximation in Kd one can neglect the change 
of the 1/J-function with respect to the film thickness. As 
a result the critical current is found to be isotropic and 
independent of the parameter K. Near H = He one finds 

JPL= 8 12!(1-!!_)'", xd~ 1, (29) 
3f3 He 

where He = 13/d is the critical field of the film. It is 
easy to arrive at this result if one sets 1/J = 1/Jo = const 
and Ao =Hex in Eqs. (22) and (23); to this approxima­
tion one should set the parameter p characterizing the 
current anisotropy equal to zero since, as already indi­
cated, it is associated with spatial variations of the or­
der parameter 1/J. In the next approximation in Kd, the 
correction which gives the dependence of the critical 

2lWe note that the nature of the dependence Jc- Q-1 - K-t forK> 1 
follows at once from expression (22) if one makes the replacement x -> ~ 

/K (see Eq. (A. I)). 

current on direction is of the greatest interest. Accord­
ing to Eq. (17), 

2x' d x x, 8 
p = d S Ao(x)dx S dx1 S Ao(x2 )dx, =-S (xd) 2 ~ 1. (30) 

-d -d -d 

Expanding the integrand in (25) in a series of powers of 
p, we find 

J,(S) = JPL(1 + 4/ 5x2d2cos2 S), xd~ 1. (31) 

It is natural to expect that for thin films ( Kd ~ 1) the 
anisotropy of the current will, generally speaking, be of 
the order of unity. 

6. In conclusion let us dwell briefly on the question 
of the experimental observation of the above-considered 
anisotropy of the critical currents. Experimentally the 
magnitude of the critical current turns out to be ex­
tremely sensitive to the presence of the normal compo­
nent of the applied magnetic field. For example, in the 
experiments of Hart and Swartz[ 71 the critical current 
is decreased by an order of magnitude upon deviation of 
the field from the plane of the sample by an angle~ 1°, 
An even greater decrease of the current (by four orders 
of magnitude) was observed by Akhmedov et al.[ 81 for 
very pure Nb with a ratio of resistances R(300°K)/ 
R(4.2°K) = 14 000. A qualitative explanation of these 
results is that a superconducting surface layer goes 
over into a vertex state in the presence of an arbitrar­
ily small normal component of the magnetic field.[s, 9 1 

Taking into account the smallness of the critical cur­
rent's anisotropy in a parallel field, the cited consider­
ations indicate that for its observation there are rather 
stringent requirements on the degree of homogeneity of 
the magnetic field, the surface of the sample, and also 
on uniformity in the random distribution of impurities 
inside the sample. 

The author thanks L. P. Gor'kov and G. F. Zharkov 
for a discussion of the results of this work and for their 
observations. 

APPENDIX 

A. In Eq. (5) we make the following change of varia­
ble: ~ = v KHc3 x. As a result we arrive at the problem 
of determining the eigenvalues for the equation of mo­
tion of an oscillator 

-d"iJo/ d\;2 + (s- (;,,)'ljJo = eoljJo 

with the boundary condition 

(dljJo/ d~h~o = 0, 

(A.1) 

(A.1') 

where ~0 = v KHcs x0 and Eo = K/Hcs• We are interested 
in the largest value of the field H = Hcs for which 
Eq. (6) has a nontrivial solution, i.e., the minimum ei­
genvalue E0 • For the system of equations (A.1)-(A.1') 
this is equivalent to the variational problem concerning 
the determination of the minimum of the expression [ 2 l 

(A.2) 

in which ~ 0 plays the role of a free parameter. [2 1 

Equating the derivative iJE0/iJ~0 to zero, we arrive at 
the condition (in terms of the original notation) 
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= = 
~ (x-x0)1jl02 (x)dx= \ Ao(x)1jlo2 (x)dx= 0. (A.3) 

The second equation explicitly shows that a total cur­
rent is not present in the ground state. Now let us re­
turn to Eq. (5), and let us multiply it on both sides by 
1/J:(x), and then integrate between the limits from 0 
to oo. Carrying out an integration by parts in the sec­
ond term from the left and using Eqs. (3') and (A.3), 
we finally find that 

xoHe:J = 1. (A.4) 

B. One can easily convince oneself that the param­
eter p characterizing the anisotropy of the current is 
negative. In order to do this it is sufficient to integrate 
expression (16) by parts with respect to the variable x 
and to utilize property (A.3). We present the result: 

r J2(x) I r 2 p = -4x2 J ~-- dx .l 1jlo (x)dx < 0, 
o 1jlo2(x) ~ 

(B.1) 

where 
X 

l(x)= ~ A 0 (x)1jl02 (x)dx. (B.2) 

In order to prove Eq. (17) it is convenient to start 
directly from the equations themselves. Let us multi­
ply Eq. (6) by 1/J~(x) and Eq. (11) by 1/J~(x), and then add 
the results. Integrating the resulting equation with re­
spect to x between the limits (0, oo), after simple 
transformations we find that 

"" (ab) [ 7 J ~ Ao(x)1jlo(x)1jl2(x)dx = 2H" 1\lo2 (0)-Hc3 .)1\lo2 (x)dx . 
0 0 

(B.3) 

Comparison of (15) and (16) with (B.3) taken into ac­
count immediately leads to expression (17) for the quan­
tity p. 
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