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The conductivity tensor in a strong magnetic field is determined for the case when magnetic splitting 
is of the order or more than the Fermi energy. The case of T = 0 and neutral point impurities is 
considered. Two models are analyzed, the first with a "good" metal with a quadratic isotropic dis
persion law, and the second with a semimetal with isotropic and quadratic spectra of electrons and 
holes separated by a large momentum in momentum space. The calculation method, which makes use 
of Green's function expanded in the eigenfunctions of the problem, considerably simplifies the calcu
lations for the first model, which has already been considered in previous papers, and refines the re
sults. The conductivity tensor for the second model is found for the limiting quantum case in which, 
owing to level overlapping, the number of electrons and holes becomes much greater than in the ab
sence of a field. other possible applications of the calculation method are discussed. 

1. INTRODUCTION 

As is well known, the galvanomagnetic properties of 
metals, even in very strong fields, are well described 
by the quasiclassical approximation, in which the elec
trons can be regarded as moving in their classical or
bits. This is connected with the fact that usually the 
distance between the Landau levels J.L*H is much smal
ler than the Fermi energy EF· The fields required to 
violate this relation at EF "'1 eV and J.L* "' llfree are 
of the order of 108 Oe, which at any rate are presently 
not attainable under laboratory conditions. When J.L* H 
« E F• allowance for the quantum effects yields all the 
small oscillatory additions to the conductivity tensor. 

The relation {L*H << EF can be violated in semimet
als, where, first, the Fermi energy is of the order of 
several hundred eV, and on the other hand the small ef
fective masses give large values of J.L*· As a result, 
fields on the order of 105 Oe may suffice. In principle, 
this is the case also for semiconductors. However, in
asmuch as the presence of free carriers is ensured in 
semiconductors by the presence of impurities, the num
ber of carriers is approximately equal to the number of 
impurities, the condition n/T << EF is violated in sem
iconductors ( T-free path time), leading to additional 
difficulties. Such a case will not be considered here. 

To study the main features of the phenomenon, we 
confine ourselves to two simple models. The first is a 
metal with a dispersion law p2/2m 1 , with m 1 of the or
der of the electron mass and with the usual electron 
density (ne "' 1022 em - 3). This model will help us de
velop a calculation method in simple form, and to inves
tigate the role of various contributions to the effect. 

The magnetic field is assumed arbitrary. In princi
ple, this case was investigated earlier. [ 1 ' 2 J However, 
the method which is employed here is much simpler and 
is more general. This has made it possible to refine 
the results obtained in [ 1 • 2 l. 

The second model is a simplified variant of a semi
metal, which, insofar as we know, was never investi
gated in the quantum limit. 

The calculation method is based on expanding the 

Green's function of the electron in terms of the eigen
functions in the magnetic field. This method was used 
by Bychkov[ 3 l to investigate the role of collisions in the 
de Haas-van Alphen effect. We shall show here that it 
is also very convenient for the calculation of kinetic 
phenomena. 

2. ISOTROPIC MODEL OF METAL 

Let us consider a metal with a dispersion law 
E = p2/2m1 , an electron density ne, and an impurity 
density Ni· If the magnetic field is directed along the 
z axis, then the electron energy is described by the 
formula 

eH ( 1 ) _ eH p,Z 
fn±(Pz)=- n+- +-+--

m,c 2 2mc 2m 1 

(1) 

(we put here n = 1). For each value of n and for each 
index "plus" or "minus" there corresponds a separate 
Fermi momentum Pon±• determined from the conditions 

[( eH ( 1 ) eH ) l 'I• Pon±= \;-·- n+- ±-- 2m, , 
m 1c 2 .?.me 

(2) 

eH 
ne = ~ Pan± ?'TT 2 ,.. , 

(3) 

where !; is the chemical potential. It is defined by con
dition (3), in which account is taken of the degeneracy of 
the Landau levels. The sum is over all the real Pon±• 

If we assume the interaction of the electrons with the 
impurity to be independent of the electron spin, then the 
projection of the electron spin does not change upon 
scattering, and we can consider the corresponding cur
rents produced by electrons with spin projections ± 1/2 
independently. We therefore consider, say, electrons 
with spin projection + ~2· If a gauge Ay = Hx is chosen, 
the eigenfunctions take the form 

'i'P _P "= exp{ip,z + iPvY}'i'n( :r- cpy) , (4) 
._ Y ~eH 

w~~ -
¢n(x) = (-eH)''• -~.:__-exp{- !!':_ x2 }Hn ( V ~[i x) 

nc 2n12 f'n! 2c c 
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(Hn is a Hermite polynomial). 
With the aid of the functions ~PzPyn we can easily 

write down the Green's function of the free electrons 
(without interaction with the impurity) at T = 0 

0 _ ~ '¢n(x-cpy/eH)'¢n(X'-cpy/eH) 
G<>(p,py,x.x' w)- "-' t ( l+ .. , . w - ~n p, !u Slgn W 

where 

£n (p,) = En+ (p,) - S· 

(5) 

We now consider electron scattering, assuming the 
interaction to be pointlike and the scattering amplitude 
to be isotropic (U0). 1 > Averaging over the random dis
tribution of the impurities, we have in first order in U0 

{J(i)G = ~ G<0>(x, x1)G<0>(x,, x')dx1U0Ni 

~ tiln(X- Cpy/eH)tjln(x'- cpy/eH) 
= UoNi .2J 

n (w- £n (p,) + i{J sign w]' 

(we use here the fact that the ~n are orthonormal). 
This correction corresponds to diagram a of Fig. 1. 

We now consider the next-order correction, diagram 
b of Fig. 1, and assume that both crosses pertain to one 
atom. We then obtain after averaging over the impurity 
positions 

Since the fu in the second G-function contain identi
cal arguments, we obtain the factor eH/27Tc by inte
grating over Pv1 and using the normalization condition. 
We are then left with the expression 

~[{J)- £n (Pzt) + ii'l sign w]-1• 

Integration with respect to Pz1 under the condition 
w << ~ /2m 1 yields -im1 sign w I) p;~. Then, inte-

o n 
grating with respect to x1 , we obtain 

eHm1 1 
tJ<2JG= -isignwN;Uo2 ---;-- ~--

2nc ,, Pon, 

X ~ tiln (x- cp,/eH)¢n (x'_- cpy/eH) 

n [w- £n (p,) + ib sign w )2 

Thus, the correction o< 2>G, relative to o11 >G, is of the 
order of U0 eHm1 /cp0 • If we recognize that U0 "' (p~/m) 
x (1/p~) (U0 is the Born scattering amplitude with di
mension erg-cm3), then the ratio o121 G/o111G is of the 
order of (eH/mc)(p~/m). We consider the case when 
this ratio is of the order of or larger than unity. There
fore all the corrections of this kind should be taken into 
account. 

The sum of all the diagrams of type c in Fig. 1 
yields 

where 

'Q '¢n(X- cp,/eH)th (x'- cp,/eH) 
6G=~ 4.1 . , 

n [w - Sn (p,) + il'r sign w )" 

[ eHm1 'Q 1 ]-' 
~ = NiUo 1 + isign wUo~·-- 4.1-

2nc n Pon 
(6) 

1) Such a description of the interaction of the electrons with the im
purity in a superstrong magnetic field is in fact far from obvious, and 
should be regarded as a very simple model assumption. 

II I I flllll 
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FIG. I 

If we now take into account the diagrams of type d in 
Fig. 1, then it is easy to see that we obtain as the sum 

G=] tjln(x-cpy/eH)'¢n(x'-':P_¥/eH). (7) 
n W - Sn (Pz)- ~ 

We can choose for L; only its imaginary part, since 
the real part is a renormalization of the chemical poten
tial. If Im L; << pgl2m, then the integral with respect 
to Pz of the denominator, including L, does not differ 
from the case when we had id sign w in lieu of L In 
view of this, expression (6) actually takes into account 
also diagrams of type E in Fig. 1, where all the crosses 
from atom 2 fall between the two nearest crosses of 
atom 1. 

We have not yet taken into account the diagrams with 
meshing of the crosses from different atoms. Let us 
consider the simplest of these diagrams, f of Fig. 1. 
It contains five Green's functions and integration with 
respect to two coordinates x, two coordinates Py• and 
two coordinates Pz· Since all the fu(X- cpy/eHJ are 
exponentially decreasing functions, it follows that, as a 
result of the normalization condition, the integration 
with respect to x1 and x2 annihilates four of these func
tions, and the integration with respect to Pv 1 and Py2 

annihilates four more, with a factor (eH/c)~ appearmg 
as a result. We are left with the integrals of the denom
inators with respect to pz. These integrals can be 
readily evaluated. As a result we find that this diagram 
is in order w/(pg/m) relative to diagram g of Fig. 1 
with non-meshing crosses. Since we shall henceforth be 
interested throughout in w of the order of T-\ where 
1/T = -21m:E, and L; has been defined earlier, we can 
neglect diagrams with meshing if Tpg/m >> 1. This will 
serve as a condition for the applicability of the present 
results (with respect to limitation on the impurity den
sity). 

We now proceed to calculate the conductivity tensor. 
We describe the external electric field by a vector po
tential A1 (r, t), and we denote the vector potential of the 
large static magnetic field by A0(r). The current opera
tor is of the form 

- ie - - e2 - -
j =-- (V,- V,,)tj!+(r', t).p(r, t)- -.p+.p (Ao +At). (8) 

2m1 r'-+r mic 

This expression must be averaged and, since there is 
no current under equilibrium, it is necessary to sep
arate the terms linear in A1• We shall use the formula 

{)J'GA =- ~ ~ j{lAdV. 
c 

In this case, the role of oA is played by A1• Expressing 

and separating terms linear in Au we obtain 



748 A. A. ABRIKOSOV 

(where ® (x) = 1 when x > 0 and ® (x) = 0 when x < 0). 
As is well known, the mean value of a retarded com

mutator can be expressed in terms of the time-ordered 
mean value, by simply reversing the sign of the imagi
nary part of the Fourier component with respect to 
t - t 1 when w < 0. In view of this we define in lieu of (9) 
the jf with time-ordered mean value. It is easy to go 

over in it to Green's function, and in place of ( ... ) in (9) 
weobtain G(r,rf, t-tJG(r,r',t1 -t). As usual, this 
product must be averaged over the positions of the im
purity centers. 

We begin with the component O"zz· We consider first 
diagrams in which different impurity atoms enter in 
both G-functions. Then the mean value of the product 
is equal to the product of the mean values, and changing 
over to Fourier components we obtain 

. '(k k ) ie' r 'G ( k~ k, ) 
}oz y, .._,X, Wo = -;u~:z;; J Pz p 11 - 2, Pz- 2, X, Xi, W 

( ky k, ) 
XC Py+2,p,+ 2 ,x~,x,w+wo dx1 dpydp,dw/(2n)3 

This corresponds to a diagram a of Fig. 2. This is the 
general expression, and we are interested in the static 
tensor O"ik· We therefore assume the potential A1 to be 
independent of x, and put k = 0, assuming w0 to be 
small. 

We substitute in the integral (10) the expression (7). 
Integration with respect to x 1 and Py yields, as a re
sult of the normalization of the functions 1/Jn, 

ie2 eHr [ jo,=~---,---- j dp,dw/(2n) 2 p,2 ~ (w -1;n-2::(w))-1 

mi·c 2rrc n 

As already mentioned, it is sufficient to take into ac
count only the imaginary part of L;. Putting Im 2: 
= -(i/2T) sign w, and assuming that w0 > 0, we write 
the integral with respect to w in the form 

I [ ( (0 -· Gn- 2iT )( (0 + Wo- Gn- ;T) r dw 

+ r [ ( w - Sn + -~ )( w + wo- £, + 2~) r dw 

This integral is equal to 

i/r: (£n + wo + i/2T) (sn- wo- i/2-r) 
-------In 
Wo{ulo+i/l) (£n+i/2·r)(£,--!/2T) 

We then integrate with respect to Pz· In view of the 
fact that only the vicinity of Pz = ± Pn is important, we 

0 

can replace p~ by ~ and integrate with respect to ~. 
with 0 

2m, r 
dp,-+- J d£ 

Pno 

(the factor 2 is due to the two possible signs of p0). 

We then obtain (we omit the symbol t, since jt coin
cides with j when w 0 > O) 

. e2 r eH ~ if,; J 
Jo,=--1-;--·LJPon---.--ne A,(wo). 

m,c L 2n2c n wo + l/-r; 
To determine the static conductivity, it is sufficient 

to put w 0 << 1 IT. Then the zeroth term in w 0 vanishes 
by virtue of (3). Since Ek = iw 0 Af/c, we obtain from 
the first approximation, adding the currents from the 
electrons with spin projections ± 1/ 2 , 

(12) 

where 
~ _ ,, _ 1 { ( , elim, ~ t )'}/ , eHm1 ~ 1 T±=-(~Im .. ) = 1+ Lo-----LJ-- ,~;Uo2 --·---LJ--

, 2nc Pon nc Por~ 

(13) 
(the summation for T + and T _ is over the correspond
ing Pon• see (2)) • 

We have omitted here the zero index of azz, since 
we shall show presently that other diagrams make no 
appreciable contribution. Indeed, let us consider the 
simplest of the unaccounted for diagrams. It is shown 
in Fig. 2b. Integrations with respect to Pz 1 and Pz 2 are 
independent. Since the Green's functions are even in pz, 
and the vertices are odd, the diagram b of Fig. 2 van
ishes. For the same reason, all the diagrams with par
allel dashed lines for O"zz, and in general all diagrams 
for the conductivity tensor components azx and a zy 
vanish (in one vertex pz, and in the other Py or a ;ax). 
To be sure, this argument cannot be used to eliminate 
diagrams for O"zz with meshing lines. The simplest di
agrams of this type are shown in Figs. 2c, d, and e. Al
though each of them is of the same order as that of 
Fig. 2a, the main term cancels out in the sum, and the 
result is of order m/p~T. We do not present here the 
corresponding derivations. They are not complicated 
but quite long. 

We now consider the component ayy· For the dia
gram of type a on Fig. 2 we obtain 

0z 

p p 

Pz 

ie2 1 ( eH )( eH ) joy=~,-.) p.---x py--x1 
m1 c c c 

X~ '¢n (x- cpy/ell)'¢n (xt..=__cpy/el!L 

n w-sn+(t/2-r)signw 

X ~ '¢n, (x,- cpy/eH)'¢n1(x- cpy/eH) 

"' w + Wo- sn, + (i/2-,;) sign(w + wo) 

Bzl 

Pt P1 
I I 

Pz Pz 
P,z 

b 

FIG. 2 
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The integral with respect to x1 is in fact the matrix 
element of the oscillator coordinate. After obtaining 
this integral, a similar role is played by the integral 
with respect to Py· In this case 

Xn, n+l = Xn+l, n = l'(n + i)c I eH. 

We then obtain 

ie' 1 ( eH )' \ dp dw {[ ( i ) io~=~.·~- J-'-;-~(n+i) w-sn+t+-signw 
mt 2C 4n C 2n 2n n 2'1: 

x( w + wo- Sn +2~sign(w +We) )r 
+ [ ( w- £, + 2~ sign w )( w + Wo- Sn+l + 2i"C ~ign( w + Wo)) rl} 

(14) 

This integral is easiest to calculate by subtracting 
and adding an analogous expression with T - oo. In the 
"free" term we can replace all the sign w by sign ~. 
where ~ corresponds to the given denominator. Then, 
when integrating with respect to w, we should have 
~n+ 1 > 0 and ~n < 0 (the opposite case is impossible). 
We then obtain for the free term 

( 1 1 ) e2 1 ( eH)' 
X Wu + Sn·ll- Sn Wo- Sn+l + Sn. = mt 2C ·z;z -c-

eH/mtC 
X ( II/ )' " S (n + 1) (Pon- Pon+i)AtY(wo) 

e tntC ~- Wo"" n 

(We have neglected additions of order w~/(eH/m1c) 2.) 
Thus, this term cancels the last term in the current. 

It remains to calculate the difference between the in
tegral with T and with the free term. Since the integral 
converges, we shall first integrate with respect to pz. 
Assuming w0 << 1/T << eH/m1c, we obtain 

(15) 

We have again omitted the index zero, since the next 
diagrams make no contribution. Indeed, let us consider 
the diagram of type b on Fig. 2. In each vertex there 
is contained in lieu of Pz an operator having matrix 
elements with n' = n ± 1. Integrating with respect to 
the x corresponding to the vertex, we obtain the prod
uct </Jn(x1 - cpy/eH) l/Jn± 1(x1 - cpy/eH), which then van
ishes upon integration with respect to Py· But it is 
necessary to be cautious with the next diagrams, for 
according to (15) the main expression has been de
creased compared with azz by a factor 1/(Q T) 2 , where 
Q = eH/m1c. Calculation of the diagrams of types c, d, 
and e of Fig. 2 show that terms of the required order 
vanish as a result of integration with respect to Py· We 
succeeded in proving this by direct calculation oniy in 
the limiting case of a very strong field, when all the 
levels with n = 0 and 1 take part. However, in all prob
ability, this is valid also in the general case. 

The calculation of axx and ayy is analogous. We 

use here the matrix elements 

cj~) n, n+l = -( ~) n+l. n = v !!!__ +2~)ell. 
From the symmetry of the problem it is obvious that 
axx = ayy· To calculate axy we determine j 0x under the 
influence of the potential AI. We then obtain in lieu of 
(14) 

X{[ (w- Sn + (i I 2T) sign w) (w + wo- Sn+l + (i /2•) sign (w + wo) )]- 1 

- [ (w- Sn+l + (i /2t) sign w) (w +wo- Sn 
+ (il 21:) sign (w + w0))]-1}A 1Y(w0). {16) 

In this case the answer does not depend on T (since the 
terms of zeroth order in 1/T do not cancel out). This 
means that we can put 1/T- 0 and replace sign w by 
sign ~ of the corresponding ~ in the denominator. The 
subsequent integration is then analogous to the preced
ing one, and we obtain 

11xy = n.ec /II, (17) 

i.e., the usual Hall conductivity. Obviously, ayx = -axy· 
We now analyze the derived formulas. We start with 

the limiting quantum case eH/mc >> p~/m, when all the 
electrons are concentrated on one Landau level. In this 
case 

(18) 

with ne << (eH/c)3 12, Since n ~ p~0, where p00 is the 
Fermi momentum in the absence of a field, it follows 
that p0 << pOO' If we recognize that the interaction with 
the impurity atom is of the order of p~0/2m, we get U0 

~ p~0/mn. It is then easily seen that 

According to (13), we obtain 

eHm1 1 ( eii )' m1 '= ---= -- ----- ~---

4:ncpoN; (2:n) 3 c nN; ' 
(19) 

i.e., T depends only on the impurity density, but not on 
the concrete form of the interaction. The condition 
1/T << p~/m denotes in this case that Ni << n, i.e., a 
low impurity density. From (12) and (15), we get 

1 ( e'H)' 1 
11zz = (2:n)' -c- N;, (20) 

ecN; 
Uxx = Uyy = -;;:1J ·. (21) 

The qualitative form of these formulas has a natural 
physical interpretation. Since each electron moves on 
a helix with axis along z, the impurities interfere with 
the conductivity along this axis, and conversely contri
butes to conductivity in the perpendicular direction. The 
decrease of the radius of the helix with increasing field 
decreases also the collision probability, thus leading to 
an increase of azz and to a decrease of axx and ayy· 
From (17), (20), and (21) we obtain the resistivity ten-
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-1. 
sor pik = aik. 

P:z = (2n)3N; ( e~H y, 
N;H 

Pxx=P!Jy=---·-, 
:nn2ec 

H 
Pxy=-. 

nee 
(22) 

We now consider the opposite limit eH/mc << p~/2m. 
This is the quasiclassical case, in which it is possible 
to change from summation with respect to n to integra
tion. The small addition gives the so-called "quantum 
oscillations." 

Using the Poisson summation formula 
CO 00 00 OD 

~ cp(n)= ~ cp(x)d.x+2Re,~ ~ cp(x)e:!nihxd.x, 
k=1-1h 

we obtain 

where 

s~ = ~ ± eH /2mc, Q = eH I mjC. 

Changing over to the variable y = i;± -Ox and continu
ing in the second integral the limit of integration with 
respect to y to oo, we obtain 

~ _ 1_ r:,: ~-V -~~ . + - 1 ~· ~cos ( 2nk ~± - ~) • 
n Pr.n± Q 2mt fmtQ k yk Q 4 

In the first term we can put i;± Rl p~2m1• This cannot 
be done in the second term, in view of the fact that this 
term oscillates. 2> After substitution, we obtain 

~-1 - = cp01l_[1+V eH~ ~cos(2nk~±-~)J. (23) 
n Pon± eH cp2ook ik Q 4 

The second term is of relative order (0/1;) 112• 

Therefore, upon substitution in (12) for T we can expand 
with respect to this term. It is convenient here to go 
over from the Born amplitude to the true amplitude in 
the absence of the field. Considering Fig. 1c for an in
dividual electron interacting with an impurity, we obtain 

A= Uo 
1 + iU,p00mt/2n 

Expressing U0 in terms of A1 we get 

T± =(N;IA I'Pcom/n)-1 { 1 + [2IA l'(poom/2n) 2-1] 

. v _e~-· ~ ~coo cnks± -~)}. 
cpoo2 • ik Q 4 

(24) 

When this expression is substituted in (12), we can 
assume that n+ Rl n_. After this, addition of terms with 
indices ± denotes 

cos (2nk~+l Q- nl4) +cos (2nk~-IQ- n/4) 

~ cos (2nk1; I Q -- n I 4) cos (nkm I m1). 

2>strictly speaking,~ also has an oscillating addition. It can be ob
tained with the aid of formulas (2) and (3). However, when we sum ~Pon 
in analogy with the summation in (23), we find that the relative order of 
the addition is (fl./f) 312 , whereas other sums make additions of order 
-/fl./~ to the conductivity. For this reason, we can assume that 14 = n_. 

Thus, as a result we get 

where 

a,.= ao{1 + [21A l'(p00mt/2n)'- 1] V eH2 -
cpoo 

:-. 1 ( ;r.kcp002 n ) ( m )} X~ -;::cos ----- cos nk- , 
h -yk ell 4 m1 

Go= ne""'r:o I mh 1 I To= NdA l'poom1/ n. 

In analogy with (23), we get 

(25) 

2_;-~+_1:_~__IJc_~~-J 1+-~ V ~H-2.;~cos(2nk~± -~)1· (26) 
Pon± 3(eH) 2 L 2 cz,oo2 ik Q 4 

n k 

Substituting in (15), we get 

ne2mt ( c )' { r 5 ( poomt) 2 ] v-;n Gyy= Gxx=~ -- 1 +, ;---2IAI 2 -- ---
To ell L 2 2n CTJoo2 

~ 1 ( nkcp~,• n) ( m )} X LJ-= cos ----- cos nk- . 
• ik ell 4 m 1 

(27) 

We recall, incidentally, that we have assumed through
out that 0 >> 1/T 0 • 

Finally, let us consider the case 0 ~ i; and ascer
tain what occurs when the chemical potential passes 
through one of the Landau levels, say n0 • We assume 
that this is a level with spin orientation along the field. 
We then can easily obtain from (23) the corresponding 
value of the field 

( eH )"' - [ "' - 1/ m1 ]-' 7 = ¥2 n'n. ~ in+ ~ v no- n - m . 
n=i n 

Let us examine T in the vicinity of this point. So long 
as the field is somewhat larger than Hn , according to 

0 
(13), T behaves like a smooth function of the field and 
is of the order of 

eHnomt v eHno m1 '!3 m1 
r~---~ ---,....,ne -. 

cN;Pon c N; N; 

Accordingly, the components of the conductivity tensor 
are of the order of 

(28) 

However, if we approach this point from below, then the 
momentum Pn becomes small near Hn , and this imme-

o 0 
diately affects the conductivity. From (3) we have 

2 c Hn,-H 
Pon, = 2:rt n.-----. 

Hn0e Hno 

This yields directly 

(29) 

Thus, the component Uzz increases when H approaches 
Hno from below. As to axx and ayy, they are of the 
same order as when H = Hn0 + 0, but it can be shown 
that the coefficient will be different in this case. Conse
quently, these components experience a discontinuity. 
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Actually these singularities become smoothed out some
what. The point is that the condition for the applicability 
of the formulas obtained above is, in particular, P~n/m1 
>> 1/T. This imposes the limitation (Hn0 - H)/Hn0 

>> Ni/ne. Thus, the singularity of Olk should be 
smoothed out over this region. In particular, it follows 
therefore that the maximum reached by azz is of the 
order of 

(30) 

3. MODEL OF A SEMIMETAL 

We now consider a model closer to the real situation. 
We assume that near p = 0 we have isotropic holes with 
small effective mass, and near p = P we have "elec
trons" that are isotropic with respect to p- P and also 
have a small mass (Fig. 3a). Then, in principle, three 
different cases are possible. 

1. The valence and the conduction bands intersect at 
H = 0, and this intersection remains for all fields 
(Fig. 3b). 

2. The bands do not intersect at H = 0, but the inter
section occurs at some field value (Fig. 3c). 

The fields have intersected at H = 0, but the inter
section was lifted under the influence of the field 
(Fig. 3d). 

We have considered only the limits of the strongest 
fields, when only one of the Landau levels is filled. The 
energies of the electrons and holes are given by 

eH eH (p- P),2 
e.(H,p,)= s.+-2----2-+ 2 ' 

metC mec met 

The effective masses me and mh for the spin splitting 
are also assumed to be small, of the order of me1 and 
mh1 • This corresponds to the real situation in semi
metals where, as a result of the spin-orbit interaction, 
the spin splitting of the levels is of the order of the or
bital splitting. We put 

1 1 1 1 1 
---;=---+---. 
m mh mh1 me met 

(32) 

Then, obviously, the aforementioned cases correspond 
to: 

1) A > 0, m' > 0, 
2) 8 < 0, m• > 0, 
3) A> 0, m· < 0. 

The number of electrons (which equals the number of 
holes) we have 

eH 
nh=ne=--po, 

2n2c 
(33) 

where p0 is determined from the condition that the en
ergies of the electrons and holes be equal to the chem
ical potential, i.e., 

a 

FIG. 3 

pQ = V 2m'' ( t. + 2e:,J, (34) 

where (m * *) -l = mh.~ + m~~- With the aid of (34) we 
easily obtain the conditions under which only the lower 
level takes part in the spectrum. To this end, obvious
ly, the following inequality should be satisfied: 

We shall not write out explicitly the relations obtained 
in this case for the masses and the field H. It is im
portant that these conditions can exist. 

We note first that the possible existence of a Fermi 
spectrum in a semimetal is not obvious in the extreme 
quantum case. The motion becomes one-dimensional. 
As is well known, in the one-dimensional case the at
traction of the particles must lead to the formation of 
bound states.3 > 

The situation becomes more complicated by the fact 
that this question is solved differently for two isolated 
particles and for two Fermi distributions of the elec
trons and the holes. It is more or less obvious that the 
transition from one of these variants to the other oc
curs when the Fermi energy becomes comparable with 
the binding energy of the pair (exciton). The latter can 
be easily estimated. It turns out to be of the order of 
m 1e4 if e2m/..JeH/c ~ 1. 

For semimetals without a magnetic field, the veloc
ity on the Fermi surface is poofm1 '"" 108 em/sec, i.e., 
e2m1~Poo/"' 1. This means that in strong fields, where 
p0 '"" eH c >> p00, 4 > the ratio of the exciton binding en
ergy to the Fermi energy is of the order of (e2m/p0 ) 2 

<< 1. It follows therefore that in this case a considera
tion of individual electrons and holes will not do. 

We do not present the details of the estimate in which 
allowance is made for the Fermi distributions. It is ob
tained in the same manner as for superconductivity. 
The binding energy has in this case the form a(pg/m1) 

x exp ( -bpofm1e\ where a'"" 1 and b'"" 1. This energy 
is much smaller than pg/ml' Consequently, there exists 
an interval of temperatures much lower than the Fermi 
energy and much higher than the binding energy, in 
which temperature effects can be neglected and at the 
same time it is possible to disregard exciton formation. 
All the following will pertain precisely to this case (see 
also footnote 4). 

Let us consider Fig. 1a. Averaging over the random 
arrangement of the impurities gave us in the preceding 
model the product l/Jn(x- cpy/eH)l/Jn(x'- CPy/eH). This 
was due to the fact that the functions l/Jn are orthonor
mal. In the present case we may encounter a situation 
wherein the Green's function on one side of the cross 
corresponds to holes, and on the other side to electrons. 
In this case we have the integral 

~ exp[i(p,- pz' + P,)zt + i(p.- py' +Pv)Yt + iPxXt] 

( cpy) ( cpy' \ 
X1Jln Xt-- 1Jln1 X~--- d'rt 

ell <ell 

3>The author is grateful to L. P. Gor'kov for suggesting this problem. 
4lOf course, according to (34), it is necessary to have for this pur

pose rn* > 0, i.e., all this pertains only to cases 1) and 2). 
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X [ '"- £,;, (p,) + io sign w]-1 [w- Sne(P/) + io sign w]-1, 

where 

Snh (p,) = (po2 - p,') I 2m;,~, £,, = (p,'- Po') I 2m,t. 

Although the integral written out above does not vanish 
exactly, it is very small. Indeed, by definition, at least 
one of the nonvanishing components of the vector P is 
of the order of 1/a, where a is an atomic dimension. 
The functions </Jn(x- CPy/eH) vanish at a distance 

v'c/eH along x or fehTc along Py· We are considering 

a case in which ·./eH/c ~ p0 << P. Consequently, if Py 
* O, then the product </Jn(x1 - cpy/eH)</Jn1 (x- c(Py- Py)/ 
eH)), which appears after integration with respect to y11 

should be small. If Px * O, then the smallness appears 
in the result of integration with respect to x1 owing to 
the rapidly oscillating factor exp [iPxx1 ] in the inte
gral. Finally, if Pz * 0, then Pz appears in one of the 
denominators, making it large. 

Thus, the "diagonality" of G in averaging over the 
positions of the impurities is retained in this case, too. 
This, of course, does not exclude summations over ei
ther the electron or the hole states in the intervals be
tween the crosses in the diagrams of types b and c on 
Fig. 1. It is easy to verify that both contributions have 
the same form, i.e., me1 + mh1 appears in (6) in lieu 
of ml" 

We now estimate the order of magnitude of the cor
rection to the Born approximation in our case. E0 is of 
the order of P 2/m<0 JP3 ~ 1/m<olp, where m<oJ is the 
mass of the free electron and P is of the order of the 
reciprocal atomic distances. Thus, the relative order 
of the correction is 

(elfmt I cpo) I m<0JP. 

In the quantum region p0 ~ v'eH/c, and the correction 
is of the order of p0mJm<olp, In this case p0 is of the 
order of the limiting Fermi momentum without a field, 
or larger. But in semimetals the velocity on the Fermi 
boundary is of the same order as in ordinary metals, 
i.e., without a field we have p0/m1 ~ P/m<oJ (p0 -Fermi 
momentum of the semimetal without a magnetic field). 
It follows therefore that the correction at not too large 
fields is of the order of (p00/P) 2 ~ 10-3 • This means 
that it can be neglected. Of course, this smallness can 
be overcome by increasing the magnetic field. But 
whereas on the limit of the ultraquantum region the 
field should be of the order of 105 Oe, in order to make 
the correction large the field must be increased by six 
orders of magnitude, which is not realistic. Thus, we 
can always use the value of T-1 in the Born approxima
tion, i.e., 

1 elf 1 
--- = JY;U02-(m1, + m11,)-. (35) 
r nc Po 

In general, the condition 1/T << p~/m 1 does not impose 
any limitations on the concentration of the impurity in 
the ultraquantum region. 

We proceed to the conductivity tensor. It is easy to 
see, first, that the entire loop on Fig. 2 should pertain 
either to electrons or to holes, i.e., the current consists 
of two independent parts. For the diagonal components 
we obtain (only the diagrams of type a in Fig. 2 are 
significant) 

(36) 

(37) 

The Hall component axy in the approximation of for

mula (17) vanishes in this case. In the next approxima
tion, contributions are made by diagrams of types c, d, 
and e in Fig. 2. We can therefore determine axy only 

in order of magnitude: 

e2mt2 c 
axy = - C1yx ""' -~;; eli. (38) 

As already mentioned, the obtained formulas, strict
ly speaking, are valid only for the case of strong fields 
eH/m1c >> t., v'eHlC>> POO" Then, according to (33)
(38) 

-ljm .. ell 
Po- - - , 

m' c 
(39) 

1 v m" ( ell )'f, 
nh=ne=-2 2 ---;- - , 

Jt m, c 
(40) 

1 1 v--m-v·eH ---=---N;U02 (met-f-m;,i) ----;;;- -, 
T n m c 

(41) 

e'm; e2 eH 1 
·<Jzz=<-----·~-=- -----

m.. 2n m' (met+ m;,i) c N;U02 ' 
(42) 

e2 m* 
O'xx = Oyy = 4J1 3 -~_--.,- NiUo2 (mei + mhi) 2, (43) 

(44) 

In view of the fact that in this case axy << axx, the di

agonal components of the tensor Pik are simply the re
ciprocals of the corresponding aik· As to the component 
Pxy. we obtain for it 

1 v c 
Pxy = - Pvx ro -;;2 •elf . (45) 

Thus, the resistance along the field decreases with in
creasing H, the transverse resistance reaches satura
tion, and Pyx does not depend on the impurity density. 
The behavior of Pxx differs from the non-quantum case 
Poo:Ym1 >> n >> 1/T, where Pxx"" H2 • 

4. CONCLUSION 

The described method can be generalized and applied 
to a large group of various quantum phenomena in met
als. 

a) Quasiclassical limit. Quantum oscillations. The 
obtained formulas can be usually generalized to the 
case of a finite temperature. Then the expressions of 
type (11), (14), and (16) can be used for an arbitrary en
ergy spectrum. After summation over w, there re
mains summation over n and pz, which is carried out 
by the same method as in the paper of I. Lifshitz and 
A. Kosevich. [ 41 Unlike the previously employed com
plicated and inconvenient methods for calculating the 
quantum oscillations in kinetic phenomena [l, 2• 5 • 6 1, 

this method has the advantage of being highly automatic 
and providing for the elimination of errors. Of course, 
in order to consider high-frequency phenomena it is 
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necessary to introduce further modifications, in which 
account is taken of the inhomogeneity of the field at the 
surface, as well as boundary effects. 

b) Quantum limit. In addition to calculating other 
characteristics of the two models considered in the 
present paper, we can study also more concrete spec
tra in the quantum limits. To this end it is necessary 
to know the entire function E(p), and not only the vicin
ity of the Fermi surface. The problem is complicated 
by the fact that usually, the different branches of the 
spectrum are close to each other for a large number of 
values of p, and cannot be regarded separately upon 
quantization. In the most important case, however, that 
of real semimetals, the spectrum is knownl 71 and in 
principle we know how to solve the quantum problem, 
although this is a complicated matter and was com
pleted only for holes in a field parallel to the princi
pal axis. l 81 S) 

Recently a new phenomenon was discovered, l 10• 111 

namely, the quantization of the electron motion over 
jumping trajectories along the surface. In this case the 
lower quantum levels are important. Although this 
problem has its own specific features, its solution can 
apparently likewise be simplified and refined by using 

5 )The energy spectrum in very strong fields may be altered by stric
tion effects (the author thanks M. Ya. Azbel' for pointing out this cir
cumstance). Obviously, this occurs when the splitting of the magnetic 
leveis becomes of the same order as the energies responsible for the struc
ture of the spectrum. For semimetals (see [9 ] ), this energy (r) is of the 
order of several tenths of an electron volt, whereas the Fermi energy (reck
oned from the bottom of the band) is of the order of several hundreths 
of an electron volt. Consequently, there is an interval of strong fields 
where the change of the parameters of the spectrum (such as the effec-
tive mass) can still be disregarded. 

Green's functions expanded in terms of the eigenfunc
tions of the problem. 

The author is grateful to L. P. Gor'kov, Yu. A. Bych
kov, and M. Ya. Azbel' for a discussion of the work. 
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