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The dynamic properties of the parameter !::. for superconducting alloys are investigated in the 
vicinity of the transition temperature Tc. It is shown that the transition to the adiabatic pattern 
occurs only at anomalously low frequencies. The corresponding characteristic frequency no for 
a bulk superconductor is of the order of !::. 3/T~, and for small-size superconductors it depends on 
inelastic processes (electron-electron and electron-phonon interactions). The expression for the 
current density goes over to the static formula for frequencies w < n1 ~ !::. 2/Tc. The dependence 
of !::. on the amplitude of the applied alternating field is nonunique at the superconductor boundary 
for intermediate frequencies no < w < n1. This corresponds to instability of the regime in a 
certain amplitude range. 

IN[1 J the authors set up a general scheme which made 
it possible to investigate the properties of supercon­
ductors in strong, nonstationary electromagnetic fields. 
In the case of superconductors with a large concentra­
tion of paramagnetic impurities we obtained closed 
equations which were a natural generalization of the 
scheme of the Ginzburg- Landau theory. [21 In the same 
paper[ 1J we noted that the problem of the properties of 
superconductors in a strong variable field is amenable 
to a general formulation above all in the vicinity of the 
critical temperature. In this region one can separate 
the Joule losses from the basic effects connected with 
the action of the magnetic field on the "superconduct­
ing" electrons. The condition that the temperature 
change due to Joule heating during a period be small 
compared to the chosen scale of temperature near T c 
isu 

(HI Hc) 2 ~ Tel (Tc- T). 

It is hence seen that alternating fields comparable with 
the critical fields are in fact admissible in this tem­
perature range. Another important point is connected 
with the necessity of conducting away the Joule heat in 
an actual experimental situation; this requires ade­
quate heat conduction. The vicinity of T c is in this 
respect also the most convenient region. 

Below we shall investigate on the basis of the 
microscopic theory of Bardeen, Cooper, and 
Schrieffer [3 J super conducting alloys (with the usual 
impurities) in an alternating field and we shall show 
that even close to T c and down to very low frequencies 
one cannot, generally speaking, write simple differen­
tial equations including as a special case the static 
Ginzburg- Landau scheme. Nevertheless, for a large 
number of phenomena one can reduce the problem to 
some simple scheme containing time-averaged values 
of the energy gap and of the magnetic fields. 

1. A SMALL PARTICLE WITH MIRROR WALLS 

As an example which will subsequently greatly facil-

llcompare with [I], Eq. (1 ), which contains a typographical error. 

698 

itate the understanding of the general situation we 
shall consider the problem of a small particle of pure 
superconductor with mirror boundary conditions. The 
properties of such particles in a static magnetic field 
have been calculated by LarkinY1 The convenience of 
the model consists in the fact that in this case the one­
electron functions can be classified by the projection 
of the orbital angular momentum on the magnetic field 
direction, as a result of which the equations for the 
Green's functions have exact solutions. Going over 
from Fourier components in Eq. (5) of[ll to the time 
representation, we obtain 

. I ' T 
Li(t)= 1g2 ~ {) dt2 (F;A(t2,t)-F;R(t,t2 )] -----

;," -oo sh nT (t- t2) 

+ F•R(t, t2)F•+A(t1, t)) (Li(tt)- Ll (t2) )+ (G.-R(t, t2 )F•A {tt, t) 

+ F0R(t, tz)G0+A(tt, t)) (!lH(tt)- fl9(tz) )] }. 

where the Green's functions satisfy the equations2> 

[ i :t- 6 + 11H(t) J G.(t, t')- Li(t)F•+(t, t') = 6(t- t'), 

[i! + 6 + 11H(t) J F0+(t, t')- A*(t)G0(t, t') = 0. 

In (1) and (2) we have chosen the vector potential 

(1) 

(2) 

A(r, t) = [H(t) x r]/2 assuming that the currents ap­
pearing in the particle are sufficiently small; the field 
H is directed along the symmetry axis of the particle 
(a sphere or cylinder). The summation sign in (1) de­
notes summation over ~ and over all momentum pro­
jections. The above choice of the vector potential al­
lows one to consider !::. to be a real quantity. 

The first term in the curly brackets of (1) repre­
sents the regular part which can near Tc be expanded 
in powers of t::./ T. Although the other, irregular part 
vanishes on first sight if !::. and H do not depend on the 
time, it contains in fact a singularity which does not 

2lThe functions F and p+ differ in their sign from those defined in [I]. 
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always allow one to carry out this limiting procedure. 
We now proceed to investigate it. 

We note that by replacing all the quantities 

G,F->-exp{ift ~ H(T)d1:}G,F ,, 
one can eliminate from Eqs. (2) the field: 

- 1 ( d ) GG(t,t')=/l-(i) idt+s F<"(l,t'), 

[ ( i ~ -!;) t, it)\~~+ :;) - ~ l F, (t, t') = o (t -- l'). (2 ') 

The second equation can be readily solved by a quasi­
classical method if the change in D. occurs during a 
time large compared with D. -1• We present the result: 

·~( ) t ( t } 
P<+11 (t, t') = ,~ t' ,-- { exp ( i ~ a+d't)- exp i ~ a_d-,;) , 

a+(t)-a-(t) 1• ,. 

The functions F and a• are obtained from (3) by the 
replacement ~ - - ~ . 

Let us go back to Eq. (1 ). Replacing all G and F 
by F and G leads to the appearance in (1) of factors 

'• exp{iJ.L~ H("c)d1:}. 
t 

(3) 

In this connection we draw attention to the fact that for 
T ~ Tc the function sinh rrT(t - t') plays the role of a 
6 function. However, whereas in the regular term the 
instant t 2 is now close to t (locality in time), the ir­
regular term remains integral. 

Further calculations in Eq. (1) with the use of 
formulas (3) and (3') are elementary. Omitting inter­
mediate steps and retaining only the leading terms in 
t::../T, we obtain the following result: 

7 (3) ... () [ I d J A(t)"" ! !:>(t)i:.() 
_ ~ fl'-' t H•(t)- ~ -(H2)d1: ---~ d(;Sd1: T > 

4n'Tc2 _00 tl't 2T 0 -oo e(t)e(1:) (4 ) 

where iJ. 2 is the average of iJ.2 which depends on the 
shape of the sample (see[41 ). This result is most 
readily grasped if one assumes that D. = D. o + D. 1 where 
!:1 0 is the equilibrium value of the gap and !:11 is its 
change under the action of a weak magnetic field. The 
equation obtained for !:11 

_ 71;(3)~o [nz(t)-) .:!__(H2)d't]- n!:>o 
1~ 61d1: = 0, (4') 

4n2Tc2 -oo d't 4T _00 

taken seriously, yields !:1 1 =0, i.e., the gap does not 
change when the field is switched on. The same result 
is also obtained from (4) for arbitrary fields. It can 
be shown (and we shall not dwell on this) that this is 
also correct for arbitrary temperature. The reason 
for this, at first sight paradoxical, result is the ab­
sence from our model of any uniform relaxation mecha­
nism. Inclusion of such a mechanism (for instance, in­
teraction with phonons) will lead to the circumstance 

that terms integral in time in (4') will have to be 
written with account of the uniform relaxation time 
To: 

1 r 
~ !:>td't--+ ~ ,i1e-(l-t)/to d't. 

As a result of such a replacement Eqs. (4') and (4) 
become comprehensible. 

The problem of the uniform relaxation of the gap 
was investigated in part in the work of Woo and 
Abrahams Y1 It is not essential for us to develop here 
the microscopic theory with allowance for scattering 
effects. This could only be done with certain model as­
sumptions. The only thing of importance for us is the 
fact that in metals the quantity 7 01 is extremely small: 
7 01 ~ T~/®g for electron-phonon interaction and 7 01 

~ T~/EF for electron-electron interactions. It can be 
shown that with account of the time relaxation one ob­
tains instead of (4) for the corrections to D. the follow­
ing expression which we write in Fourier components: 

_ [ 7~(3)!:.~-l-- rr6.o roo l~•"' 
4rr.2Tc2 2T roo+ i/To ' ' 

+ fl•Aon(3) (H")cu, (1 __ ro_o __ ) = 0. (5) 
4n2Tc2 roo+ i/-to 

It is hence seen that the transition to the static case 
takes place only for very low frequencies W 0To << t::../T, 
a fact which is connected with the anomalously large 
coefficient in the irregular term of (5) preceding D. 1• 

As we shall see below, nonuniform relaxation takes 
place considerably more rapidly. Therefore, in de­
scribing nonstationary properties of bulk samples the 
above-mentioned scattering processes need not be 
taken into account. 

2. THE CHANGE OF D. FOR SUPER CONDUCTING 
ALLOYS IN AN EXTERNAL FIELD 

Let us go over to the case of superconducting alloys 
near Tc and calculate the change of D. under the influ­
ence of a weak magnetic field. The formulas obtained 
make it also possible to draw rather general conclu­
sions for the case of strong fields. For simplicity, we 
shall restrict ourselves to the situation in which all 
the quantities depend only on a single coordinate z. 
For an alloy with a given impurity distribution we 
choose a complete set of one-electron functions { 1/in} 
and expand the Green's functions in 1/Jn. Let ~n denote 
the energy of the n-th state counted from the Fermi 
level. w1 and w2 will denote the frequencies of the al­
ternating field; w0 = w1 + w2 is then the frequency 
corresponding to the Fourier component of !:11. On the 
Matsubara frequency axis we obtain 

ro m,n 

where 6 ( r - r' lnm is the matrix element of the 6 
function, and 

F'''=~o2 +(ro--~~-roo+sm) (~ w)mn 
mn (w'-En")((ro-wo) 2 -Hm') i,' 

((I) - ~J 1 + Gh) ( w - W o + Sm) + (w- Sn) (2ro - Wt - Wo + Sk + ~m) 
(w 2 -En2 ) ((ro- wt)'-Eh') ((;- roo) 2 -Em2) --

X (_!-)2 (PAw,) nk (pA",) hm· (6 1 ) 
rnc 
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Here Aw are the components of the vector potential 
and En = ( ~~ + ~~ )I12• The matrix elements are cai­
culated in the Appendix. 

Making use of a method developed in[Il, we continue 
Eq. (6) to the real frequency axis. Dividing the ob­
tained result into a regular part which simplifies near 
Tc and into an irregular part, we obtain after some 
calculations the following equation for determining 
~I,w 0 : 

- n(3)i.\~i\ j:n; r A (I) 

4 zr 2 I. "'• +2~- J dwA.,, "'• = 0, 
:n; c mpo_,., (7) 

where the irregular part is in turn obtained from the 
equation 

mpo{[ ww"+.1o"J( w w") 
=2~ 1 +~R£w"A tb2T-thiT L\1,w, 

ie'lv 1 dw1 [ ww"+w'w"+ww'+.1o"] 
- --0 1\o ~ 2 Aw, Aw,-w, 1 + • R A 

n ~"' Sw" 

X f ___!ll ( th ~.' - tb ~.=) + --1 - (th ~- - th .!:!_'_)]} 
\ S"' 21 21 6w•~' 2T 2T 

(8) 

Here for brevity w' = w- WI, w" =w - w0 , and ~~and 
~~ are the values of the root ( wg - ~~ )I/ 2 determined 
with the cuts (- oo, - ~ 0 ) and (~ 0, + oo) taken on ap­
proaching in the complex w plane the real axis from 
above and from below. Expressions (7) and (8) are 
symmetrical with respect to the replacement w - w0 

- w. The derivation of (7) and (8) imposes a boundary 
condition at z =0: aA(l>jaz =0 Because of this both 

A o ' 

~I and A< I> can be symmetrically continued in z and 
one can also go over to Fourier components in the z 
coordinate. It is not our purpose here to obtain the 
coordinate dependence of ~I and to calculate the cor­
rection to the field penetration depth, and we shall 
therefore restrict ourselves to a qualitative analysis 
of the obtained formulas. Estimating the contribution 
from various regions of integration to the irregular 
terms with ~I in (7), we obtain 

I dw [ 1 + ww" +M_Jth(w/2T)-th(w"/2T) 
_

00 
SwR£w"A i(!;wR+6w,.A)-lvk2/3 

~ -~(l)o J Mcb-2 (w/2T)dw 

T "• Ill l'oo 2-i\02 (ioo 0 -"foo 2 -i\02 lvk2/3w) 

The latter expression is transformed into the form 

2wo r i\o2 c.h-2 (e/2T) -- J d£-- --~_:_:_:__:_:__:_..::.::._;~-
T 0 62 +ilo2 iwo-(u(6)/uF)Dic2 ' 

where D =lv/3 and v(O = vFVt:. The numerator in 
(9) is of the form of a diffuse nucleus with an energy­
dependent coefficient of diffusion. 

(9) 

In the expression for the irregular field term the 
main contribution in integrating over the frequencies 
is due to regions I w ± ~o I ~ wi and ( Dk2 ) 2/ ~ 0 • Tak­
ing this into account, we find 

} dw[ 1 + ww"+w'w"+w.w'+_~~] th(w'/2T)-th(w"/2T) 
£wR Sw"A 6roi'(i(£roR + !;w.,A)- Dk2] 

~ ~ r -=--~d=u==------
2T -oo )'uRyu- woA[qluR + iyu- oooA- Dk2/Y2 1\o] 

(10) 

where -fU =i -.{fUffor u < 0. The second term in (8) is 
obtainectfrom (10) by the replacement WI- w2 • 

First of all, let us note that as follows from (10) the 
irregular field terms in (7) do not exceed the regular 
terms in order of magnitude. At the same time, the 
irregular terms which contain ~I have, as in (4) and 
(5), a completely different structure. We cite that part 
of (7) which contains ~I,w0 : 

[ in n(3) i\o2 :n; J 
---- <~o- -~---~ Dk2 ~~ (k) 

8Tc 4rr2Tc2 8Tc '"• 

iw.o r d M ch-2 (e/2T) 
- 2Te Jo 6 £Z+Mt;o-=--Tvm!vF)Dk"~l.co,(k). (11) 

Disregarding the logarithmically slow dependences we 
shall write the last term in (11) schematically in the 
form 

~o mo 
T iw. 0 -DkZ 

(12) 

The nonuniqueness of the limiting procedure w 0 - 0 
and k- 0 is eliminated if one takes into account the 
uniform relaxation time, as was done in the preceding 
Section. Then one should write instead of (12) 

~o mo 
T imo- Dk2 - 1/'ro (13) 

It is hence seen that the transition to an adiabatic situ­
ation for Tc- T << Tc occurs for ~I,w 0(k) for very 
low frequencies, a fact which is connected with the 
anomalously large coefficient of ~ 0/T in (13). For 
values of the Ginzburg- Landau coefficient K ~ 1 (when 
Dk2 ~ ~~/Tc) the adiabaticity criterion is the condition 

(14) 

When K differs appreciably from unity, the problem 
requires more detailed investigation. Let us first con­
sider the Pippard case ( K « 1 ). The spatial behavior 
of ~ in the Ginzburg- Landau theory is characterized 
by two scales: a) k ~ 1/0(DK2 ~ ~~~K~c) and 
b) k ~ K/ 6 (Dk2 ~ ~IT c). The second case leads to 
the adiabacity criterion (14). In case a) we obtain in­
stead of this 

1 flo2 ~ 0 mo 

Y. 2 Tr2 > Tc mo + 1'1o2/Y.. 2'Ir'' 
1 ~.· mo~Qo' ~ ---. (15) 
x4 T,." 

Although for this scale the adiabaticity is retained up 
to higher values of the frequency, the change in ~ cor­
responding to this scale is small ( ~ K ). 

In the Landau case ( K >> 1) one requires for com­
plete adiabaticity very low frequencies: 

1 ~.· 
mo~----:;;:.-r; . 

Thus for K ~ 1 [and also for K < 1 for the main 
scale b)] for Wo > U0 of (14) the variation of the gap is 
nonadiabatic. Moreover, on account of the large coef­
ficient in (13) the high-frequency component of ~I is 
small compared with the correction to the time-aver­
aged value ( wo - 0 ). We emphasize that all the 
enumerated results refer to the region in the vicinity 
of Tc when ~/T « 1. 
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3. A SMALL PARTICLE IN AN ALTERNATING FIELD 
(ALLOYS WITH l « ~o) 
In Sec. 1 we considered the case of a pure super­

conductor of small dimensions. Let us now consider 
the case of superconducting alloys. We shall neglect 
the dependence of t:.. on the coordinates which corre­
sponds formally to k =0 in all formulas of the preced­
ing Section. Let us note that if the alloy is a Pippard 
alloy then this requires the condition d « O/ K while 
the penetration depth of the field can be smaller than 
d. In the case of a type-Il superconductor the limita­
tion d « 0/ K is stronger and signifies that there are 
no vortices within the particle. In order to be able to 
make use of local spatial relations, we assume of 
course that the mean free path satisfies the condition 
l « d and l « 0. Neglecting all derivatives with re­
spect to the coordinates in (7) and (8) one can simplify 
all expressions considerably. This makes it possible 
to carry out calculations with an accuracy up to higher­
order terms in w/ t:.. 0 • Omitting the calculations, we 
present the final result: 

\
t 2e ) 2 nD L\.o r drot ----{ roo =- --J--AmAm ro 1--.. _=-----,_ 

c 8 Tc 2rt ' .--' 2(wo+ i/-r:o) 

---;-[ rot2ln SA__()__ +(ro 0 - ro 1) 2 ln-8-L\._o -]}. 
2rtllo<oo rot roo-wf. 

(16) 

Here Aw 1Aw0- w1 denotes averaging of the field over 
the volume of the sample: 

A.,,Aro,.,,=+ S d3rAm,{r)Aro,-ro,(r). 

Disregarding the terms in the square brackets on the 
right-hand side, we note that unlike in the case con­
sidered in Sec. 1, the field term does not cancel for 
WoTo >> 1. Nevertheless, the part of t:.. 1 which varies 
with time, although it differs from zero, is small com­
pared with the correction to the static part of t:... 

Let us now go over to an investigation of the nature 
of the terms quadratic in the frequency in the right­
hand side of (16). If w 0 ~ w1, then these terms are 
small. However, for the static (time-averaged) part of 
6.1 ( Wo - 0) they provide us with the same disagree­
able features as above in Sec. 1. Let us attempt first 
of all to explain the origin of these terms. In the time 
representation they have the following structure: 

e•vt A ~~ -:- e2vl ' ~ A 
- 2-ln-- ( A)2=- ll!.'"ln-d,;, 
c T w1 --<10 T -~t. w1 

This form points to their dissipative nature. In order 
to show this definitively we note that in BCS theoryC 3l 
the equation determining the gap is of the form 

mpo r A A= lgl ~ J ds-====U- 2n(e)]. 
2n2 o is• + A' 

(17) 

Let E =Eo+ OE; then in the right-hand side there ap­
pears the term 

-A) ds 2~1le~~) ds ch-2 - 8-118. (18) 
-y~z+ M oe T l'6z+ Az 2T 

The energy change oE consists of two parts OE = oE 1 
+ oE2 where OE1 is the change of the spectrum under 

the influence of a magnetic field and 0E 2 corresponds 
to "heating" 

t 

6e2 = ~ eEvd,d,;. (18') 

Here the tilde denotes averaging over the period and 
Vd is the drift velocity which depends on ~: 

. iJv (6) Vd iJv (6) 
v=eE------=0, vd=eE,;(s)~. 

ap -r:(S) ap 

From the condition T( Ov ( ~) = l we find [compare with 
(9 )] 

vd = eElv IS (s ~A). (19) 

Collecting (19) and (18) and substituting this in (18'), 
we obtain terms of just the same logarithmic structure 
as in (16). Thus for the quasiparticles in a supercon­
ductor the time between the collisions increases on 
approaching the threshold; in this connection the energy 
taken up by the electric field increases. It should be 
noted that this effect provides a small correction to the 
conductivity to which the principal contribution is due 
to electrons with an energy ~T: 

a.rr = a( 1 + ~T ln ~ ) . 

Thus we see that the terms of second order in the 
frequency in (16) are really connected with Joule heat­
ing. With heat being conducted away and sufficiently 
high heat conduction these terms are apparently small. 

4. DISCUSSION AND GENERALIZATION OF THE 
OBTAINED RESULTS 

If we now reconsider the derivation of the formulas 
cited above, we note that the majority of the results 
depends essentially on the fact that the density of 
states has a singularity at an energy equal to t:... This 
circumstance does not allow one to set up a simple 
scheme for describing nonstationary phenomena in 
superconductors. The equations will in this case have 
to be of a nonlocal nature with respect to time. 

However, at the end of Sec. 2 it was shown that in 
the region of nonadiabaticity for w 0 >> 0 0 ~ t:..~/T 2 the 
oscillating part of the gap is small compared withcthe 
static part. At the same time the change of the static 
part of the gap is only determined by the regular part 
of Eq. (5) averaged over the time, which corresponds 
to averaging of the square of the field in the Ginzburg­
Landau equations. There exist two frequency ranges: 

I. Oo~roo~Ao2 /Tc; 
(20) 

II. do2 /T.~roo~Ao. 

In the first range one can neglect the term i7Tw 0 /8 in 
Eq. (11) for the oscillating part of the gap. As regards 
the field, it is determined in this range by the London 
equations. In the second range the smallness of the 
oscillating part of t:.. is insured by the term i7Tw 0 /8 in 
conjunction with the irregular term in (11 ). The field 
distribution is obtained from Maxwell's equations 
where in the expression for the current density 

. Ne'-r:tr :n: a(iJA :rt!AI 2 ) J=aE-----IAI 2A=-- -+--A 
me 2Te c iJt 2Te 

one can neglect the term with t:.. 2, i.e., the field is de­
termined by the skin effect in the normal metal. 
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The high-frequency case [region II in (20)] coin­
cides completely with that already considered before[6 J; 
we shall therefore restrict ourselves to an investiga­
tion of the intermediate frequency range [range I in 
(20)]. Introducing the frequency scale fh ='lT~~/2Tc, 
the dimensionless time parameter t' =01t, and going 
over to dimensionless variables in accordance with [2 J, 

we obtain the equations 
1 ij2!J. -

(!J.2-1)!J.-~8z2+A2(z)!J. = 0, 

iJ2A (21) 
a;a=A+!J.2A. 

(Let us note that we always have in mind the one­
dimensional case when ~ can be considered to be a 
real quantity.) The time-averaged square of the field 
enters in the first of these equations. 

Equation (21) describes the destruction of super­
conductivity by an alternating field. 

Above we estimated the variation of I ~ I with the 
field. Generally speaking, the phase of the gap appears 
in spatial problems. The question of when one can 
write down the three-dimensional averaging of the 
equation is connected with the problem of the motion 
of a vortex in an electromagnetic field. So long as the 
vortex displacements are small, the changes of phase 
will also be small. Therefore, it seems to us that one 
can utilize the averaged Ginzburg- Landau equations at 
least in the high-frequency range II of (20 ). However, 
this question is necessary in our further investigation. 

Let us now consider the problem of the destruction 
of superconductivity by a high-frequency field h(t) 
=h1 sin wt for the frequency range I of (20). An im­
portant point here is the dependence of the field distri­
bution on ~. If one neglects in the second equation of 
(21) the time derivative of the field (i.e., the aE term 
in the current), then the equation for the gap reduces 
by the replacement h~ - hf/2 to the static equation 
investigated in detail by Ginzburg.[7 J Figure 5 in 
Ginzburg's article now depicts the dependence of the 
gap on the boundary of the semispace ~(0) on h1/f2. 
This curve has a hysteresis character which corre­
sponds in the static case to a first-order phase transi­
tion to the normal state. In our case we should in the 
equation for the current for small values of ~ take 
into account A which will lead to a transition to the 
branch where ~ 2 ~ w. For small K one can obtain in 
explicit form an equation for the hysteresis curve by 
using the matching method described by the authors [BJ 

(an assumption conceptually close to this was also 
used by Kemoklidze[ 8J): 

h12 = 2_! -!J.z(O) 'Yw 2 + !J.'(O) W(O)+ 'Yw2 + tJ.•(0)]'1•. 
x !J.(O) 

For thin films with dimensions d « 1/ K the hysteresis 
curves were obtained in the static case by Ginzburg.[7l 
Here too in the case of an alternating field there occurs 
a collapse of the regime to the branch on which ~ 2 

~ w. Thus the collapse of the regime in a strong high­
frequency field is a characteristic peculiarity of the 
intermediate frequency range I of (20 ). For very thin 
films whose thickness is comparable with the penetra­
tion depth of the field the collapse disappears. This 
corresponds to the region of the second-order phase 
transition in the static case. 

Concerning the unavoidability of collapses for type­
II sup,erconductors we merely note that in accordance 
with 7 1 the "superheating" field for K >> 1 is h1 = 1, 
i.e., for field amplitudes greater than -f2Hst there is 
no stable plane regime. 

APPENDIX 

We shall present here an assumption by means of 
which one can average over the positions of the impuri­
ties in formulas (6) and (6') in a comparatively simple 
manner. First of all we note that the expression for 
the Fourier component of ~1,w 0(k) contains products 
of the matrix elements 

summed over all quantum numbers except for the 
energies. It is precisely these quantities which under­
lie the averaging over the impurity positions. Let us 
consider for simplicity the first of these quantities 
which we shall write in the form 

Here the summation is over all quantum numbers, in­
cluding the energies ~1 and ~ 2• Using the relation 

1 ( 1 
ll(st- sm)= 2ni E1 - e -ill 

- ~m 
61 - ;,~ + i1> ) ; 

we represent f( ~n. ~m) in the form of combinations 
of four terms of the type 

(At)l2(e-lkr)zt 
~---- -­

(6m- 61) (sn - sz) 

which differ from one another in the circuiting of the 
poles. However, each of the quantities is nothing else 
but the Fourier component over the coordinates of 

(A.1) 

where n±(r, r1) is a retarded or advanced Green's 
function ~f the electrons of the normal metal in which 
~ plays the role of a frequency argument. The averag­
ing of such an expression over the impurity positions 
is readily carried out by means of the well-known dia­
gram technique (see, for exampleP1 ). The result is a 
sum of ladder diagrams. At the same time a nonzero 
contribution is only made by those expressions (A.1) 
which contain one retarded or advanced Green's func­
tion. 

The second matrix element which contains the elec­
tromagnetic field is transformed analogously and its 
calculation reduces to averaging of a product of three 
Green's functions of the normal metal over the impurity 
positions. In the ladder approximation the problem 
reduces to pairwise averaging of Green's functions. 
The calculations become particularly simple in the case 
of isotropic scattering in which case one has only to 
sum over one ladder of diagrams. The summation of 
the other two ladders makes a contribution propor­
tional to divA which plays no role in the solution of 
the plane problem considered by us, since one can 
choose a gauge with divA =0. As a result of simple 
calculations one obtains the following expression for 
~l,w0(k) which is valid for sufficiently large impurity 
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concentrations when kl << 1: 

"(wo-w)w+£is2-~o2 (A2) 
Qi(£,£•)= T LJ (w'-E12)((wo- w)'-E,') ' • 

w 

Q, (£,£,£,) = 

w (w- wo)+ w(w- w,)+(w- wo) (w -- wl)- st£2 

_ T ~ ~o--- + £,£, + £,£, + ll.o' _ 
-. w (w2-E,2)((w-w,) 2-E,')((w-w 0)2-E22) 

Here D = lv/3 is the diffusion coefficient of the elec­
trons, and lis the mean free path. After analytic con­
tinuation and integration over ~ 1, ~ 2, and ~ 3 (A.2) 
leads to formulas (7) and (8 ). We shall also note that 
since the derivation was for the Fourier components 
we have assumed that the terms linear in k vanish on 
account of averaging over the angles. Near the bound­
ary of a superconductor this becomes incorrect. As a 
result there appear the boundary conditions indicated 
in the text. 
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