
SOVIET PHYSICS JETP VOLUME 29, NUMBER 4 OCTOBER, 1969 

EQUATION OF STATE OF AN EXCITED GAS 

V. N. MAL'NEV 

Kiev State University 

Submitted October 29, 1968 

Zh. Eksp. Teor. Fiz. 56, 1325-1337 (April, 1969) 

The virial equation of state of an excited gas consisting of atoms of a given chemical element, part of 
the atoms of which are excited to a given energy level, is derived by the quantum group expansion 
technique. The number of excited atoms may be arbitrary and hence the electron distribution over the 
atomic levels is nonequilibrium. It is assumed, however, that thermal equilibrium of translational 
motion of the gas atoms is established in the system. A formula for estimating the third virial coeffi­
cient of a resonance-excited gas is derived and is valid at room temperatures. The role of three­
particle collisions in a resonance-excited gas is discussed. The second virial coefficient of meta­
stable excited atoms of a gas, in which quadrupole-quadrupole interaction between the excited atoms 
is significant, is estimated. 

WE investigate in this paper the equation of state of a 
gas consisting of No atoms of the same chemical ele­
ment. Let N' atoms be excited to the electronic level 
£ 1

, and the remaining N = No - N' atoms be in the ground 
state with an electron energy equal to £. (We shall as­
sume henceforth that the number of excited atoms N' is 
specified arbitrarily.) 

The question of applying equilibrium statistics to such 
a system was discussed in [11 • It was shown there that at 
fixed numbers of atoms N and N', whose ratio has noth­
ing in common with equilibrium statistics, it is possible 
to calculate for not too rarefied gases the partition func­
tion with respect to the translational degrees of free­
dom. The point is that the time of establishment of 
equilibrium with respect to the translational motion is 
much shorter than the time required to change the elec­
tron energy. Therefore, equilibrium over the transla­
tional degrees of freedom can be established while the 
distribution of the electrons over the atomic levels is 
not in equilibrium. This equilibrium may even be sta­
tionary in time, if the numbers N and N' are kept con­
stant by external means. An example of such an action 
may be the pumping light in a gas laser, which maintains 
a definite number of molecules at a specified energy 
level. 

If dipole transitions are allowed between the states 
E and E' then a resonant dipole-dipole interaction 
(henceforth abbreviated D-D) is produced between the 
atom in the ground state and the atom in the excited 
state. As is well known, the energy of this interaction 
differs from zero in the first perturbation-theory ap­
proximation, and is inversely proportional to r 3 (r-dis­
tance between the atoms). 

It turns out that the contribution of the resonant D-D 
interaction between the differently excited atoms to the 
thermodynamic functions greatly exceeds the corre­
sponding contribution from the usual Van der Waals 
interaction. In particular, it leads to an anomalously 
large second virial coefficient. There are therefore 
large deviations from ideal behavior in the system under 
consideration even at relatively small contents of the 
excited atoms [11 • These results were obtained neglect-
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ing the interaction between equally-excited atoms. 
We note that allowance for the latter may be of cer­

tain interest. Cases are possible when this interaction 
is decisive. Indeed, let the ground state E be an S state, 
and let the state £ 1 have nonzero orbital and total angu­
lar momenta. Assume further that the dipole transitions 
from the state E' to the state E are forbidden. In this 
case the energy of interaction between atoms in the 
ground state as well as between differently-excited 
atoms, differs from zero only in the second perturba­
tion-theory approximation, whereas the quadrupole­
quadrupole (henceforth Q-Q) interaction of the excited 
atoms differs from zero already in the first perturba­
tion-theory approximation. This interaction can be 
either attractive or repulsive, depending on the set of 
"molecular quantum" numbers characterizing the pair 
of colliding atoms, and decreases with distance like 
1/r5 [21 • London[31 was the first to investigate Q-Q 
interactions. Subsequently Knipp[41 calculated the en­
ergy of the Q-Q interaction of a whole series of pairs of 
atoms, the ground state of which is not an S state. It 
turns out that the energy of the Q- Q interaction of the 
excited atoms is much larger than the dispersion en­
ergy, i.e., than the Vander Waals energy[SJ, and conse­
quently, at sufficient concentrations of excited metasta­
ble atoms, it can greatly influence the thermodynamic 
functions of the system. 

It is noted in the literature that the Q-Q interaction, 
like the resonant D- D interaction, makes no contribution 
to the thermodynamic functions of the gas when aver­
aged over all the possible states of their system (at 
specified states of the atoms), including all the possible 
orientations of the angular momenta of the atom. This 
statement is valid at high temperatures, when the corre­
lation of the virtual multipoles can be neglected. If the 
energy of the Q-Q interaction is of the order of and lar­
ger than kT, then, like the resonant D-D interaction, the 
Q-Q interaction will give a nonzero contribution to the 
thermodynamic functions. 

By virtue of the foregoing, it is advisable to obtain 
an equation of state that takes into account the interac­
tion between equally excited atoms. 
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1. VIRIAL EQUATION OF STATE OF AN EXCITED GAS 

The partition function of the gas under consideration, 
at fixed numbers of atoms N and N', can be represented 
in the form [lJ 

8 

( 
]If )"No/2 1 

Zo = 2nll"j3 ; B == kT ' (1.1) 

H is the energy operator of the entire gas; Zo is the re­
sult of calculating the trace over the translational mo­
tion, which we assume to be quasiclassical (the system 
is in thermodynamic equilibrium with respect to the 
translational motion); M is the mass of the atom; Es(R) 
is the energy of the electron motion of all the atoms of 
the gas, calculated in the adiabatic approximation (the 
fast subsystem is the electron system), R( ... Rj ... ) is the 
set of coordinates of the centers of gravity of the atoms 
of the entire gas, Rj is the three-dimensional vector of 

the center of gravity of the j -th atom; s is the aggregate 
of the quantum numbers of the electron motion, corre­
sponding to the states of the system with fixed numbers 
N and N' (we recall that there is no thermal equilibrium 
with respect to the electronic degrees of freedom-the 
number of atoms with energies t:' is set arbitrarily). 

It will be convenient to put Es(R) =Eo+ Ws(R), where 
Eo= t:N + t:'N' is the energy of the non-interacting 
atoms, and Ws(R) is the energy of their interaction. It 
is obvious that Ws(R)- 0 as IRi- Rj I- oo for all pairs 
of atoms simultaneously. 

To obtain virial expansions of the thermodynamic 
functions of the excited gas, we shall use a device pro­
posed by Kahn and Uhlenbeck[6 J known as the "method 
of group quantum expansions" (henceforth GQE). The 
difference between the method employed below to find 
the equation of state and the traditional GQE method 
(see, for example[ 7J) lies in the fact that we assume 
Ws(R) to be known, for example, from perturbation 
theory. 

We apply the GQE method to the representation 
:B exp(- {3W sR) in the form of a combination of group 
s 
functions. We denote by szz' the aggregate of quantum 
numbers of the group of particles that have come close 
together, in which l atoms have an electron energy t:, 
and l' atoms have an electron energy t:' (l' is the num­
ber of excited atoms or the number of excitations); 
Wzz' (1, ... , l + l') is the interaction energy of a group of 
l + l' atoms, on which l' excitations are localized (one 
excitation per particle); 1, 2, ... l + l' denote in abbrevi­
ated form the coordinates of the centers of gravity of 
the considered group of atoms. 

To determine the sequence of the group functions 
uzz' (1, 2, ... , l + l'), we shall follow[ 7J. We introduce 
the symbol 

or 

For one isolated particle we have 

h8sw(1) = _h 1 = g = Uw(1) 

(1.2) 

depending on the electron energy possessed by the atom, 
g and g' are the multiplicities of the degeneracy of the 
levels of t: and t:', respectively. 

Let us determine the two-particle group functions. 
For a pair of particles the following cases are possible: 

a) both atoms have electron energies t:, and then 

h 8,.,( 1, 2) = u10( 1) Uto(2) + Uzo( 1, 2), 

whence we get with allowance for (1.2) 

u20(1,2)= _h [8,,.(1,2)-1]; (1.3) 

b) both atoms have an electron energy t:': 

~8,.,(1, 2) = uo1(1) Uot (2) + u02 (1, 2), 

whence 

Uo2(1;2)= ~(0,.,(1,2)-1]; (1.4) 
·~02 

c) one of the particles has an electron energy t: and 
the other E': 

:h 8,,(1,2)= Uto(1)Uot(2)+ Uot(1)Uto(2)+ Ufl(1,2). (1.5) 

'" 
The presence of the first two terms in (1.5) is connected 
with the fact that when IR1- R2l - oo the excitation is 
localized on one of the particles. From (1.5) with allow­
ance for (1.2) we obtain 

u,(1,2)= ~ '[0,,(1,2)-1]. (1.6) 

'" 
It is obvious that when IR1- R2l - oo we have U2o, Uo2, uu 
-o. 

The determination of the group functions of brought 
together equally excited particles does not differ in any 
way from the corresponding method of [7 J • In the deter­
mination of the group functions of brought-together 
differently-excited particles, it must be taken into ac­
count that the excitations migrate in exciton fashion over 
the atoms of the group, and therefore it is impossible to 
point out the particular atoms from the group that are 
excited. For example, for a group of three brought­
together particles, of which one is excited, we get 

+ uoi(1)u2o(2,3)]+ U2t(1,2,3), (1.7) 

with summation over the cyclic permutations of the 
arguments of the functions uzz' in the right side of (1. 7). 
From (1.7), with allowance for (1.2), (1.3), and (1.6), we 
obtain 

3 

U21(1, 2, 3) = 2: (0,,(1, 2, 3)-1)- g :h h {8,,(i, j) -1) 
i>i=1 sn 

' - g' ~ 2: [0,,,(i,i)-1] (1.7a) 

and analogously for a group of three particles with two 
excitations 
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-g~ ~[0,,(i,j)-1]. (1.7b) 
j>i=i So2 

If the foregoing reasoning is continued and the number 
of particles and excitations in the group is gradually 
increased, we obtain for a system of No particles with 
N' excitations finally, 

~ exp{- ~W.,(R)}= ~ ~ [1110( )uw( ) ... ][uo,( )uoi( ) ... ] 

X[Uzo(, )nzo(, ) ... ](a11(, )1111(, ) ... ] .•. [nw(, ... ) ... ] .... (1.8) 

We incidentally determine thereby all the group func­
tions uzz' (1, 2, ... , l +1'). Here mzz' is zero or a posi­
tive integer, and the choice of the numbers {mzl'} should 
satisfy the conditions 

N N' N N' 

~ ~ lmw=N, ~ ~ l'mw=N'. (1.8a) 
l=i l'=O l=O 1'=1 

~ in (1.8) is the sum over all different methods of fill­
p 
ing the empty places in the arguments of the functions 
uzz~ (, ... )by the coordinates R1, R2 , ... , RN. 

We introduce the group integrals 0 

bw = (l + l') ~ g'gll'V ~ d3R1 .. . d3Rzw uw ( 1, ... , l + l'), (1.9) 

where V is the volume in which the gas is situated. Sub­
stituting (1.8) in (1.1) and taking into account (1.9), 
(1.8a) and the symmetry of uzz' against permutations of 
the arguments, we sum over p, after first interchanging 
~ and J dR, and after cancelling out N0 ! (which is equiv­
p 
alent to taking into account the identity of the particles) 
we obtain in analogy with r7 J 

N N' 

Z = ZogN g'N' e-~E, ~ IT IT _!-(Vbw)mu,, 
{mu,} l l' mw! 

(1.10) 

We now proceed to calculate formula (1.10) under the 
conditions (1.8a). A similar problem was solved by 
Born and Fuchs to determine the virial equation of the 
state of a single-component unexcited gas raJ. We intro­
duce the generating function 

r; N' 

f. (z, z') = exp { ~ ~' Vbu, zl z'l'}. 
l l' 

(1.11) 

where z and Z 1 are complex variables; l and 11 do not 
vanish simultaneously. The coefficient zNz'N1 in the 
expansion of A.(z, z') in powers of z and z' coincides 
with 

N N• 

QNN' = ~ IT n --;-(Vbll')"'u•. 
{mzp} I l' mil'· 

According to the Cauchy theorem for functions of com­
plex variables we have 

Q ,---1-,\:_ dz',\:_ dz A.(z,z') 
NN -· (2rri) 2 'j' 'j' zN+! z'N'+1 • 

(1.12) 

The integration contours in (1.12) should encircle the 
points z = 0 and z' = 0 in the corresponding complex 
planes, and can be arbitrary in all other respects. We 
shall calculate the integral (1.12) by the saddle-point 
method for two variables. The saddle-points are deter­
mined from the solution of the system of equations 

0~f(z,z1)=0, !,t(z,z1 )=0, (1.13) 

where 

f(z, z') =In f.(z, Z1 ) - (N + 1) In z- (N' + 1) In z 1• 

We introduce the particle densities n = N/V and 
n1 = N1 /V. Recognizing that N, N' >> 1, we transform 
(1.13) into 

N N' N N 

~ ,2} lbwz1z'l' = n; ~ ~ l1 bwz1z'1' = n 1 • (1.13a) 
l=i l'=O l=O l'=1 

After integrating (1.12) we get 
gNgiN' __ _ 

Z ~ Z0 e-~E·-2-~ exp{/(I;M)}/1~(1;;1;/), 
n i 

(1.14) 

~ i and ~ i are the saddle points, which make a com­
parable contribution to the partition function (1.14), 

, fJ2! o'f o'f 
~ (£;, s; ) = 8V oS,/2 - oS,; o£/ 

For the ca·se of small densities n and n 1 , the system 
(1.13a) has a unique real solution z = ~. Z 1 = (. Expres­
sions for ~ and ( can be obtained in the form of series 
in powers of the densities n and n 1

• 

We obtain the equation of state by eliminating ~ and 
~ 1 from 

( olnZ) 
p = kT -- = kT ~ b1,£'£''' 

oV 1· "' 

(1.15) 

with the aid of the system (1.13a). Relation (1.15) is ob­
tained from (1.14) by neglecting ln A., which is permiss­
ible, since the argument of the exponential in (1.14) is 
f( ~, ~ ') ~ NN1 , and A. ~ (NN')2 • Thus, formula (1.15) 
together with the solutions of the system (1.13) makes it 
possible to obtain an equation of state in the form of a 
series in powers of the densities n and n', and the coeffi­
cients of the series are expressed in terms of the group 
integrals (1.9). 

Accurate to terms of third order in the density, the 
equation of state is 

p = kT[n + n'- n'b,0 - nn'b 11 - n'2boz + n'(4b2o2 ·- 2bco) 

+ n2n'(bll2 + 4bzob 11 - 2b,,) + nn'2 (b1: 2 + 4bozb11 -- Zb12) 
+ n13 (4boz2 - 2boa2 ) + ... ]. (1.16) 

We note that when n' = 0 Eq. (1.16) goes over into the 
vi rial equation of state of a real gas, in which the virial 
coefficients are expressed in terms of the group integ­
rals rs, 7J. The coefficient of nn1 coincides with the ex­
pression obtained inlll by another method. 

Let us proceed to discuss the equation of state in 
limiting cases of a resonantly excited gas and a gas of 
metastable excited atoms. 

2. RESONANTLY EXCITED GAS 

Assume that optical dipole transitions are allowed 
between the ground state of the atom ~:: and the excited 
state 1:: 1 ; then, as already indicated, the main contribu­
tion to the equation of state is made by the resonant 
D-D interaction between differently excited atoms. 
Neglecting the interaction of equally excited atoms, we 
obtain on the basis of (1.16) an equation of state with 
allowance for three-particle interactions: 

p = kT[n + n'- bunn' + (b112 - 2b,,)n2n' + (b112 - 2b,)nn'2 ]. (2.1) 
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To calculate the third virial coefficient it is suffi­
cient to find the group integrals b21 and b12, which des­
cribe the group of three atoms with one and two excita­
tions respectively, since the group integral bu was con­
sidered in [1J. The group integrals b21 and b12 can be 
obtained from formulas (1.7a), (1.7b), and (1.9): 

b21 = --1- ~ d3R 1d3R2d3R3 { ~ [~,,. (1, 2, 3)- 1] 
3!Vg2g' ,, 

- g ~ ~ [0,, (i, j)- 1] }. (2.2) 
j>i=1 sn 

b12 = --1-- I d'R1d3R,d3R3 { "5', [~,,(1, 2, 3)-1] 
3!Vgg'2 J ~ 

'" 
- g'. ~ ~~~.,.(i,j)-1]}. (2.2a) 

:J>t=i S11 

As seen from (2.1) and (2.2), the first stage in the 
calculation of b21 is to find the energy of interaction of 
the group of three atoms with one excitation, W s 21 . A 
similar problem of calculating the interaction energy 
of n identical atoms, on which one excitation is local­
ized, was considered by Frenkel' [9 J in an attempt to 
determine the influence of resonant D-D interaction on 
the shape of a spectral line. The same process was dis­
cussed by Weisskopf[lOJ. As a result certain general 
properties of the roots of the secular perturbation­
theory equation were obtained, from which it is neces­
sary to determine the interaction energy of a group of 
n atoms, on which one excitation is localized (see also 
the review[ 11 J ). In the calculation of W s 21 it is neces­
sary to take into account the degeneracy connected with 
the exchange of excitations between the atoms, and the 
degeneracy with respect to the projections of the orbital 
angular momentum. The latter complicates the problem 
to a considerable degree. 

The calculation of Ws21 for a gas of resonantly-exci­
ted atoms situated in a strong magnetic field was per­
formed by Vdovin[ 12 J. If the magnetic field is so strong 
that the energy differences of the Zeeman sublevels 
greatly exceed the splitting due to the resonant D-D 
interaction, then the calculation of the interaction en­
ergy of two unexcited and one excited atom is greatly 
simplified. The point is that in this case the degeneracy 
with respect to the projections of the orbital angular 
momenta of the atoms is lifted, and all that remains is 
the degeneracy connected with the exchange of excita­
tions between the atoms. The group integral b21 for such 
a gas was first considered in [l2J. We undertake below 
an attempt to take into account the degeneracy in the 
projections of the orbital angular momentum in the cal­
culation of b21· 

We now proceed to determine Ws21 , Ws 12 , and Ws 11• 

We consider first Ws21 • We carry out the calculation 
by the perturbation-theory method for a concrete case. 
Assume that an atom with electron energy E is in the 
ground state 1S0 and is described by a wave function 'flo· 
The excited atom with electron energy t:' is in the state 
1P 1 and is described by three wave functions 1/J 1, 1/J o, and 
1jJ _1, which are numbered in accordance with the values 
of the magnetic quantum number. We neglect the fine 
structure, and then we get in our case g = 1, and g' = 3. 
We choose the coordinate axes in the following manner: 
the z axis is perpendicular to the plane in which the 
group of three atoms is located, and the arrangement of 

J 

FIG. I. Coordinate system. The num­
bered points denote the positions of the 
atoms. 

the x and y axes is shown in Fig. 1. In the zeroth per­
turbation-theory approximation, the system of three 
atoms with one excitation has an energy equal to 2 E 

+ t:'. In our coordinate system, this energy corresponds 
to nine degenerate functions of the type 

'1'1 = t~t(ri)qJo(r,)<po(ra), 

'Yz = t!Jo(r,)qJo(r,)qJo(ra), 'l'a = 'i'-1 (r,)<po(r,)qJo(ra). (2.3) 

The remaining six functions are obtained from (2.3) by 
cyclic permutation of the arguments r1, r2, and ra, where 
q is the aggregate of the coordinates of the electrons 
of the i-th atom. These wave functions are constructed 
with allowance for the possible exchange of excitation 
between the atoms. The interaction-energy operator of 
the three atoms has in the D-D approximation the form 

3 

W= ~ [p;p;-3(p;n;;)(p;n;.i)]/R;/ (2.4) 
j>i=i 

Pi is the dipole-moment vector of the i-th atom, nij is a 
unit vector in the direction from the i-th atom to the j-th 
atom, Rij is the distance between the i-th and j-th 
atoms, with R12 + R2a + R31 = 0. We introduce P+ = Px 
+ ipy and P- = Px- ipy; we can then represent (2.4) in 

the form 

W= ~ [p,,p;,-+(p,+p;-+p,-p;+) 
i>h=1 

- : (p,+p;+e-2iO•; + p,-p;-e''e•;) ]/ R,J'. (2.5) 

Here 812 = 0, B1a = 81, and B2a = -82. The angles 81 and 
82 are shown in Fig. 1. Formula (2.5) is valid when 
0 :s e 1 :s rr/2 and 0 :s e 2 :s rr/2. We shall show later that 
contributions to the group integral b21 are made only by 
three- atom configurations in which e 1 and e 2 vary in the 
indicated ranges (see the Appendix). In the zeroth per­
turbation-theory approximation, we obtain the interac­
tion energy Ws21 by setting a ninth-order determinant 
equal to zero. We obtain this determinant by taking the 
matrix elements (2.5) on the wave functions (2.3). This 
determinant breaks up into a product of two determinants 
of third and sixth orders. After expanding these deter­
minants, we arrive at the following equations for the 
determination of W s 21 : 

W 3 -tW -2q = 0, (2.6) 

W'+aW'+bW'+cW'+dW+f=O. (2.7) 

Here 

A is the square of the modulus of the matrix element of 
the transition between the states m = ± 1, m = 0, 

b = q ( 1 + 9a) I 2, q = (A I R 12R1aR23 ) 3, a= cos 28, +cos 28, +cos 28,, 

c = 4-r2 + 9 (R236 sin2 81 + R 136 sin2 02 + R126 sin2 83 ) (q I A) 2, 
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We note that the angles {) 1 and {) 2 can be expressed in 
terms of the distances R12, R13, and Ra3• 

Equation (2.7) simplifies greatly if all three atoms 
lie on a single straight line. In this case {) 1 = {) 2 = 0 and 
(2.7) breaks up into two equations of third degree in 
Ws21. The first of them coincides with (2.6), and the 
second is given by 

W3 -4-rW + 16q = 00 (2.7a) 

For the indicated configuration, the W s can be obtained 
in analytic form 21 

( 't' )''• n- cp W3 =TV•=-2 3 cas-3-, 

( 
't ) '/, :rt + <p / T )'/, !p 

W5 =W6 =-2 3' cos-3- W7=-4 3' cos 3 

( ,; )''• n-q;· ( 't' )''• n+cp W8 =4 3 cos-3-, W9 =4 3 cos-3-·-
(2.8) 

( 3 )''• cos <r = --;- qo 

The interaction energy Ws 11 of a pair of differently­
excited atoms is obtained from (2.8) by taking the limit­
removing one of the three particles to infinity: 

(2.8a) 
w, = -2A I R;J", w. = 2A I R;;", 

where 1 :s i < j :s 3. In this case the "superfluous" 
roots W5 = W6 = W9 = 0 which result from the fact that 
the number of states of the three particles with one ex­
citation is larger than the number of states of a pair of 
particles with one excitation, make no contribution to ba1• 

We were unable to obtain W s21 in analytic form for an 
arbitrary configuration of the three atoms. Apparently 
they can be obtained only approximately by numerical 
methods. The results of such calculations of the root 
Ws, corresponding to a maximum binding energy at 
fixed R13 = R23 as a function of {) 1, reveal a relatively 
weak monotonic decrease of IW s I with increasing {) 1· 

For example, when e1 = 0 (linear chain configuration) 
we have Ws = -2.96 A/R133kT. When e1 = 1T/3 (equilateral 
configuration triangle) we have Ws = -2.5 A/R133kT. The 
slight deviation from the configuration of an isosceles 
triangle causes the binding energy of the three particles 
to go over rapidly into the binding energy of the pair of 
nearest particles. Thus, the greatest binding energy is 
possessed by a linear chain of three atoms, thus con­
firming the corresponding assumption[laJ. 

From the form of Eqs. (2.6) and (2.7) it follows that 
the resonant D-D interaction is non-additive, and also 
that 

9 

~ W.(1,2,3)=0 
s=t 

(s is the number of the root of the secular equation). 
The latter conclusions agree with the results of[9 J and 
remain in force for a gas of excited atoms in a magnetic 
field [ll!J. 

We now consider a group of three particles, of which 
two particles have energy E' and one particle has the 

electron energy f.. In the zeroth approximation, the sys­
tem of three atoms has an energy f. + 2E', and this en­
ergy corresponds to 27 wave functions, which are con­
structed in analogy with the functions (2.3). It can be 
shown that Ws12 are determined from (2.6) and (2.7), but 
the multiplicity of each root must be tripled. Taking the 
foregoing into account, and also the fact that g = 1 and 
g' = 3, we arrive at 

(2.9) 

It is obvious that (2.9) is valid only if the interaction 
between equally excited atoms is neglected. 

Equations (2.6) and (2.7) were obtained with the aid 
of perturbation theory. They cease to be valid at inter­
atomic distances of the order of double the atomic radius 
r 0 or less. As in [lJ , we shall simulate the interaction 
potential of the atoms Ws21 at distances smaller than ro 
in the following manner: Ws21 = oo if at least one of the 
distances Rij < ro; when Rij > ro for all pairs of atoms 
simultaneously, the Ws21 can be obtained from (2.6) and 
(2.7a). Analogous arguments hold for the potential Ws 11• 

We proceed now to consider the group integral bu of 
two unexcited atoms and one excited atom. Since Ws21 
cannot be calculated analytically for an arbitrary con­
figuration of a group of three atoms, we can only ap­
proximately estimate bal· It turns out that at room tem­
peratures, for typical A and for ro f'::l 2 A, we have 
a = A/r~kT ~ 10[11 . This enables us to obtain for b21 an 
approximate formula for the case when a ~ 1 (see the 
Appendix): 

(2.10) 

Comparison of (2.10) with the corresponding formula 
ofu2 shows that in the argument of the exponential the 
factor preceding A is 2-12 in lieu of 3, and the factor 
preceding the exponent has a different degree of tem­
perature dependence. 

We introduce the content of the excited gas x = N' /No 
and, taking (2.9) into account, we rewrite the virial 
equation of state in the form 

[ B(T) C(1)] 
p =N0kT 1 +v-+--vz , (2.11) 

B(T) = -x(1- x)Nob11 is the second virial coefficient, 
C(T) = x(1 - x)(N0b11) 2K is the third virial coefficient, and 

2b•t ( A )''• { A } 
x = 1 - bl!• ~ 1 - 43 ro3kT exp - roakT 0 

In the derivation of K we used the expression for b11 when 
a~ 1[11 : 

n (r03kT) { 2A } bu ~ -ro3 -- exp -- o 

9 A r03kT 

It is easy to see that when a ~ 1 the following inequality 
holds 

(2.12) 

and causes the third virial coefficient to be determined 
principally by the group integral of the pair collisions. 
The inequality (2.12) is valid also for an excited gas in a 
magnetic field[121 . It is indicated in the same reference 
that a similar situation holds also for collisions of lar­
ger multiplicity (4 and above). This makes it possible to 
obtain the equation of state of a resonantly-excited gas 
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in the form 

p = kT{n + n' + [l' (1 +bun+ bun')2 - 4bu2nn' -1] I bu} I 2, (2.13) 

which is valid, in Vdovin' s opinion [l2 1 , at densities when 
bun ;;;,: 1 and bun' ;;;,: 1, while the contribution of the 
multiparticle collisions can still be neglected. On the 
basis of (2.13), Vdovin states that the system under con­
sideration is stable against decay into phases for all 
contents of the excited gas. It is possible that the equa­
tion of state (2.13) holds for a magnetized gas. In the 
absence of a field, an analysis of collisions with multi­
plicity larger than three is an exceedingly complicated 
problem and is the subject of an independent investiga­
tion. 

We must, however, agree with Vdovin that the conclu­
sions ofu1 regarding the coexistence of non-mixing 
phases in a resonantly-excited gas, obtained on the basis 
of the virial expansions in the region where the latter 
are at the limit, are not sufficiently convincing. They 
should be regarded from the point of view of extrapola­
tion of the theory beyond the framework of its applica­
bility. 

3. GAS OF METASTABLE EXCITED ATOMS 

Assume that dipole transitions are forbidden between 
the ground state t: and the excited state E', and assume 
further that the state E is an S state, and the state t:' has 
nonzero orbital and total angular momenta. In this case 
the Q-Q interaction between the excited atoms differs 
from zero in the first perturbation-theory approxima­
tion. We shall henceforth consider only the interaction 
between the excited atoms, and then, on the basis of 
(1.16), the equation of state of such a gas with allowance 
for only pair interactions assumes the form 

p = kT(n + n'- bo~'2), (3.1) 

b02 = 2 1g' ~ ) [e-~W,(r) -1]d3r, 
g ' 

Ws = As/r5 is the energy of the Q-Q interaction of the 
excited atoms, calculated in first approximation of per­
turbation theory (the perturbation is the operator of the 
Q-Q interaction of the pair of excited atoms); sis a 
quantum number characterizing the state of the inter­
acting atoms. The most interesting case corresponds to 
As/r~T > 1, in which the group integral can be calcula­
ted approximately: 

4nr03 "\' r05kT { A, } 
b02 ~ 15g'2 ..::..J ~ exp roskT . 

' . (3.2) 

We proceed to numerical estimates of the group 
integral b02 . According to calculations performed in [41 , 
the mean value is As/r8 r:::: 2 eV for atoms whose ground 
state is not an S state (ro can be approximately assumed 
equal to 2 A). We should expect Ws(ro) to be at least of 
the same order for excited atoms. Rough estimates of 
Ws(ro) for excited atoms at ro = 2 A lead toWs ~ 1 ev. 
At room temperatures, the ratio As/r8kT ~ 8. Retain­
ing the term with the largest argument of the exponen­
tial in (3.2), we get b02 :;::, 2.5 x 10-22 cm3. 

It is of interest to compare the group integrals bo2, 
bu, and bzo· In accordance with the data of[ 11 , b2o r:::: 3.5 
x 10-24 cm3, bur:::: 1.7 x 10-19 cm3. We see therefore that 
the corrections to the equation of state of the excited 

gas, due to Q-Q interaction between the metastable exci­
ted atoms, exceed the corrections due to the Vander 
Waals interaction. Thus, the Q-Q interaction turns out 
to be appreciable and makes an intermediate contribu­
tion to the thermodynamic functions, compared with the 
resonant D-D interaction and the ordinary Vander Waals 
interaction. 

The author is grateful to S. I. Pekar for a discussion 
of the work. 

APPENDIX 

Let us change variables in b21 (formula (2.2)). This 
is conveniently done in two stages. We first use the 
Kihara variables[131 : 

R = R12, R13 = R (x2 + y')''•, Rzs = R [ ( 1- x)' + y2]'1•, 

with R 2! R13 and R 2! Rz3. We then change over from the 
integration variables x and y to the variables u and v in 
accordance with the formulas x2 + y2 = u2 and (1 - x)2 
+ y' = v2, i.e., R13 = Ru and R23 = Rv; 0:::5 u :::5 1, 0:::5 v 
:::5 1. Mter these transformations, b21 can be written in 
the following form: 

4 ... 
b21 =....::_) R5dRS S G(R,u,v)uvdudv. (A.1) 

3 0 {D) 

Here G(R, u, v) is short hand for the integrand of (2.2) 
in terms of the variables R, u, and v, with allowance for 
the behavior of the functions Ws 21 and Wsu when R < ro, 
u < r 0/R, v < r 0/R; {D} is the region of integration with 
respect to the variables u and v, as shown in Fig. 2. 

Let us examine the contribution made to the group 
integral (A.1) by configurations in which all three atoms 
are separated from one another by distances larger than 
r 0. The contribution from the aforementioned configura­
tions is best represented in the form of two integrals. 
The first is denoted by 

4nz2ro I I 9 

11=-aS R5dRS s ~[S',(1,2,3)-B.(1,2) 
To To/R Ta/R s=l 

- S',(1, 3)- S',(2, 3)+ 2] uvdudv. (A.2) 

We have used here the previously employed notation 
for the quantities rss, and ws (1, 2, 3) should be deter­
mined from Eqs. (2.6) and (2.7), while Ws (i, j) is given 
by formulas (2.8a). We denote the second integral by Iz, 
and its integrand coincides with the integrand of I1, the 
limits of integration with respect to R being 2ro and co. 

Integration with respect to u and v should be carried out 
in the region bounded by the straight lines ro/R :::5 u :::5 1, 
r 0/R :::5 v :::5 1, u + v = 1 (Fig. 2). Thus, b21 = I1 + I2 +the 
contribution of configurations corresponding to inter­
particle distances smaller than ro. The last term takes 
into account the contribution from the "proper volume" 
of the atoms. The integrals I1 and I2 cannot be evaluated 

FIG. 2. Region of integration with res­
pect to the variables u and v. 

v 
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exactly, since there is no analytic relation for 
Ws(R, u, v). Inasmuch as A/r~kT ~ 10 » 1 in the case 
of greatest interest, the main contribution to b21 is made 
by configurations in which the atoms are brought close 
together to a distance of the order of ro, i.e., b21 >::< I1. 
Among the indicated configurations, the most significant 
ones are configurations of the linear-chain type. There­
fore the integration with respect to the variables u and 
v should be carried out in the vicinity of the point u = v 
= 1/2, and the integration with respect to R in the vicin­
ity of the point 2ro. In this region Ws(R, u, v) are given 
with high accuracy by formulas (2.18). We retain in the 
integrand of (A.2) the exponential with the largest posi­
tive argument f3Ws from (2.8). We expand the argument 
of the exponential in a series in the vicinity of u = v 
= 1/2, accurate to the linear terms, and obtain after 
integration 

4rrr02 f'' { [ 171 256r0 ]} 
b21 ~ - 3-.l (R3/128a)exp a Ri""-Ji' R2dR, 

a= 

r, 

4A cos(<p/3) 

kT-y'43 
cos(<p/3)~0,9 (u=v= 112 ). 

The argument of the exponential has a maximum at 

(A.3) 

R = 1.99 ro. In view of the presence of the factor A/r~kT 
» 1, the main contribution to (A.3) is made by the vicin­
ity of this maximum. Calculating (A.3) approximately by 
the Laplace method [l4J, we arrive at formula (2.10) of 
the main text. 
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