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A general formula is derived for the probability WI 11 of a nonradiative transition with charge trans­
fer in a linear medium with an arbitrary dielectric ~onstant E(r, w). The formula is applied to reac­
tions of the type Fe 3 + Fe 2 + - Fe 2 + + Fe 3+ in water. If the real dispersion of water is taken into ac­
count, the energy activation of the process is found to differ by 25% from the values in other 
papers,[4 ' 5l and the dependence of WI,II on the transition energy is found to be different. The effect 
of oscillations of the ion complexes on the transition probability is investigated. 

CONSIDERABLE interest has been evinced recently 
in the mechanism of reactions with charge transfer in 
polar liquids (see the review[ 1- 41 ). Such transitions are 
characterized by very strong interaction of the ionic 
states with the medium. For solids, the theory of 
multiphonon transitions in the case of strong coupling 
with the medium was developed by Lax[sJ and by Kubo 
and Toyozawa [sJ and was arplied to reactions in liquids 
by Levich and Dogonadze[7 • However, this theory em­
ploys essentially the model of vibrational oscillators 
of a solid. For a liquid, where the absorption of energy 
is connected mainly with reorientation relaxation of 
the molecules of the medium, it is therefore necessary 
to have a theory not based on model oscillator repre­
sentations of medium. In this paper we obtain a general 
formula for the nonradiative transition probability, us­
ing only the assumption that the medium is linear, i.e., 
that Maxwell's equations hold in it. 

The developed theory is applied to well-investigated 
reactions [1-41 of the type 

Fe>+ + Fell+ -+ Fell+ + Fe"'~-. 
An essential feature of such reactions is that, besides 
the strong interaction of the ions with the nearest 
molecules of the medium, forming the so-called solvate 
complexes, an important fact (as first pointed out by 
Libby[al) is also an interaction with large region of the 
medium, a region that can be regarded as a continuous 
dielectric. Although the existing calculations[4 l of the 
complexes are not quantitative in character, they do 
show the need for taking the oscillations of the com­
plexes in such reactions into account. To the contrary, 
the influence of the dielectric medium can be taken 
into account with sufficient accuracy. The most com­
plete account of the dielectric medium was carried out 
by Marcus[ 9 l and by Levich and Dogonadze[ 7 l 1>. Follow­
ing Pekar, the polarization of the medium was sub­
divided into a fast part and a slow part that cannot 
follow the fluctuations of the field in the medium. In 
this case, the dependence of the reorganization energy 

!)This approach was used later for the analysis of electrode reactions 
[ 10 •11 ], and also for reactions in which a proton takes part [ 12 ]. 
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on the dielectric properties of the medium is contained 
in the well known Pekar factor Er ~ (1/ E (co ) - 1/ E(O )). 
However, in the presence of a continuous dielectric­
absorption spectrum the subdivision of the polarization 
into fast and slow parts is ambiguous. It follows al­
ready from the work of Dogonadze and Kuznetsov[ 13l 
that a criterion for the slowness should be a compari­
son of the frequencies with kT/ti. However, no quanti­
tative expression was obtained for the characteristics 
of the process in terms of the experimentally observed 
frequency properties of the medium. 

In this paper we express the transition probability 
(Sec. 1 ), in terms of E ( w )-the dielectric constant of 
the medium-and apply the expression to reactions in 
water, with allowance taken for its real dispersion 
(Sec. 2 ). The energy dependence of the transition (or of 
the heat of the reaction) is investigated. Finally, in 
Sec. 3 we discuss the role of the high-frequency oscil­
lations of the molecules of the complexes. 

1. TRANSITION PROBABILITY IN A MEDIUM WITH 
ARBITRARY DIELECTRIC CONSTANT 

For concreteness we derive the general formula 
with reactions of the type (1) as an example, although 
the results are directly applicable to any intramolecu­
lar transition with a redistribution of the charge in a 
polar medium. 

We assume the following model of the medium. In­
side certain spheres around the ions, we have a region 
of oriented molecules producing octahedral complexes 
of the type Fe2 + (H2 0)a. These complexes are charac­
terized by sets of vibrational coordinates. When the 
ion charges change, a change takes place in the equili­
brium positions of these oscillators, and generally 
speaking in their frequencies. The region outside these 
spheres is described as a continuous dielectric with a 
dielectric constant E ( r, w ). 

The Hamiltonian f:ri of the system in each of the 
electronic states i = I and II is written in the form 

Hi= Hci +Hdi +Ji. (1) 

Here 1I and III are the electron energies in the elec­
tronic states I and II, without allowance for the inter­
action of the charges with the dielectric medium. The 



E LE ME NT ARY ELECTRON TRANS FER REACTIONS IN POLAR LIQUIDS 689 

Hamiltonian 

~ ~1 [iJ2 -·] 11'= .-nQ· ----+(O·-Q·')' 
c 2 J iJQ·' <J J 

; J 
(2) 

describes the vibrations of the molecules of the com-
plexes. Finally, the second term is given by 

Hct'=Ho+V'=Ho+\ \r;(r) (r-r]_P(r')dvdu', 
J. lr-r'l• 

(3) 

where Ho is the Hamiltonian of the medium plus the 
electron field (without extraneous charges), yi is the 
interaction with the extraneous charges, written in a 
Coulomb gauge, Pi(r) is the density of these charges 
in the i-th electron state, and P(r) is the polarization 
operator. 

The probability of transition between two electronic 
states, in first order of perturbation theory in the in­
teraction between them, is equal to[ 6 l: 

00 

Wr,n = 1Vr,nl 2 ~ G(t)dt, (4) 

G(t) = {Sp (exp [ -~H'])}- 1 Sp {exp [(it- ~)H1 ] exp [ -iJJIIt]},(4a) 

VI II are the matrix elements of the perturbation 
ca~sing the transition, and are assumed for simplicity 
to be independent of the coordinates of the medium. 
Assuming the operators He and Hd to commute, we 
rewrite the function G( t) in the form 

G(t) = G"(t)Gd(t) cxp (--i!1Tt), !J.T = l" ---1', (5) 

and the functions Gc ( t) and Gd( t) are determined by 
formula (4a) in which the Hamiltonians f:!i are replaced 
by H~ and H~, respectively. 

The functions Qc(t) were calculated for oscillator 
Hamiltonians several times [s, 7 1. We present the cor­
responding formulas for the case when the frequencies 
nj of the oscillators remain unchanged 

G (t =ex {""' (!1Q;) 2 _:h(~~;/2kT- iQ;t)- ch(fJ..;/2kT)} 
c ) p LJ 2 sh(Q;/2kT) ' (6) 

J 

!1Q; = Q/'- Q}, 

We proceed not to derive the formulas for the function 
Gd( t), which describes a nonradiative transition with 
charge transfer in a dielectric medium: 

"'II "I 
G d(t) = (exp (- iH d t) exp (iHdt)), 1 

Hd' 

where the angle brackets denote averaging over the 
equilibrium state: 

<A>ic = [Sp exp (-~.H)l-lSp [A exp (- ~H)J. 
~I 

In the Heisenberg representation in terms of Hd, the 

function Gd(t) is rewritten in the form 
t 

Gd(t)= (1'exp{-i('!'J.Hd(t)dt}), 1 (7) 
~ Ild' 

where T is the chronological ordering parameter and 

(8) 

Here AD = DII( r) - DI( r) is the difference of the vec­
tors of the electric inductions produced by the charges 
pll( r) and pi( r ). Since the averaging is carried out 
over the equilibrium state for the first arrangement of 
the charges, we represent the polarization vector 
P(r) in the form 

P(r) = Pr(r) + bP(r), (9) 

PI(r) = ( P(r))iii is the equilibrium polarization in the 
first state, which is obtained from the solution of Max­
well's equations with p ( r) =pi( r ), and equals 

e(r,0)-1 
Pr(r)=--·-D1 (r). 

4rre (r, 0) 
(10) 

Here E ( r, 0) is the static dielectric static at the point 
r. Taking (9) and (10) into account, we rewrite f>Hd in 
the form 

!J.Hct=E- ~ tJ.D;(r)bP;(r)av, (11) 

E = ...!._ \ .@2 (r) [ 1- _ __1_ -] dv 
8n · e(r, 0) 

_ __1__ ~ [1--_-1_1 [(DH(r))2-(D'(r))2]dv. (12) 
8rr e(r, O)iJ 

For the function Gd(t) we then have 

' !J.D· (r) r , 
G d(l)=exp (-iEt) (T exp {-i ~---it'- ,l dtbP; (r, t) dv})D'· (13) 

0 

It is shown in[ 141 that in the long-wave approxima­
tion[rs,rsJ the latter mean value is equal to 

' L'iD·(r) (· , 
(Texp {-i~---irt- JdtbP;(r, t)dv})fir = e<l>UJ, (14) 

0 

. t t 

CD(t)= ~ S} dv1dv2/'J.D;(r1)/'J.LJ;(r2)} dt1 S dt2M;;(r~or2,tr- 12), (15) 
2 0 0 

where 

(16) 

Taking the Fourier transform with respect to time 

we get 

- i Soo 1 - cos rot s \ <D(I)=- dro !1D;(r')!1D;(r)M;;(r,r',ro)dvdv'.(17) 
2rr -oo ro2 

However, the correlation function Mij ( r, r', w) can be 
readily expressed in terms of the dielectric constant 
of the medium E ( r, w ). To this end we use the rela­
tionP5l 

M;;(r,r', ro) = ReM;;R(r, r', ro) 

• Cil 'If R I ) +rcthZkTim. ;; (r,r,oo, 

where Mfl ( r, r', w) is the Fourier transform of the 
retarded correlation function 

(18) 

R , ,_ {-i(bP;(I',t)bP;(r',t)-bP;(r',O)oP,(r,t))icr,t>O. 
NI,1(r,r,t 1 - O, t<O 

We relate the latter with E ( r, w) by using the tra­
ditional reasoning['51 . Assume that we produce, b~sides 
DI(r), an additional induction next(r, t) = D0(r)e1wt 
with the aid of additional p ext ( r, t) and j ext ( r, t) 
(such, however, as to yield JA(r)jext(r)dv = 0 under 
the condition div A(r) = 0). 

The perturbation acting in this case is equal to 

According to the theory of the linear response, we 
obtain for the additional polarization the value 
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(6P;(r, t)) =- eirot ~ MiiR(r, r', w) (D/(r')) dv'. (19) 

From the condition that Maxwell's equations hold for 
the mean values in the linear medium, we require 

A 1 f(r,w)-1 
(6P,(r, t)) = ---~--D1exl(r, t) (20) 

4rr e(r,w) 

Hence, comparing (18) and (19), in view of the arbi­
trariness of D0 ( r ), we obtain 

M1 ·R(r,r', w)= -~[1--1-]b(r-r'). 
' 4n e(r,w) 

Substituting (18) and (21) in (1 7) we get 

<D(t) = i I dv(C.D(r)~ 
J 8rr2 

(21) 

X r dw 1 -cos wt {Re(1--1-)- icth~Im-1-}. (22) 
-oo <u2 e(r, w) 2kT e(r,w) 

Taking (5), (13), (12), and (14) into account, we obtain 

{ (' [C.D(r)]2 ( 1 ) } G(t) = Gc(t)exp - iMt- it J --- 1--- dv + <D(t) , 
8rr e(r,O) 

where (23) 

M = LlJ +~ ~ [1--1-)[(DII(r))'-(D'(r))']dv (24) 
Sn e(r,O) 

is the transition energy with allowance for the change 
of the electromagnetic energy of the dielectric during 
the transition. 

Using the identity 

1 00 dw 
It I = - 1 - ( 1 - cos wt) 
, 3t _:wz 

and the dispersion relation for the quantity 

-1-=~~:' [ e(: ul)- e(: o) J 
we can easily transform (2 3) and (22 ) into 

G(t) = G c(t)exp {- iMt + 8:, ~ [i'.D(r)]' · 

x[fdw e"(r,w) ch(w/2kT-iwt)-ch(w/2kT)]av} (25 ) 
_:~w'le(r, w) I' sb(w/2H) ' 

where E"(r, w) =1m E(r, w). Formula (25) solves the 
problem of nonradiative transition with charge trans­
fer in a linear medium with arbitrary E ( r, w ). 

It is shown in the Appendix that for a medium con­
sisting of oscillators with frequency w0 , formula (25) 
coincides with the Kubo formula which is applicable to 
this caser 5' 6 l. Indeed, for such a medium 

s"(ro) na - . -
----- = -:-[1\(w- wo)-li(<u + wo)], 

I e ( w) 12 2luo 

where Wo = ( Wo + a)112 is precisely the frequency of the 
longitudinal oscillations that take part in the transition, 
as distinguished from the frequency w0 of the trans­
verse oscillations. Here a =41Ta 2w0 /v0 is expressed 
in terms of the volume of one oscillator v0 and the co­
efficient a of the proportionality of the dipole moment 
d of the oscillator to its vibrational coordinate q. 

2. INVESTIGATION OF WI,II WITH ALLOWANCE FOR 
THE DIELECTRIC MEDIUM ONLY. APPLICATION 
TO WATER 

In this section we investigate the dependence of the 
transition mobility on the temperature T and on the 
transition energy t.I with allowance for the interaction 
of the charges only with the dielectric medium. For 
simplicity we assume further that the medium is homo­
geneous. Then the transition probability is described 
by the formula 

00 

Wr,u= 1Vr,ul 2 ~dtexp{-iMt-F(t)}, (26a) 

B r dw e" ( w) cb( w/2kT)- ch(w/2kT- iwt) 
F(t) =- J ----'-'--'-:-:----,'-~------'-

n -oo w2 le ( w) I' sh ( w /2kT) 

B = I ~D(r))' dv 
J Sn · 

(26b) 

An important factor in the calculation of the integral in 
(26a} is the presence of the large parameter B/kT 
~ 80 >> 1 (from estimates given in[ 9 J ). To calculate 
(26) we can certainly use the saddle-point method, if 
the saddle point t 0 = -i I to I does not go outside the 
analyticity band -1/kT < 0 of the argument of the ex­
ponential in (26a}. 

Let us consider first the case of resonant reactions, 
when t.I = 0. Then the saddle point, independently of 
the form of E ( w ), is equal to -i/2kT. Indeed, 
F'( -i/2kT) = 0. In this case the transition probability 
is 
Wr,u=IVr,n!'Y~lF"( -i)]-'1'exp{-!!_~d(oJ_s"(ul) __ t.lt '" }. 

L 2kT :t_:,,''''ld<•l)l' 4kT 
(27) 

For a concrete application of (26) and (27) to reac­
tions in water, we turn to the dielectric properties of 
water, which have been thoroughly investigated for all 
frequencies, and are discussed in detail, for example, in 
the survey of Saxton r 17l. It has been shown that there are 
two broad regions of absorption at w - 1 ~ 10-11 sec and 
w -1 ~ 0.4 x 10-14 sec, called the Debye dispersion and 
the resonance absorption regions. In the first region 
E ' ( w) decreases from its static value E s = E (0) = 78 2' 

to an intermediate value Eint = 4 .9, and finally in the 
second absorption region E '( w) decreases from Wint 
= 4.9 to Wopt = 1.8. Analytic expressions for E ' ( w) 
and E ' ( w ), which describe the experiment well, are 
given in[ 14 J Combining them in one formula, we get 
for water 

Es- f.jnt Fint- Eopt r 1- iW,.T 1 

e(u>)= e +---+ 1---------
opt 1 + iwtv 2 L1- i(w + w,)'t, 

1 +iw,t, 1 +-.----, 1- t(w - w,.)t,J 

where the parameters are[14 l: TD =0.85 x 10-11 sec 
(T =300°), wr = 6.67 x 1012 sec-\ and Tr = 3.84 

(28) 

x 10-14 sec. Since TD >> Tr, we can easily obtain an 
analytic expression for E " ( w )/I E ( w) 12 = Im ( 1/ E ( w)): 

2lFurther in the calculations we use Es = 60, as in [ 7 •9 ], in order to 
take into account the influence of the electric field. 
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where 
8jnt T2 

'to=-Tn, Tt,2=-, 
fs a1,2 

eint- e opt [(Pint- e opt ) 2 Eint ]'" a1,2=-.----± ---~-- --w,."-t; , 
2e opt ~eopt e opt 

1 1 1 1 
A 0 =-----, A1 =----+ ll, A2 = -b. 

e int e, e opt Bint 

Since the expression for o is complicated, we present 
only the numerical value, o = 0.026. Substitution of 
(29) and (26) and a change to the dimensionless variable 
WTj- w 1 yields 

F(t)= _!!__ ~~~ ~ dw' ch(x;- it/t;)w'- chx;w'. (30) 
4kTJ~o x; 11: -oo w' (1 + w'2) shx;w' 

We have introduced here the dimensionless quantities 
Xj = Y2kTTj. 

We now turn to discuss the resonant reaction. For 
the argument of the exponential in (27) we then have the 
expression 

-i B 2 A; [ ( 1 x; ) ( 1 )} 
F ( 2kT) = nkT ~--;;- ¢ 2 + z;;- - ¢ 2 ; 

i"""' 

(31) 

where zjJ(z) is the psi-function[IaJ. 
The result of Marcus[9l and of Levich and 

Dogonadze [7 ] for the argument of the exponential when 
~I = 0 with allowance for the relation 

2 1 1 
~A;=---
j=O Bopt Bs 

is written in our notation in the form 

E 2 

F(to)=-~· E =B""' A (32) 4kT ' r L.J ,. 
j=O 

Recognizing that ljJ 1 
( )'2 ) = rr%, we can readily see that 

(32) is the first term of the expansion (31) in terms of 
xj /2rr = ti/ 4rrkT Tj, i.e., of the high-temperature ex­
pansion. (The parameters xo, x1, and x2 at T = 300° 
are equal respectively to 1.83 x 10-2, 0.867, and 0.368.) 
Since, however, Er/ 4kT is large, we cannot confine 
ourselves to the first term of the expansion (31 ). Sub­
stituting in (31) the numerical parameters for T = 300°, 
we obtain 

F(to) = 0.81 E, I 4kT. (33) 

Let us consider now the dependence of WI,II on the 
heat of the reaction ~I for nonresonant reactions. The 
equation has on the saddle point to the form 

iM=F'(to= -iz/2kT), 

( -iz) iB 2 ~ dw' shx;(1-z)w' 
F' 2kf = ---;-. A; S 1+w'2 shx;w' (34) 

J=O -oo 

and the argument of the exponential L in the formula 
WI 11 ~ exp(- L) no longer has the simple form 
L ;,(~I+ Er)2/4ErkT, which is quadratic in ~I, as 
in[7 • 9 l. We present its form for the case of small reso­
nance defects ~I<< Er: 

-~1Er ~-~[1 o(~)1 . (35) 
L- 4kT + 2kT 4kTa.J£, + E, J 

At T =300°K we have for water a1 = 0.81 and 
a 2 = 0.85. It is interesting to note that (35) is close to 
the simple quadratic form[ 7 • 91 when Er is replaced in 

it by 0.8Er. 
Finally, in the case of large negative resonance de­

fects ~I < -Er 3> the activation dependence of WI 11 on 
I > 

T no longer holds. Indeed, when ai =-iF (O) = -Er, 
the saddle point to coincides with t = 0, which is the 
branch point of the function F(t), namely F(t~-O 

~ e ln t. Therefore at ~I<- F(O), when Im t 0 > 0, 
the integral (26) is estimated as a sum of two contri­
butions: from the contour around the cut from t = 0, 
and from the saddle point to. The latter contribution 
is smaller, so that calculation of the integral along the 
cut yields 

2 

2E,I v,,nj• ~ (A;/-r;) 
j=O 

(36) w,,n= --· 
(M -E,) 3 ( ~A;) 

It is easy to explain physically this difference between 
our result and the result of[7 l, where the spectrum 
consisted of only one frequency w 0 • It is due to the 
fact, well known in the theory of nonradiative transi­
tions, that it is easier to dissipate a large transition 
energy with high-frequency quanta than with low-fre­
quency quanta. Thus, in our system, in which the die­
lectric-loss spectrum is continuous, the center of 
gravity of the frequencies at which the reaction energy 
~I is mainly absorbed changes with changing ~I. It is 
seen from (36) that when ~I< -Er the absorption oc­
curs mainly in the region of resonant absorption. 

3. ALLOWANCE FOR THE INFLUENCE OF THE 
OSCILLATIONS OF THE ION COMPLEXES 

The calculated activation energies can be compared 
with experiment only when account is taken of the in­
ternal oscillations of the ion complexes. In fact it is 
known that reactions with charge transfer, of the type 
(1 ), have for different ions (for example Fe2 + and V2 +) 
different activation energies4 >, whereas the dielectric 
part of the activation energy is the same for such rela­
tions. 

According to the present notions, multiply charged 
ions of metals form in water octahedral complexes (of 
the type Fe(H2 0)~+[ 191 ). The oscillations of the water 
molecules forming the hydrate shell of the ion are 
hindered to a considerable degree compared with the 
oscillations of the molecules of the normal water. 

Attempts to calculate the ion complexes on the basis 
of the electrostatic model are contained in a number of 
papers (see, for example[l9l). A prominent position is 
occupied in the calculation by the radius of the complex, 
which is calculated as the sum of the radii of the non­
hydrated ion of the metal and the crystalline radius of 
the water in ice. 

During the course of the reaction, only the radius of 
the complex changes. The frequency of the fully-sym­
metrical oscillations corresponding to a change of this 

3 l Although such a situation is not realized in reactions of the type (I), 
nonetheless this is the most typical case for nonradiative electronic tran­
sitions inside one molecule situated in a polar solvent. 

4 lThe difference usually amounts to several kcal [3 ]. 
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radius is ~400 em -1 • Recognizing that the difference of 
the ionic radii of the non-hydrated iron ions Fe 2 • and 
Fe 3+ amounts to 0.16 A, the reorganization energy of 
the complex on going from Fe2 • to Fe 3• was calculated 
in the bookP 5 l and turned out to be ~ 30 kcal. The ad­
ditional activation energy in the reaction constant 
amounts in this case to 7-8 kcal, which cannot be 
reconciled in any way with the experimental value. 
Thus, the use of the electrostatic model and ionic radii 
is not satisfactory. Moreover, from quantum- chemical 
calculations of such complexes(zoJ follows the need for 
taking into account the exchange forces, and this brings 
other types of oscillations into play in the transition, 
particularly librations. Another indication of the part 
played by libration oscillations is the increase of the 
activation energy of the process in heavy waterC 3 l. 

Starting from these considerations, we present a 
model calculation of the activation energy of the transi­
tion, assuming that the coordinates of the libration 
oscillators with frequency nj = no = 1000 em -1 change 
during the course of the reaction. Such a frequency is 
reasonable if it is recognized that the frequency of the 
libration oscillations in water is 670 cm-1 and should 
increase strongly as the ion molecules become fixed 
in the field of the ion. 

Let us consider again the case AI = 0. Then the 
saddle point in the integration (4) remains equal to 
to= -1/2kT also in the case when Gc(t) is chosen in 
the form (6 ). In this case the transition probability 
WI II has the following form (disregarding the factor 
pr~ceding the exponential) 

WI, II~ exp [-F(to) -Fe (to)], (37) 

where F(to) is given by (31) and exp[ -Fc(t 0 )] = Gc(t0 ). 

The activation energy Ea of the transition, which dif­
fers from the total activation energy of the reaction­
rate constant by the ion-repulsion energyC 5 l, is defined 
as the derivative of the argument of the exponential in 
(37) with respect to 1/kT. Calculating this derivative, 
we obtain at T = 300° 

E, Ec Qo 
E = 0.75--- + -- ch-2 --

" 4 4 4kT. 
(38) 

The reorganization energy of the medium Er is in 
this case, according toC4 l, equal to 6.8 kcal for a dis­
tance 6.9 A between ions, and Ec = (7'2 )noL:;[AQj ]2 is 

j 
a parameter characterizing the difference between the 
elastic energy of the complexes of the ions Fe 2 • and 
Fe 3 +, and will be estimated by comparing the reactions 
in water and in heavy water. At T = 300° we get for 
HzO 

E, Ec 
Ea(H,O)= 0,754 + 0.28-4. 

At the same time, for DzO in the same model (no 
= 710 cm- 1), we have (the dielectric constants of H2 0 
and D2 0 differ little[3l): 

E, Ec 
Ea(D,O)o= 0.75-4+ 0.504. 

Since experimentally Ea(DzO)- Ea(HzO) =0.9 kcal, 
we get from this Ec/4 ~ 4.1 kcal. Thus, the contribu­
tion of the oscillations of the complexes to the activa­
tion energy of the transition amounts to 20% of the en­
tire activation energy for HzO. 

The authors thank N. D. Sokolov, I. V. Aleksandrov, 
E. E. Nikitin and also V. G. Levich, R. R. Dogonadze 
and A. M. Kuznetzov for useful discussions of the re­
sults. 

APPENDIX 

We shall show that formula (23) coincides with the 
Kubo formula for a medium consisting of three-dimen­
sional oscillators with frequency Wo. The Hamiltonian 
of such a medium and of the electromagnetic field, in­
cluding the interaction with the extraneous charges 
p(r), currents j(r), with a gauge div A(r) =0, is 
given by 

fl- "'1i 'Y, (___!:____ i 2 ) _!_ 1 1 divP(r)divP(r') , 
- ..::.J wo ~ a ., + qn + 2 .l .l I , I av av 

n i qnt ... r- r 

- ~ \ p(~)divPI(r') dvdv' +_!__I { ( aA )'+(rotA)'} dv 
"r-r' 2 8n.l at 

- ~ P(r)A(r)dz,- ~ j(r)A(r)dv. (A.1) 

The dipole moment of the oscillator at the point rn is 
proportional to its vibrational coordinate: dn = aqn, 
so that P(r) = a~~o(r- rn). The dielectric constant 
of such a medium can be readily obtained, for example, 
from the linear response to the perturbation 
V = -fP(r)A(r)dv, and is equal to 

( ) 1 + ___ a__ 6 0 4na2wo 
e w = 2 ( + .;:-)2 , -+ , a=--, 

wo - Ul Lv Vo 

v0 is the volume of one oscillator. From this we get 
directly 

e" ( w) 1 a - -
---= -lm--=-_-n[6(w -wo)-1\(w+wo)], 
le(w) I' e(w) 2wo (A.2) 

;;;o2=Wo2+a. 

Formula (A.2) in conjunction with (23) gives the calcu­
lated value of G( t ). 

On the other hand, to use the Kubo formula(Bl it is 
necessary to diagonalize the Hamiltonian (A.1 ). To 
this end, it is convenient to change over to the second­
quantization operators 

+ 
. ani+ ani + 1 . + . + + 

qn' = ---· ak~= ~ --e'k"e-~a' a =(ak) -y2 • . "YN J n • k • 

n, J 

The vectors e >.. correspond to different polarizations, 
of which one is longitudinal ( e 1 = k/k) and two are 
transverse ( e 2 , e 3 1 k). In these variables, the Hamil­
toniap. (A.1) breaks up into two independent parts Hlong 
and H 1 , corresponding to longitudinal (with frequency 
w0 ) and transverse (with frequency w 0 ) oscillations. 
Only the term Hlong includes the interaction with 
p ( r ), and therefore this is the only term determining 
G(t) for a transition with change of p(r). The expres­
sion for Hlong is: 

- + na2 + + + 
H1 = ~ liwoa"a" + -~ (akak + a_ka-k + aka-k + a"a-k) 

ong k Vok 

Pk =I~ p (r) e-ikr dv. (A.3) 

The three terms in (A.3) correspond to the first three 
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terms of the Hamiltonian (A.1 ). The operator (A.3) is 
diagonalized by a u-v transformation to the form 

- - ~ + 4n - ia 1/ wo 1 + 
H1on.Fhwo LJ bkbk +-=--=-V -:-~ -(p-kbk -p~tbk)· 

yN y2vo wo k 
k 

Here Pk = (pi )k, or Pk = (pi~ in the first or in the 
second electronic states, and bk = uak + va_k and bk 

= ua-k + vak. 
For transitions with such a Hamiltonian the theory 

of nonradiative transitions developed in[6 • 7 l' yields for 
the function G( t) in formula (4) 

G(t) = exp{ fl!o [i sin w0t- cth ( ;:T) (1- cos r:;-ot) l} , 
where 

E 2na2w0 1 r 
--;;:::::- = -(-)" -4 J [11D(r))2dv, 

ucoo Vo roo n: 

which coincides with our formula (23) in which we sub­
stitute 1m ( 1/E ( w )) of the given medium in accordance 
with formula (A.2 ). It is assumed here that the dimen­
sion of the oscillator is much smaller than the charac­
teristic wavelengths, ( val/ 3 « 1/k. 
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