SOVIET PHYSICS JETP

VOLUME 29, NUMBER 4

OCTOBER, 1969

QUANTUM OSCILLATIONS OF THE POTENTIAL DIFFERENCE IN A NONUNIFORM

MAGNETIC FIELD

M. Ya. AZBEL’, N. B. BRANDT, and R. G. MINTS

Institute of Theoretical Physics, USSR Academy of Sciences; Moscow State University

Submitted October 28, 1968
Zh. Eksp. Teor. Fiz. 56, 1321—1324 (April, 1969)

An electron gas in a weakly inhomogeneous magnetic field is considered. The potential difference that
appears in this case is determined. It is shown that for a semimetal the potential difference is a

measurable quantity.

1. ELECTRON MOTION IN AN INHOMOGENEOUS
MAGNETIC FIELD

WE consider the motion of conduction electrons in a
weakly inhomogeneous magnetic field (R < 6, where
R is the radius of the electron orbit and 6 is the char-
acteristic dimension of the magnetic field). Assume
that in this case the intersections of the Fermi surface
with the plane (p-H)/H = pg =const are finite during
the course of the motion. Then, as is well known!'],
the electron motion can be represented as a finite mo-
tion around the center of the orbits, motion of the
center of the orbit along the magnetic field, and a
drift of this orbit perpendicular to the magnetic field.
The drift velocity is equal to the average velocity (over
the period of revolution around the center of the orbit)
in a plane perpendicular to the magnetic field, and
differs from zero only in an inhomogeneous magnetic
field; its order of magnitude is Vg ~ VFR/6. The
quantity S(e, pH)/H, where S(e, py) is the area of the
intersection of the surface € = const and the plane pyg
=const, is an adiabatic invariant when the electron
moves in a homogeneous magnetic field. If R/6 < 1,
then the drift shift of the center of the orbit during the
revolution period is Agr ~ R%/6 < 6, and the shift of
the center of the orbit along the magnetic field is AH
~ R K 6. Therefore the magnetic field and pg can be
regarded as slowly varying parameters of the motion.
Thus, S/H is an adiabatic invariant in a weakly in-
homogeneous magnetic field!*],

The quantization of the electron energy levels is
analogous to the quantization in a homogeneous mag-
netic field, and it depends on the coordinates as a
parameter.

2. THERMODYNAMICS OF AN ELECTRON GAS IN AN
INHOMOGENEOUS MAGNETIC FIELD

The chemical potential of the electron gas depends
on the total number of particles N, and is a functional
of the inhomogeneous magnetic field; in thermodynamic
equilibrium, it is constant along the sample. The chem-
ical potential can be represented in the form & = €,

+ 6%, where 6¢ = 65{H} is the part of the chemical
potential which depends on the distribution of the mag-
netic field, and €, is the Fermi energy. Assume, for
simplicity, that | < 6, where [ is the electron mean
free path. We subdivide the sample into regions with

dimension d, where | < d < 6. By virtue of the
foregoing assumptions, we can introduce a chemical
potential £} in each of these regions, and the mag-
netic field can be regarded as constant. The quantity
{1oc introduced in this manner is a function of the
number of particles and of the magnetic field. In ana-
logy with the foregoing, £}y, can be represented in
the form &jge = %o + 881oc, Where 881g¢ (k, H) is a
function of the number of particles and of the magnetic
field, and consequently is a function of the coordinates.

In thermodynamic equilibrium, the chemical poten-
tial is constant along the sample, leading to the equality
6¢10c(r) = 6¢{H} = const. The quantity 61pc(n, H)
may remain constant along the sample only if the
number of particles in a unit volume depends on the
coordinates. It is clear here that

a
n—n(e)=on ~ —%{5@106 (n, H)— o%].

This circumstance leads to the appearance of an un-
compensated charge density
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The uncompensated charge density produces an electric
field ¢(r), which in turn changes the particle-number
distribution by an amount
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In order to obtain a self-consistent solution of the
problem, it is necessary to include simultaneously in
consideration an inhomogeneous magnetic field and an
electric field ¢ (r), to obtain from the thermodynamic
calculation the density of the uncompensated charge
p’ =p’(¢, H), and to solve the Poisson equation for ¢,
namely Ag = -4np’(p, H).

Let us stop to discuss the solution of the last equa-
tion in greater detail. From the preceding estimates
we find that 4mp’ = A*{¢ + € 6L1oc}, Where ¢ is re-
normalized to the constant quantity 6¢(¢ — @e ™58 ),
and A% = 4re®dn/de ~ 1/a® (a ~ 1/n¥*). Then

Ag + 229 = —A2e18L loc.
In the left side of the equation, the term with A¢
~ ¢/6% is much smaller than the term A\%¢ ~ ¢/a?

since (a/6)? < 1. Therefore the equation assumes the
form A%¢ =- r%e™'6L]oc, from which we obtain, accu-
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rate to (a/6)?,
ep & —08010c ~ AQ(AQ [ o),

where @ is the cyclotron frequency of revolution in the
magnetic field. This shows that p’ =0 with accuracy
(a/6)? (see'), and the equation p’ =0 is equivalent,
with the same accuracy, to the equation®’ A¢ =-4up’.
Thus, to find out how we can use the equation p’ = 0.
We now proceed to solve the problem.

3. DETERMINATION OF THE POTENTIAL DIFFER-
ENCE IN AN INHOMOGENEOUS MAGNETIC FIELD

According to the foregoing, the electric potential
¢ (r) arising in an homogeneous magnetic field should
be determined from the electroneutrality condition
p’ =0 or n(r) =n(€,) (we neglect magnetostriction),
where

3V _ 8 o0
T8V sV ot

However, in the case of a weakly inhomogeneous
magnetic field, the calculation of any thermodynamic
quantities is much simpler. We can use the corre-
sponding result obtained for a homogeneous field. It is
necessary here to replace the chemical potential {hom
by ¢ — e@. The chemical potential can be represented
in the form ¢ =€, + 8¢{H}. Then the combination €,
- e + 6;{H} enters in all the formulas. The electric-
field potential is defined apart from an arbitrary con-
stant, in which the quantity 6¢ {H} can also be included.
Thus, to obtain a thermodynamic quantity in a weakly
inhomogeneous field it is necessary to replace in the
corresponding quantity for the homogeneous field the
chemical potential by €, — e, and to replace the
volume V by the integral over the volume.

Using this, we get

n(e) = n(eo— e, H), n(t, H) = n(t) + Ai(L, H),
[3]

where
e H dSm 1 Hil
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Sm is the extremal section of the Fermi surface and
Mpm is the magnetic moment of the m-th group of
electrons. We note that in the expression for n(¢, H)
we neglected the non-oscillating diamagnetic and para-
magnetic terms, since they are small at low tempera-
tures!®],

Since e/ K 1 (see the preceding section), we
can set in the argument of the sine function Sm (€,
- e@) equal to Sy, (€o). We then get

DA ~108cm for good metals and a ~ 107~ 107 cm for semimetals;
in fields H~10* Oe we have R ~ 1073 cm, and consequently 6> 107 cm.
Thus, (a/8)2 < 10712-108, which greatly exceeds the accuracy of further
calculations.
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n(eo — ep) + An (o, H) = n(e),

1 dSm 1 ~
— ——(HM}),

where v(e€) is the density of states.
Since only the potential difference has a physical
meaning, we obtain ultimately

dS, 1 ~ =
—— M ——— (M H) |+, — (MnH)|+}.
o S ) e (W) |1)

Let us now estimate the order of magnitude of the
result. The quantity v(e,) is determined mainly by
the electrons with the largest mass m¥,,

v (80) ~ (m;wx) *h E0‘/z his;

(MmH) is determined by the electrons with the small-
est mass (owing to the factorexp|[-n>T/h§] ) and

€

(M H) ~ E:T(.
(see™’). We have S} dSp,/d¢ ~ 1/€,. Thus

ehH >“/2

4

eA(P ~ ﬁQmin (ﬁQmin /30)",27
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It is seen from the estimates that the period of the
oscillations is determined by the electrons having the
smallest mass, and the oscillation amplitude is deter-
mined by the electrons with the largest mass.

If the field is H ~ 10* Pe, then for semimetals such
as Bi we get Ap ~ 10™—=10"° V, which is readily
measurable. For normal metals A¢ ~ 10°—10" V at
H ~ 10* Oe.

From the obtained value of the potential ¢ (r) we
can determine the uncompensated charge density p’
with the aid of the equation A@ = —4mp’. It is easily
found that p’ ~ (a/6)%(€o/1i0)Y?p, in order of magni-
tude.
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