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The problem of normal incidence of a plane wave on a plane scattering layer is considered. The Dyson 
and Bethe-Saltpeter equations are employed. Equations for the spectral field densities within and out­
side the scattering medium are derived in the approximation of weak nonlocality of the mass and inten­
sity operators. Conditions are investigated under which the spectral densities as functions of the wave­
vector modulus are concentrated in the close vicinity of the energy surface and the obtained equations 
can be reduced to the phenomenological transport equation. It is found that the transport equation 
describes only a part of the spectrum of a random field, which has been termed the Fraunhofer part. 
The contribution of the extra-Fraunhofer part of the spectrum (which cannot be described by the trans­
port equation) to the field longitudinal correlation function is estimated. 

A statistical derivation of the equation of radiation 
transfer in scattering media has been the subject of a 
number of papers. Under the most general assumptions 
with respect to the properties of the scattering medium, 
a transport equation was obtained in a joint paper by the 
author and V. M. Finkel'bergl111l. In that paper, the 
initial equations were those of Dyson and Bethe-Salpeter. 
On the basis of a paper by Finkel'bergl2J, the Dyson 
equation was solved in neglecting spatial dispersion of 
the waves. The solution of the Bethe-Salpeter equation 
was represented in the form of an iteration series, each 
term of which was simplified in the Fraunhofer approxi­
mation. It was assumed here that the mass operator and 
the intensity operator are characterized by finite effec­
tive nonlocality radii, i.e., they tend sufficiently rapidly 
to zero when their arguments move apart. Subsequently, 
this property of the mass operator and of the intensity 
operator, also called compactness, was more definitely 
formulated by the authorl31 • From an intuitive point of 
view, the nonlocality radii of the mass operator and of 
the intensity operator play the role of the dimensions of 
the effective inhomogeneities of the medium. 

The transformation of the Bethe-Salpeter equation 
in the Fraunhofer approximation has one shortcoming, 
namely, it is impossible to impart to this transformation 
an asymptotic character to make it possible to analyze 
with sufficient detail the conditions of its applicability, 
and consequently also the conditions for the applicability 
of the transport equation. 

In this paper we propose a principally new method of 
transforming the Bethe-Salpeter equation; this method 
has an asymptotic character. It is based on the concept 
of spectral density of a random wave field. The method 
makes it possible, in particular, to formulate the condi­
tions for the applicability of the aforementioned Fraun­
hofer approximation and to present a rather complete 
analysis of the conditions of applicability of the trans­
port equation. 

llunfortunately, some of the formulas in the cited papers contain 
misprints: in formula (24), a factor k0 2 was left out in front of the inte­
gral; the argument of the exponential in formula (27) should have a plus 
sign. 

1. GENERALIZED TRANSPORT EQUATION 

As in the cited papersl1' 31 we start from the Dyson 
equation for the average field ( ljJ(r)) and the Bethe­
Salpeter equation for the average bilinear combination 
of the field (ljJ(rl)if(r2)). The Bethe-Salpeter equation 
can be rewritten in a form quite similar to the transport 
equation, by using the concept of the spectral density of 
the field. This concept was used by Dolinl 41 and also by 
Kalashnikov and Ryazanovl51 • 

The spectral density of the field f{R, p) is defined as 
the Fourier transform of the average bilinear field 
combination (ljJ(rl)if(r2)) with respect to the difference 
r = r 1- r 2 of the coordinates of the observation points. 
Thus, we can write 

f(R,p)=(2n)-3 S exp(-ipr)d3r ( '!J( R+{-r):¢( R-+r )) , {1) 

where R = (r1 + r 2)/2 denotes the coordinates of the 
"center of gravity" of the observation points. In analogy 
with (1), we introduce also the Fourier transforms of 
the bilinear combinations of the average field 
( ljJ (r1) )( if{r2)) and of the average Green's function 
(G{r1, r~))(G{r2 , r~)), with respect to the difference of 
the observation-point coordinates, putting 

f0 (R,p) =(2n)-• ~ exp(-ipr)d"r< '!J( R+~r ))'( ¢( R-f-r )) , 

(2) 

ET'(R,p;R',p')=(2rc)-B ~ exp(-ipr+ip'r')d3rd3r' 

x < G (R++r,R' ++r' )) <a( R- ~ r,R'- ~ r')). (3) 

The functions f0{R, p) and .F{R, p; R', p') will be called 
the spectral densities corresponding to the average field 
and the average Green's function. 

It is not particularly difficult to write the Bethe­
Salpeter equation in terms of the introduced spectral 
densities (1), (2), and (3). Omitting the intermediate 
transformations, we present the final result. The Bethe­
Salpeter equation in terms of the spectral densities is 
given by 

/(R,p)= /o(R, P)+ ~ .'F(R, p; R", p")d3R" d3p"Q(R",p"; R',p') 
. Xd3R' d3p'/(R',p'). (4) 

679 
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The kernel of equation Q(R, p; R', p') is expressed in physical phenomena. This will explain why Eq. (4) can 
terms of the Fourier transform K(p, p'; q, q') of the be meaningfully called a generalized transport equation. 
intensity operator K(r1, r~; r 2 , r~) by means of the relation 

Q(R, p; R', p') = (2n)-B ) exp(iqR- iq'R') d"q d"q' 

(5) 

We shall call Eq. (4) the generalized transport equation. 
Let us analyze the content of Eq. (4) from the physical 

point of view. We note first that this equation takes into 
account cooperative effects in multiple scattering of 
waves [lJ, specifically, cooperative effects are taken 
into account with the aid of the mass operator M and the 
intensity operator K. They consist in the fact that the 
scattering properties of the individual effective inhomo­
geneities of the discrete medium do not coincide with 
the scattering properties of its individual microscopic 
scatterers. 

The spectral field density f(R, p) as a function of the 
coordinates R is characterized by a certain scale of 
spatial inhomogeneity Lf· Equation (4), generally speak­
ing, imposes no limitation on the ratio of the scale Lf to 
the nonlocality radius l of the mass operator and of the 
intensity operator2 >. In particular, if this ratio is of the 
order of unity or is small, i.e., Lf ::::; l, then the spec­
tral density of the field experiences in space a noticeable 
change over the dimension of the effective inhomogenei­
ties of the medium. 

If the medium is statistically homogeneous in the 
mean, then the mass operator M, the intensity operator 
K, the kernel of Eq. (4) Q, and the spectral density ff 
corresponding to the average Green's function, all have 
the property of spatial translational invariance. It fol­
lows therefore, in particular, that the Fourier transform 
of the intensity operator is 

K(p, p'; q, q') = (2n)31P(p- p'- q + q')Ko(P, p'; q, q'). 

When the medium is not statistically homogeneous in 
the mean, the aforementioned translational invariance is 
lost. One of the manifestations of the inhomogeneity of 
the medium is its boundedness. The presence of a boun­
dary leads to certain physical effects. First, strictly 
speaking, the boundary of a scattered medium is not a 
smooth geometrical surface, but is subject to fluctua­
tions of the order of the dimension of the effective scat­
tering inhomogeneities l. Second, the presence of a 
boundary leads to the occurrence of mean-field waves 
reflected from the boundary. Third, the boundedness of 
the medium is manifest purely geometrically, when it 
becomes necessary in the calculation of the Fourier 
integrals to integrate not over the entire unbounded 
space, but only over a region that is bounded at least in 
one dimension. 

We have listed the main physical phenomena that can 
be described by Eq. (4). Our main task is to determine 
the conditions under which this equation goes over into 
the phenomenological transport equation. We shall show 
that such a transition is realized by neglecting or ap­
proximately describing certain of the aforementioned 

2l As follows from the optical theorem [6 ), the nonlocality radii of 
the mass operator and of the intensity operator are of the same order of 
magnitude. 

2. GENERALIZED TRANSPORT EQUATION IN THE 
APPROXIMATION OF WEAK NONLOCALITY OF THE 
MASS OPERATOR AND INTENSITY OPERATOR 

The main assumption which we make with an aim at 
simplifying the generalized transport equation (4) is to 
neglect the spatial variation of the spectral field density 
over the dimension of the effective inhomogeneities of 
the medium. In other words, we assume that the spatial 
scale Lf » l. This is the approximation of weak non­
locality of the mass operator and intensity operator, 
which we used in the cited paper[31 in terms of the ray 
amplitude of the field. Since the radius of the spatial 
nonlocality of the kernel Q(R", p"; R', p') is of the order 
of the radius of nonlocality of the intensity operator l, 
the transition to the approximation of weak nonlocality 
of the intensity operator in Eq. (4) is realized by replac­
ing the argument of the spectral density of the field R' 
byR": 

/(R', p')->- /(R", p') if Lt > l. (6) 

Let us simplify Eq. (4) further. We neglect the devia­
tion of the properties of the medium from three-dimen­
sional homogeneity in the mean, and also the fluctuations 
of the interface. Formally this is done by representing 
the kernel Q as follows: 

Q(R", p"; R', p') = :x;(R")Q(R"-R', p", p'), (7) 

where x (R") is the characteristic function of the scat­
tering region and Q(R" - R', p", p') is the kernel of Eq. 
(4) for an unbounded medium that is homogeneous in the 
mean. 

Once the fluctuations of the interface are neglected, 
Eq. (4) admits of further simplification. This is realized 
by introducing the spectral densities of the field inside 
and outside the scattering medium. We denote them by 
fi(R, p) and fe(R, p). The spectral density of the field fi 
inside (fe outside) of the medium is determined by the 
same formula (1) as the "total" spectral field density f, 
the only difference being that the integration over the 
difference of the coordinates r is carried out between 
such limits that both observation points R + r/2 and 
R- r/2 are located inside (outside) the medium. Conse­
quently, the introduced spectral densities make it possi­
ble to calculate with the aid of the inverse Fourier 
transformation the average bilinear combination of the 
field (lj!(r1)~(r2)), when both observation points r1 and 
r 2 lie inside or outside the medium. We introduce 
analogously the spectral density inside and outside the 
medium, f~(R, p) and f0 (R, p), corresponding to the aver­
age field. lFor the ave~age Green's function we intro­
duce spectral densities with two lower indices: 
.9ii(R, p; R', p') and Yei(R, p; R', p'). In the first, with 
index ii, the spatial coordinates Rand R' correspond to 
points of space located inside the medium; in the 
second, with index ei, the point R is located outside the 
medium and R' inside. Whereas the spectral density .'Fii 
characterizes radiation propagating inside the medium, 
Yei characterizes radiation emerging from the medium. 

A distinguishing feature of the spectral densities 
inside and outside the medium is that they vanish if their 
spatial arguments correspond to points located on the 
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boundary of the medium. However, the integrals of the 
aforementioned spectral densities with respect to the 
components of the wave vector p, parallel to the normal 
to the interface, differ from zero. 

We can write Eq. (4) in terms of the introduced spec­
tral densities inside and outside the medium. It breaks 
up into two equations: the integral equation for the spec­
tral density of the field inside the medium and the 
integral relation for the spectral density outside the 
medium. 

We limit the subsequent analysis to the case of planar 
symmetry, assuming that the scattering medium has the 
form of a plane layer of thickness L occupying the reg­
ion of space 0 < z < L. Assume that a plane wave l/lo(z) 
= exp(ikoZ) is normally incident on the boundary z = 0 
from the free region of space z < 0. Then, in the ap­
proximation of weak nonlocality of the intensity opera­
tor (6), and neglecting the fluctuations of the interface 
(7), we obtain the following equations for the spectral 
densities of the field inside and outside the medium: 

/; (Z, p) = f;"(Z, p) + ~ !T;; (Z, pj_,p,; Z", pj_, pz'')dZ" dpz'' 
X Ko(Pj_, p/', p'; pj_, p,", p') d3p'/; (Z", p'), (8) 

!e(Z, p) = f,0 (Z, p) + ~ !r.;(Z, pj_, p,; Z", pj_, p,")dZ" dp," 
XK0 (pj_, p,", p'; pj_, p,'', p')d3p'/i(Z", p'). (9) 

The capital letters Z and Z" denote here the projections 
on the z axis of the vectors R and R", and p 1 denotes the 
wave-vector component of p perpendicular to the z axis. 

Let us turn to Dyson's equations for the average field 
and average Green's function. We replace approximately 
this equation by the Helmholtz wave equation with effec­
tive complex wave number k. The conditions under 
which such a replacement is possible are analyzed in 
our paper[ 7J. The effective wave number k, neglecting 
spatial dispersion of the waves, is determined approxi­
mately by the relation 

k' ~ Xo2 - M'(xo). (10) 

M(p) denotes the Fourier transform of the mass opera­
tor of an unbounded homogeneous- in- the- mean medium; 
Ko is the renormalized real wave number of "free" 
space[sJ, defined by the condition ReM (Ko) = 0. 

No difficulties are involved in solving the Helmholtz 
equation with complex wave number for the mean field; 
the solution can be found in a number of sources. It is 
convenient to represent the solution of this equation for 
the average Green's function in the form of a Fourier 
integral. We write 

(G (r, r'}> = ~ exp[ipj_ (rj_- rj_')] d2pj_g (pj_; z, z'). (11) 

The integrand functions g(p1 ; z, z') were calculated in 
our cited paper[ 7J. We present them here in simplified 
form, neglecting multiple reflection of the mean field 
from the boundary of the medium: 

1 1 . 
g(pj_; z, z') = --2-. -[exp (zalz- .z'l) 

2( n)'' a 

+ Vcxp[ia(z+,z')l+ Vexp[ia(2L-z-z')]] 

if 0 < z < L, 0 < z' < L; 
1 1 

g (pj_; z, z') = ---. - [exp (iaz') 
2(2rr) 2t a 

(12) 

+Vexp[ia(2L-z')J](1+V)exp(ia0 Jzl) if z<O<z'<L. (13) 

By V we denote here the coefficient of reflection of a 
plane wave from the interface when propagating from 
the medium into free space; this coefficient is equal to 

V= (a-ao)l(a+ao). (14) 

The values of a and a0 are: 

a= a'+ ia" = yk2 - pj_2, ao = ao' + iao" = fko2 - PJ.'· 

The first term in (12) represents a wave propagating 
in the medium from the point z' to the point z without 
reflection from the boundaries. The second and third 
terms represent waves experiencing reflection from the 
boundary. In formula (13), the first term corresponds 
to a wave emerging from the medium to the free region 
of space in front of the layer (z < 0); the wave experien­
ces refraction at the boundary z = 0. The second term 
corresponds to an emerging wave experiencing additional 
reflection from the boundary z = L. It is easy to write 
out a formula similar to (13) for a wave emerging from 
the medium to the free space behind the layer (z > L). 

We call attention to the fact that the terms in (12) 
and (13), representing reflected waves and proportional 
to the reflection coefficient V, have the form of inhomo­
geneous plane waves that attenuate exponentially with 
increasing distance from the interface in the interior of 
the medium. To estimate the role of the reflected wave, 
let us consider the behavior of the reflection coefficient 
Vas a function of the attenuation exponent a". 

The real and imaginary parts a' and a" of a are de­
termined by 

2a12 = xo2 - PJ.2 + l' (xo2 - PJ.2 ) 2 + (xo I d) 2, 

a"= 'Xo I 2a'd, (15) 

where d denotes the extinction length of the wave, whose 
reciprocal is 1/d =-1m M (K 0)/Ko. Instead of the attenua­
tion coefficient a" of the reflected waves it is convenient 
to use the dimensionless quantity u = 2a"d. As the 
modulus of the transverse wave vector p 1 increases 
from p 1 = 0 to p 1 = 00 , the variable u increases mono­
tonically from a value u 9( 1 to u = 00 • 

The behavior of the reflection coefficient V is essen­
tially determined by the ratio of the next two dimension­
less parameters: 

6 = (xo2 - kr?-) I xo2, e = 1 I 'Xod. (16) 

According to the cited paper by Finkel'berg[2 J , neglect­
ing the spatial dispersion of the waves, both parameters 
are small compared with unity: I o I « 1 and £ « 1. 

An investigation has shown that the reflection coeffi­
cient V assumes values that are close to unity in abso­
lute value (lVI ~ 1) when the parameter u is large com­
pared with unity (u ::::P 1) and is approximately equal to 
u 9( uo. By uo we denote the value of the parameter u 
corresponding to the transverse wave vector p 1 = ko. 
The approximate value of u~ is3 > 

(17) 

Uo2 ~ 1 I 6 if e «:; 6. (18) 

From the described behavior of the reflection coeffi-

3>we confine ourselves to the case li > 0, when the medium is opti­
cally denser than the free space. 
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cient it follows that the reflected inhomogeneous waves, 
whose amplitude is of the order of unity, are concentra­
ted in a narrow region near the boundary of the medium, 
with a thickness ~L of the order of magnitude ~L ~ d/uo. 
We shall henceforth assume that the layer thickness L 
greatly exceeds ~L : L :::P ~L, neglecting the reflected 
waves. 

3. GENERALIZED TRANSPORT EQUATION NEGLECT­
ING REFLECTION AND REFRACTION OF THE 
AVERAGE FIELD ON THE INTERFACE 

We proceed to calculate the spectral densities inside 
and outside the medium, corresponding to the average 
field and the average Green's function. We shall neglect 
not only reflection but also refraction of the wave. 

We first calculate the spectral densities fi(Z, p) and 
f~(Z, p) corresponding to the average field. The spec­
tral density inside the scattering layer fi(Z, p) is 

1 sin [ (p,- xo) 2Z] (19) 
/;"(Z,p)2E, exp(-Z/d) I>'(P_L) 

n Pz -x. 

when 0 < Z < L/2. If the observation point Z lies in the 
second half of the layer, where L/2 < Z < L, then it is 
necessary to replace Z by L - Z in the argument of the 
sine function of formula (19). The spectral density 
f~(Z, p) in front of the layer is 

I •(Z )""'~ sin[(p,- ko)2IZIJ '( ) 
e ,p - k 6 P_L 

:it Pz- 0 
if z < 0. (20) 

In order to obtain the spectral density f~(Z, p) behind 
the layer (Z > L), it is necessary to replace I Z I in (20) 
by Z- L. 

Let us calculate the spectral densities Yii and Yei 
corresponding to the average Green's function. The 
spectral density Yii, which describes radiation propa­
gating inside the layer, has a rather cumbersome form. 
We shall therefore calculate it only for a semibounded 
medium, when one of the boundaries of the layer goes 
off to infinity: L- 00 • In this case 

, , , 1 sin [ (Pz- p/) 2Z1 
SZ"ii(Z,p_j_,p,;Z ,p_L,Pz )2E,SZ";(Z-Z ,p) , 

n p,- p, 

- (2n)-' I:/ 2 Re{exp[2ia'(Z-Z')] 

X exp[-(ip,+a")2Z] sh[(ip,'+a")2Z1 (21 ) 
ip, + a" ip/ + a" 

when Z > z'. By .~i(Z, p) we denote the function 

SZ"·(Z ) - (2rr)-' exp(-2a"Z) { ( a'+ a"') 
• ,p- 2/a/'(p,'+a"') Pz 

x sin[(p,- a:) 2Z] +a" cos [(p,- a')2ZJ} if Z > 0. (22) 
Pz-a 

If Z < Z', then it is necessary to replace in (21) and (22) 
z by z', z', by Z, Pz by (-p~), and p~ by (-pz)· 

The spectral density Yei describing the radiation 
emerging from the medium into the free region of space 
ahead of the layer is equal to 

SZ"ei(Z, p_1_, p,; Z', p_1_, p,') 2E, (4rr)-2 exp(-2ao'' JZI) 

X 
sin [(p, + a0')2/ZJ] ~xp(-2a"Z') 1 sin [(p,' + a')2Z'] 

n p,+ao' Ja/ 2 n pz'+a' 

if 0 < Z' < L I 2, Z < 0. (23) 

If the point of the source z' lies in the second half of 
the layer (L/2 < z' < L), then it is necessary to replace 
Z' by L- Z' in the argument of the second sinusoidal 
factor. In order to obtain the spectral density ,Fei des­
cribing the radiation emerging from the medium into 
the free region of space behind the layer (Z > L), it is 
necessary to replace in (23) IZ/ by Z- Land a~ by (-a~), 
and in the second exponential factor it is necessary to 
replace z' by L- z'. 

In the derivation of formulas (19)- (23) we have 
neglected reflection and refraction of the waves. In 
order to bring these formulas into correspondence with 
the conservation of the energy flux on the interace, it is 
necessary to neglect the difference between the renorm­
alized and non-renormalized wave numbers Ko and ko, 
and also between the real parts of the numbers a and ao, 
assuming 

Xo ~ ko, a'~ ao'. (24) 

Formulas (19)- (23) contain characteristic sinusoidal 
factors, the arguments of which depend on the coordin­
ates of the point of observation Z or the source point Z' 
(but not on their difference). These factors represent 
the geometric effect of the boundary. By regarding the 
Fourier transform of the intensity operator 
K0(p, p'; p, p') as the kernel of an integral operator, 

• ,.. 0 f"W r-: ......, i- "' 

we form the expressiOns for Kofi, KoYjiKo, and ..'1' eiKo. 
Let the point of observation Z inside the layer, as well 
as the source point z', be located away from the boun­
dary at a distance exceeding the nonlocality radius l of 
the intensity operator: Z :::P l, Z' » l. Then the corre­
sponding sinusoidal factors can be replaced by Dirac 
a-functions. 

If the observation point Z is located outside the layer, 
as is the case in formulas (20) and (23), then the corre­
sponding sinusoidal factors can be replaced by o func­
tions, bearing in mind the fact that this leaves the values 
of the mean bilinear combination of the field and of the 
average energy flux outside the layer unchanged. 

In formula (21) the geometrical effect of the bound­
aries is represented also by the peculiar last term. 
When the source point and the observation point are 
moved far from the boundary of the medium, to a dis­
tance exceeding the nonlocality radius of the intensity 
operator, this term tends to zero. 

Neglecting reflection and refraction of the waves, 
and also the geometrical effects of the boundary, Eqs. 
(8) and (9) for the spectral densities of the field inside 
and outside the medium assume the form: 

/i(Z, p) = exp(-Z/d) ii (p,- k 0) I\2 (P_L) 

+) SZ";(Z-Z',p)dZ' K0 (p,p';p,p')d3p'/;(Z',p'); (25) 

!e(Z, P) = 6(p,- ko)62 (P_j_) + (4n)-2 exp(-2ao"IZI) 

xb(p, + ao') 1:1, exp( -2a"Z')dZ' · R'o(P_L,- a', p'; p_1_,- a', p') d3p'f;(Z', p') 

if z < 0. (26) 

The function ,Fi (Z, p) which enters in (25) is determined 
by formula (22) and has the meaning of the spectral 
density corresponding to the average Green's function 
in an unbounded medium. 
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4. TRANSITION TO A PHENOMENOLOGICAL TRANS­
PORT EQUATION 

The spectral density inside the medium fi(Z, p), which 
satisfies Eq. (25), is concentrated, as a function of the 
wave-vector component pz, mainly near the two lines 
Pz = ±a'. The effective width of these lines is of the 
order of the larger of the two quantities 1/Lf and a": 

ip.±a'i ~max(1/L,,a"). (27) 

We assume here that the following conditions are also 
satisfied 

(28) 

making it possible to neglect the remaining part of the 
spectrum with respect to the longitudinal wave vector 
Pz· Let the effective width of the lines (27) be smaller 
than the effective width of the spectrum of the intensity 
operator, being of the order of 1/Z, so that Lf » l (this 
condition has already been employed earlier), and 

a"~ 1/l. 

Then, regarding again the Fourier transform of the 
intensity operator Ko(p, p'; p, p') as the kernel of an 
integral operator and setting up the expression for 

(29) 

KoS}, we can approximately replace the sinusoidal fac­
tor in the first term of (22) by a 6 function, and the sec­
ond term with the cosine can be omitted. This procedure 
is equivalent to the following approximate representa­
tion: 

exp(-2a"IZI) 
IT (Z p)"" (4n)-2 ---''--'---:o--c---'---'-'-

' ' - iai' 
X [&(p,- a')'ll (Z)+ &(p, + a')'ll (-Z)], 

where 'f/ (Z) is the unit step function. 

(30) 

We must also satisfy the second condition (24), which 
ensures conservation of the energy flux on the inter­
face. This condition can be satisfied by confining our­
selves to that part of the spectrum with respect to the 
transverse wave vector p .L> in which the inequalities 

P.l. < ko, ko2 - P.J..'>ko/d. (31) 

are satisfied. When these inequalities are satisfied, as 
well as the first condition of (24), we obtain approxi­
mately from (15) 

.a"fa'~1. (32) 

In the approximation (32), in the space of the values of 
the wave vector p, it is convenient to go over from 
cylindrical coordinates Pz and p1 to spherical coordin­
ates p and JJ. = Pz/p. Then, as follows from representa­
tion (30}, the spectrum turns out to be concentrated on 
the "energy" surface p = ko. The spectral densities 
inside and outside the medium fi(Z, p) and fe(Z, p) can 
be represented in the form 

ft. e(Z, p) ~ b(p- k0)k0- 2l;, e(Z, J.t), (33) 

where Ii(Z, JJ.) and Ie(Z, JJ.) are the ray intensities of the 
radiation inside and outside the medium. Equation (25) 
reduces to the phenomenological transport equation for 
the ray intensity Ii(Z, JJ.) inside the medium. On the 
other hand, Eq. (26) is transformed into the boundary 
condition 

I.(O, J.t) =I; (0, J.t), (34) 

according to which the ray intensity remains continuous 
on going through the interface. 

5. CONDITIONS FOR APPLICABILITY OF THE 
PHENOMENOLOGICAL TRANSPORT EQUATION 

Let us summarize the main simplifying assumptions 
made in the derivation of the phenomenological trans­
port equation. 

According to Sec. 2 and the first inequality of (28), 
the spectral density as a function of the coordinates 
should vary smoothly within the scales of the effective 
inhomogeneities of the medium and the wavelength. 

By neglecting in Sec. 3 the reflection and refraction 
of the waves, we have arrived at the rather stringent 
limitations (24) that follow from the energy conservation 
law. 

In Sec. 4, wishing the spectrum with respect to the 
longitudinal wave vector Pz to be concentrated near the 
sufficiently narrow lines (27), we have arrived at two 
limitations (28) and (29) on the exponent a", i.e., on the 
spectrum with respect to the transverse wave vector p1 . 

The third limitation of this spectrum was obtained in the 
form of inequalities (31), satisfying the condition (24) 
for the conservation of the energy flux on the boundary. 
The limitations (28), (29), and (31) on the spectrum with 
respect to the transverse wave vector are best repre­
sented in the form of the following three inequalities for 
the cosine of the angle 1J. between the wave vector p and 
the z axis: 

1 
J.t>-. J.t>-. J.t'>-=· (35) 

k0d d y'k0d 

Comparison of the inequalities (35) shows that when k0 l 2 

« d the strongest inequality is the third. 
Thus, it turns out as a result that the phenomenologi­

cal transport equation describes the bounded part of the 
spectrum, satisfying the inequalities (31). It is appro­
priate to call this part of the spectrum the Fraunhofer 
part4 >. 

It is of interest to estimate the contribution that can 
be made to the value of the different physical quantities 
by the Fraunhofer part of the spectrum, which does not 
satisfy the inequalities (31). We shall make such an 
estimate by solving Eq. (9) for the spectral density of 
the field outside the medium in the single-scattering ap­
proximation. We shall assume the medium to be semi­
bounded (L - co) and consisting of pointlike isotropic 
scatterers (Ro = const). 

It turns out that the part of the spectrum outside the 
Fraunhofer region makes the most appreciable contribu­
tion to the value of the longitudinal field correlation 
function . Accurate to a constant factor, which is im­
material to us at present, the longitudinal field correla­
tion function Bl/J(z) is represented by an integral of the 
form 

4>we note in connection with this term that Eq. (30) with a' and a" 
in the form of (32) can be obtained directly from expression (3), if we 
substitute in it the average Green's function for an unbounded medium 
in the Fraunhofer approximation. 
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By z we denote the difference of the coordinates of the 
observation points outside the medium. The transition 
to the phenomenological transport equation is equivalent 
to the approximation u « uo, when the upper limit of the 
integral is replaced by infinity (uo - co), the reflection 
coefficient is replaced by 0 (V - 0), and the phase func­
tion ao/Ko is assumed equal to ao/Ko ~ 1/u. 

Let us estimate the value of the integral (36) in the 
case when the distance between the observation points 
is large compared with the wavelength: Kolzl >> 1. The 
estimate can be performed by means of the stationary 
phase method. The contribution made to the integral by 
the vicinity of the lower limit of integration u = 1, corre­
sponding to the Fraunhofer part of the spectrum, is of 
the order of B1- 1/KolzJ. The contribution to the integ­
ral by the vicinity of the upper integration limit u = u0 , 

corresponding to the part of the spectrum outside the 
Fraunhofer region, is of the order of Buo - uo/ ( K olz 1) 2 • 

Since, according to (17) and (18), Uo is much larger than 
unity, it follows that under the condition 1 « K olz I « Uo 
the value of the function of the longitudinal correlation 
of the field is determined mainly by the part of the spec­
trum outside the Fraunhofer region. 

In conclusion, I take the opportunity to thank L. A. 

Chernov and V. M. Komissarov for a fruitful discussion 
of the work. 
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