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An electron gas in a weakly inhomogeneous magnetic field is considered. The potential difference that 
appears in this case is determined. It is shown that for a semimetal the potential difference is a 
measurable quantity. 

1. ELECTRON MOTION IN AN INHOMOGENEOUS 
MAGNETIC FIELD 

WE consider the motion of conduction electrons in a 
weakly inhomogeneous magnetic field (R << o, where 
R is the radius of the electron orbit and o is the char­
acteristic dimension of the magnetic field). Assume 
that in this case the intersections of the Fermi surface 
with the plane ( p · H)/H = PH = const are finite during 
the course of the motion. Then, as is well known(ll, 
the electron motion can be represented as a finite mo­
tion around the center of the orbits, motion of the 
center of the orbit along the magnetic field, and a 
drift of this orbit perpendicular to the magnetic field. 
The drift velocity is equal to the average velocity (over 
the period of revolution around the center of the orbit) 
in a plane perpendicular to the magnetic field, and 
differs from zero only in an inhomogeneous magnetic 
field; its order of magnitude is Vdr ~ VFR/o. The 
quantity S(E, PH)/H, where S(E, PH) is the area of the 
intersection of the surface E = const and the plane PH 
= const, is an adiabatic invariant when the electron 
moves in a homogeneous magnetic field. If R/o « 1, 
then the drift shift of the center of the orbit during the 
revolution period is t.dr ~ R2/o « o, and the shift of 
the center of the orbit along the magnetic field is t.H 
~ R « o. Therefore the magnetic field and PH can be 
regarded as slowly varying parameters of the motion. 
Thus, S/H is an adiabatic invariant in a weakly in­
homogeneous magnetic field[ll. 

The quantization of the electron energy levels is 
analogous to the quantization in a homogeneous mag­
netic field, and it depends on the coordinates as a 
parameter. 

2. THERMODYNAMICS OF AN ELECTRON GAS IN AN 
INHOMOGENEOUS MAGNETIC FIELD 

The chemical potential of the electron gas depends 
on the total number of particles N, and is a functional 
of the inhomogeneous magnetic field; in thermodynamic 
equilibrium, it is constant along the sample. The chem­
ical potential can be represented in the form !; = E 0 

+ o!;, where o!; = oi;{ H} is the part of the chemical 
potential which depends on the distribution of the mag­
netic field, and E 0 is the Fermi energy. Assume, for 
simplicity, that l << o, where l is the electron mean 
free path. We subdivide the sample into regions with 

dimension d, where l « d « o. By virtue of the 
foregoing assumptions, we can introduce a chemical 
potential 61oc in each of these regions, and the mag­
netic field can be regarded as constant. The quantity 
!; loc introduced in this manner is a function of the 
number of particles and of the magnetic field. In ana­
logy with the foregoing, !; loc can be represented in 
the form 61oc = 6o + o!;10 c, where o/;loc (K, H) is a 
function of the number of particles and of the magnetic 
field, and consequently is a function of the coordinates. 

In thermodynamic equilibrium, the chemical poten­
tial is constant along the sample, leading to the equality 
o/;loc(r) = oi;{H} = const. The quantity o/;loc(n, H) 
may remain constant along the sample only if the 
number of particles in a unit volume depends on the 
coordinates. It is clear here that 

on 
n- n(eo) = 6n ~- oe [ll~Ioc (n,H)- 6~]. 

This circumstance leads to the appearance of an un­
compensated charge density 

' on[ J p ~ e/h ll~Ioc(no,H)-6~. 

The uncompensated charge density produces an electric 
field cp( r ), which in turn changes the particle-number 
distribution by an amount 

etc. 

on 
lln ~ --e<p. 

fh 

on 
p' = -e'<p 

08 

In order to obtain a self-consistent solution of the 
problem, it is necessary to include simultaneously in 
consideration an inhomogeneous magnetic field and an 
electric field cp (r ), to obtain from the thermodynamic 
calculation the density of the uncompensated charge 
p 1 = p 1 

( cp, H), and to solve the Poisson equation for cp, 
namely t.cp =- 41fp 1 (cp, H). 

Let us stop to discuss the solution of the last equa­
tion in greater detail. From the preceding estimates 
we find that 41fp 1 = ;\ 2{cp + e-1 o/;10 c}, where cp is re­
normalized to the constant quantity o!;(cp- cpe-15/; ), 
and A 2 = 4ne 2 anjae: ~ 1/a2 (a~ 1/n613 ). Then 

In the left side of the equation, the term with t.cp 
~ cp/6 2 is much smaller than the term ;\2 cp ~ cp/a2 , 

since (a/ o )2 « 1. Therefore the equation assumes the 
form ;\ 2 cp =- ;\ 2 e-1 o/;10 c, from which we obtain, accu-
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e<p ~ -lisioc ~ liQ(IiQ/eo)'h, 

where 0 is the cyclotron frequency of revolution in the 
magnetic field. This shows that p 1 = 0 with accuracy 
(a/o)2 (see[2l), and the equation p 1 = 0 is equivalent, 
with the same accuracy, to the equation ° t::..cp = -41f p 1 • 

Thus, to find out how we can use the equation p' = 0. 
We now proceed to solve the problem. 

3. DETERMINATION OF THE POTENTIAL DIFFER­
ENCE IN AN INHOMOGENEOUS MAGNETIC FIELD 

According to the foregoing, the electric potential 
cp ( r) arising in an homogeneous magnetic field should 
be determined from the electroneutrality condition 
p 1 =0 or n(r) =n(E 0 ) (we neglect magnetostriction), 
where 

fJN li ag 
n(r)=-=---

IW 1iV o1; 

However, in the case of a weakly inhomogeneous 
magnetic field, the calculation of any thermodynamic 
quantities is much simpler. We can use the corre­
sponding result obtained for a homogeneous field. It is 
necessary here to replace the chemical potential bhom 
by 1; - e cp • The chemical potential can be represented 
in the form 1; =Eo+ oi;{H}. Then the combination Eo 
- ecp + o?;{H} enters in all the formulas. The electric­
field potential is defined apart from an arbitrary con­
stant, in which the quantity o?;{H} can also be included. 
Thus, to obtain a thermodynamic quantity in a weakly 
inhomogeneous field it is necessary to replace in the 
corresponding quantity for the homogeneous field the 
chemical potential by Eo - ecp, and to replace the 
volume V by the integral over the volume. 

Using this, we get 

n(e0 ) = n(eo- e<p, H), n (1;, H) = n(~) + .M(1;, H), 

where[3l 

. \1,. = _ 1 ( eliH )'!. ( a•Sm )-'!. Sm (iJSm r 
}'2rr rr21i3 c op,2 , H d1; ' 

oo 'l'(kl.) {kcSm rr } ( k dSm) 
)(~~sin eliH ±T+2nky cos 2mo ·~ , 

1fl=1 

Sm is the extremal section of the Fermi surface and 
K1Im is the magnetic moment of the m-th group of 
electrons. We note that in the expression for n(l;, H) 
we neglected the non-oscillating diamagnetic and para­
magnetic terms, since they are small at low tempera­
tures[3l. 

Since ecp /110 « 1 (see the preceding section), we 
can set in the argument of the sine function Sm (Eo 
- ecp) equal to Sm(Eo). We then get 

1) A - 10-8 em for good metals and a- 10-7 - 10-6 em for semimetals; 
in fields H -104 Oe we haveR -10-3 em, and consequently 6;;> 10-2 em. 
Thus, (a/6)2 .;;;; 10-12 - 1 ()"8 , which greatly exceeds the accuracy of further 
calculations. 

n(eo- e<p) +..&'n(eo, H) = n(eo), 
1 "1;1 dSm 1 -

<p = --- LJ----(Hltlm), 
ev (eo) ,, d1; Sm 

where 11 (E) is the density of states. 
Since only the potential difference has a physical 

meaning, we obtain ultimately 

1 ""' dSm 1 - -
e t1<p = - -- ..:...1 - .. - -,-{ (ltl mH) I,,- (MmH) I,}· 

v(eo) 111 a~ 8m 

Let us now estimate the order of magnitude of the 
result. The quantity 11( E 0 ) is determined mainly by 
the electrons with the largest mass mfu.ax 

'II (eo)~ (m,:ax)'lz eo'lz fi-3; 

(MmH) is determined by the electrons with the small­
est mass(owing tothefactorexp[-1f~/110]) and 

- eo ( eliH )'r, 
(MmH) ~ fi:"l . -c-

(see(3] ). We have ~ d8m/d1; ~ 1/Eo. Thus 

It is seen from the estimates that the period of the 
oscillations is determined by the electrons having the 
smallest mass, and the oscillation amplitude is deter­
mined by the electrons with the largest mass. 

If the field is H ~ 104 Pe, then for semimetals such 
as Bi we get t::..cp ~ 10-4-10-5 V, which is readily 
measurable. For normal metals !::.. cp ~ 10-6-10-7 V at 
H ~ 104 Oe. 

From the obtained value of the potential cp ( r) we 
can determine the uncompensated charge density p' 
with the aid of the equation l:!..cp = -41fp 1 • It is easily 
found that p 1 ~ ( a/ o )2 ( E 0 /110 ?'2 p o in order of magni­
tude . 
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