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The possibility is discussed of using collective processes to achieve radial self-focusing of a beam 
of charged particles. It is shown that this possibility exists when a bounded beam interacts with the 
plasma under conditions such that the two-stream instability can be excited. The radial beam com
pression oceurs under the effect of high-frequency pressure forces due to the surface plasma waves 
generated by the beam. The focusing time is of the order of the reciprocal growth rate for the two
stream instability. 

ONE of the most promising new methods for the ac
celeration of charged particles is the self-stabilized 
beam[1 l which makes it possible to attain high magnetic 
fields in regions which the accelerated particles are 
located. One of the important features of this method 
is the use of the electromagnetic radiation of electrons 
that oscillate in the transverse potential well of un
compensated electron-ion beams, this feature making 
it possible to obtaim radial compression of the beam. 
Since the generation of transverse oscillations requires 
partial conversion of longitudinal motion into trans
verse motion, and since this effect is due to the rela
tively slow process of multiple scattering of electrons 
on ions, the beam compression time is found to be 
rather long (of the order of a second or more). Inas
much as the electrons can traverse enormous distances 
in this time, the self-stabilized beam can only be used 
for cyclic acceleratorsYl 

The beam compression time can be reduced signif
icantly if focusing is achieved through more rapid 
processes (as compared with binary collisions) in
volved in coherent radiation of the beam electrons. 1> 

In this case there :is a real possibility of obtaining a 
straight, self-focused electron beam under laboratory 
conditions. Below we consider one of the possible 
methods of obtaining this focusing; specifically, we 
consider the self-focusing of an electron beam moving 
through a plasma under conditions such that the two
stream instability can be excited. [zJ It is reasonable 
that the most convenient method for this purpose lies 
in the excitation of oscillations due to transverse 
ordered motion of the beam electrons 2 > because under 
these conditions there is no significant retardation of 
the beam in the longitudinal direction due to the feed
back effect of the oscillations on the beam motion. 
However, the excitation of these oscillations can be 
realized most effectively in the presence of a magnetic 
field, taking account of which would cause a consider-

1>The idea of using collective processes to achieve radial self-focusing 
of beams of charged particles was proposed by Ya. B. Falnberg several 
years age. It also appears, to the best of our knowledge, that similar sug
gestions were made independently by 0. I. Yarkov. 

2lThis ordered motion, ,in particular, can be due to betatron oscil
lations in cyclic accelerators. 
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able complication of the problem; in the present work 
we shall consider the simpler case of oscillations as
sociated with the longitudinal motion of the electrons. 
The analysis of this effect for the case of a finite mag
netic field is the topic of further investigations. It 
should also be noted that the energy lost in the beam 
due to the excitation of oscillations can be compensated 
by means of an external accelerating field. 

In the case we are considering the beam compres
sion is caused by a high-frequency pressurer3 • 41 due to 
plasma waves excited by the beam. 3 > Since the focusing 
force is a "gradient" force, to realize radial focusing 
it is necessary that the amplitude of the focusing field 
increase in the radial direction. This condition can be 
satisfied if use is made of surface plasma waves, [l,B-aJ 

for example, by passing a beam through a channel in a 
plasma. 

The interaction of a low-density electron beam 
n1 « n0 with a plasma can be described by a system of 
equations consisting of Maxwell's equations for the 
fields, the linearized hydrodynamic equations of motion 
for the electrons in the plasma, and the equations of 
motion for the beam electrons. In the linear approxi
mation the solution of this system can be written in the 
form 

h(l,r,z)= ~ hk(r)exp[i(kz-wt)]dk. 

Then the amplitude of the electric field of the k-th 
harmonic of a slow axially symmetric E wave as a 
function of the coordinate r inside the plasma channel 
is described by the following equation: 

1 d ( dE,. \ . 4n [ 1 d J (1) -- r--}-k2E,k=- ik"j,.+k--(rirR.) =g,(r), 
rdr dr w rdr 

where hk and irk are the Fourier components of the 
beam current, which can be found from the linearized 
equations of motion of the beam. Since the beam density 
is assumed to be small, in solving Eq. (1) by succes
sive approximations (in the parameter n/n0 << 1)[ 9 1 
we find the field components Ezk, Erk and E cpk 
= wErk/ck: 

3lThe confinement of a plasma in a cylindrical wave guide by means 
of an external traveling TE mode has been realized experimentally. [5] 
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r 

E,k = Alo(kr) + ~ [Io(kr)Ko(ks)- Io(ks)Ko(kr)] gk(s) (;d£, 
0 r (2) 

Erk =- iAI1(kr)- i ~ [lt(kr)Ko(ks) + K!(kr)lo(k6)1 g" (s) 6d£. 

Correspondingly the fields outside the beam are given 
by 

Ezk = Blo(kr); Erk = -iBI1(kr) (2a) 

(A and Bin (2a) are arbitrary constants). 
The dispersion equation, which describes the depend

ence of the frequency w on the wave vector k, can be 
determined from the continuity conditions on the tan
gential components of the fields Ez and H cp at the 
boundary between the beam and the plasma. Assuming 
that the beam radius a is small compared with wave
length (ka « 1 ), we have 

ro02 4nk2 ( C • 
1--·. -+--In --) ~ <Jk(r)rdr=O, 

ro2 ro nka 0 

(3) 

where hk = O"kEzk and C = 0.577 is Euler's constant. 
It should be noted that the dispersion equation (3) de
pends only on the longitudinal component of the beam 
current. This situation holds only for a thin beam 
ka << 1 because under these conditions the transverse 
current appears in the integrand in Eq. (3) under the 
derivative sign and thus does not make a contribution 
to the integral when <7k(a) = 0 that is to say, if the 
beam density vanishes at the boundary. 

In describing the properties of the beam we make 
use of the kinetic equation for the beam distribution 
function F(t, r, v): 

oF oF v~ &F &F e fJF 
--+v,-+--+v,-+-E,-
ot &r r &cp fjz m &v, 

( e v~• ) &F v,v~ &F 0 + -E,+- --~-=. 
m r &v, r &v~ 

(the variables, vr, v 'P• and cp are independent so that 
differentiation with respect to the space angle cp is 
subject to the explicit dependence of F on cp ). 

(4) 

This equation can be simplified by making use of the 
axial symmetry of the problem. Assuming that the dis
tribution function can be written in the form 

F (t, r, z, v,, v~, v,) == f(t, r, z, v,, v,) 6 (v~), 

we average (4) over the variable vcp. Under these 
conditions the third and seventh terms vanish and the 
last term can be combined with the second. As a result 
we obtain the following equation for the distribution 
function f: 4 > 

of 1 a &f e of e of ( 4a) -+-- (rvrf)+ v,-+-E,-+-E,- =0. 
&t r or &z m ov, m ov, 

Writing the distribution function in the form 

4lThe variable V <P can be eliminated from Eq. ( 4) because in the 
present case (in the absence of the field component E<P) the r compon
ent of the particle motion is independent of the '{)-component if the con
dition V '{)(t = 0) = 0 is satisfied at the initial time. This can be easily 
demonstrated if one considers the system of equations for the character
istics that correspond to Eq. ( 4) 

e t 
i,(t) = -l!,, +- v•'(t); 

m r 

1 
v.(t) = -- v,(l)v.(t), 

r 

which has the solution Vr=Vr(t) and V<P=O. 

f = fo + ft = fo + ~ fkei"'• dk, 

(where fo is the average, slowly varying function while 
f1 is the ensemble of oscillations with random phases) 
we obtain the following system of equations for the 
functions f0 and fk: 

ofo 1 0 e < oft> -+--(rvrfo)+- E- =0. 
ot r &r m ov 

. 1 0 e ofo . e kr ofo (5) 
-l(w-kv,)fk+-- (rvrfk)+-Ek--1--Ek -0 = 0. 

r Or m OVz m 2 Vr 

[the formula for the fields that appears in (5) is as
sumed to be given and determined by Eq. (2)]. 

Solving the second equation in (5) we can write the 
function fk in the following form: 

e ~. . vrm i}m [ ofo . kr ofo ] 
!k=r;:;,Ek ~;-z)m+t (ro-kv,)m+torm ov, -'2av-: . (6) 

At the beginning of the process, when the beam is still 
monoenergetic, it is sufficient to determine the changes 
in time and coordinate of the moments of the function 
f0 rather than the function itself, that is, the density 
n1, the mean velocity n1u1 and the temperature T1 .[ 101 
To compute these quantities we make use of the follow
ing system of equations, which are obtained from the 
first equation in (5) [taking account of Eq. (6 )] : 

8n1 1 a 
-.-+--(rntllj_)= 0, at r or 

The growth rates 'Yk that appear in Eq. (7) are de
termined by Eq. (3), in which we substitute the current 
hk = O"kEk = e f VzfkdV: 

ro2o 4nk2e2 ( C ) ·~ 1--- In ~- n!(r)rdr=O 
w2 m(w-kv0 ) 2 nka 0 

(8) 

(v0 is the directed velocity of the beam). 
The dispersion equation in (8) describes the inter

action of a monoenergetic bounded beam moving 
through a plasma. Solving this equation we can find 
the growth rate for the most unstable mode ko = Wo/vo: 

Yo = -y'3 [ 4ne•. In ( Cvo ) ~ n1 (r) rdr ]''• , /J.o = kovo- roo = ,;0 • (9) 
2 mv02 nwoa 0 . r3 

In Eqs. (8) and (9) only the mean beam velocity 

2 a 
iit =- r n, (r) rdr, az .l 

0 

appears and this quantity, in accordance with the first 
equation in (7), is independent of time. Thus, we can 
integrate the last equation in (7) and find the quantity 
T l. in explicit form. Under these conditions the sys
tern in (7) reduces to the following equation for the 
function n1(t, r): 

ozn,_~(3e)•) k2Ek2 ezv.tdk·.!__!_[r &(r2nt) l =0. (10) 
ot• 2 4m 'Ykz r &r &r 

In deriving this equation we have taken Ak ~ rkl/3 
~ y 0 / 13; this step is valid since the oscillation spec
trum excited by a monoenergetic beam will be rather 
narrow Ak ~ yo/vo. 
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In (10) we carry out the substitution of variables 

<=yot, x=ln(r/a), y=r'n1 

and then consider the Fourier transform in terms of 
the variable x; 

1 ~ 
Y(t,X)=-=- \ y(r,q)eiqxdq, 

}2:t -·00 

We then obtain the following second-order equation for 
the function y(r, q): 

1 ( 3e)' r k2Ek2 
a2(<)=- - e2' J --dk. (12) 

2 4m Yk' 

The solution of this equation can be expressed in 
terms of Bessel functions and is of the form 5l 

y(T, q)Jo[qa(O)] = y(O, q)lo[qa(,;)]. (13) 

In order to determine the function y ( T, x) we mul
tiply both sides of (13) by exp( iqx) and integrate with 
respect to q. Since both sides of the relation are 
transformed in the same way we need only compute the 
integral in the right side: 

1 00 00 

Q=- r y(O,x')dx' \ l 0 (aq)eiq(x-x'Jdq. (14) 
')'IT J ,.) 

Carrying out the integration with respect to q by means 
of the relation 

1 ... 1 1 - S /0 (aq)eiq(x-x'ldq= . ~6(a-lx-x'!) (15) 
2n 0 n ya2 -(x-x') 2 

and converting to It he variables r and r ', we can write 
the quantity Q in the following form: 

Q= ~ n!(O,r')6(r'-re--«)r'2 dr'+ ~ n1(0,r')6(r'-re")r'2 dr'. (16) 

The first integral in (16) is small (~exp[-2o:]) com
pared with the second and the second can be reduced to 
the following form if the left side of (13) is introduced: 

n 1 (t, r) = exp {2[a(t)- a(O)]}n,(O, rexp[a(t)- a(O)]], 
r ~a exp- [a(t)- a(O)]; (17) 

n1 (t, r) = 0, r >a exp- [a(t)- a(O)]. 

According to (17) the radius of the beam R(t) 
= a exp - [ a ( t) - a ( 0 )] diminishes in time while the 
density of particles in the region r < R(t) increases 
uniformly over the entire volume of the beam. 

The self-focusing of the beam which is analyzed 
above admits of a simple physical explanation: as the 
instability develops, surface plasma waves are gener
ated and the amplitudes of the fields of these waves 
increase in the radial direction from the beam axis 
toward the periphery. Under these conditions the parti
cles in the beam are in a high-frequency potential well 
whose depth and wall curvature increase with time. 
As a result the particles collect at the bottom of the 
well, i.e., close to the point r = 0, where the force that 
acts on the beam vanishes. 

In order to evaluate the efficiency of this focusing 
method we must estimate the quantity o:(t) that ap
pears in Eq. (17 ). Since the limits of applicability of 

5lWe do not take account of the second solution of Eq. (12) N0(aq) 
which has a singularity as a-->- 0; it is physically obvious that the density 
must remain finite as the electric field vanishes. 

the theory are bounded by the inequality 
E « mv0 yg/ew 0 , strictly speaking this quantity is 
small: o:(t) « 1. On the other hand, the formulas given 
above only give a qualitative description of the process 
and cannot be used to make rigorous quantitative cal
culations. Extrapolating the results that have been ob
tained to the case of stronger fields E ~ mv0 y~/ew0 
we find a ~ 1 so that significant focusing of the beam 
can only occur up to the end of the hydrodynamic stage 
in the development of the instability, that is to say, in a 
time T ~ 1/yo. 

As the instability develops the longitudinal tempera
ture of the beam 

increases and this violates the monoenergetic condition 
y~ » kgT 11/m even at small field amplitudes 
E ~ mv0y~/ew0 • Further growth in the oscillation am
plitudes is accompanied by strong smearing of the 
beam in longitudinal velocity and an expansion of the 
oscillation spectrum in wave vector. The interaction 
of the beam with the plasma in this stage of the devel
opment of the instability can be analyzed by solving 
(5) and (6) in the quasilinear approximation. E11- 14 l 

The quasilinear growth rate Yk can be determined 
by substituting the beam current in Eq. (3). 

n Wo3 ( c ) t \' ofo Yk=--ln ·-~ J rdr J k6(wo-kv,)-;:-dv,. 
2 n0 :rrka 0 ov, 

(18) 

The equation in (5) together with the equation for the 
amplitude of the electric field 

(19) 

represent a closed system of equations for the prob
lem. Noting that the function fo appears in the expres
sion for the growth rate (18) averaged over cross
section, we introduce the function 

C oo a 

F'(t,v,)=k2 1n(~) S dv,~ fordr. (20) 
:rr.ka o o 

Now, integrating the first equation in (5) with respect 
to r and substituting (18) and (19)we obtain the follow
ing system of quasilinear equations: 

iJF e2 a r iJF 
-= :rr--,-J Ek'b(wo-kv,)-dk, 

iJt m av, iJv, 

iJEk' <iJo3 r iJF' 
--=:rr.- J Ek26(<iJo-h,) -dv, 

iJt kn0 iJv, 

(21) 

which coincides with the system obtained for an infinite 
beam.E10- 111 

It follows from (21) that the spectrum of oscillations 
excited by the beam in the plasma is determined com
pletely by the longitudinal motion of the particles and 
is independent of the transverse motion. In view of 
this feature, by solving Eq. (21) we can determine E~ 
and then treat the transverse motion in the specified 
field. 

The stationary solution of the system in (21) is found 
inE 10- 12l. It is shown in these references that in a time 
of the order of the reciprocal growth rate a plateau 
develops on the beam distribution function and a steady
state spectrum of superthermal oscillations is excited: 

z V2 

E,'='!!~v,' r [F'oo(v,)-F0 (v,)]dv,, (22) 
e2no J ,, 
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where Fo is the initial distribution function while F00 

is the height of the plateau, which is a known quantity 
and is determined from the conservation of the total 
number of particles: 

F, = __!!:;____ (23) 
Vz-V1 

( v2 and v1 are respectively the upper and lower limits 
of the plateau). 

It is clear physically that the establishment of the 
oscillation spectrum and the termination of the growth 
of the fields means that the radial focusing of the beam 
is terminated and a stationary radial distribution of 
particles is established. The equation that describes 
the dependence of the beam distribution function on 
transverse velocity vr and coordinate r can be ob
tained by substituting fo = f 1 ( r, vr ) F oo in (5) and 
averaging over the longitudinal velocity 

1 {) f:J2h 
---(rvrf.J..)-Dr'---=0, 
r {)r Dv," 

(24) 

Substituting Ek_ from Eq. (22) in Eq. (24) and carry
ing out the integration over the variables k and Vz we 
can find the coefficient D: 

(25) 

(we have made use of the estimates of[101 : v2 - v0 ~ Vo 
(n1/no )113, v2 >> v 1 ). 

In Eq. (24) we have carried out the substitution of 
variables 

and have used the Fourier method for solutions: 
W(x, y) = Wt(x)W2(y) 

_1_ dWt = _1_[__!_~(v dWz) _ _.!.._ Wz = _ ').Z, (26) 
Wt dx W2 y dy dy 9y2 

(The constant on the right side of Eq. (26) is taken to 
be negative since it is clear physically that when 
x - oo the distribution function must vanish.) 

The solution of Eq. (26) that vanishes when y -0 is 
of the form .. 

W(x,y)=) A('J..)e-~'xJ.r,('J..y)d'J... (27) 

Here, the coefficient A(x.) is as yet unknown; to deter
mine this coefficient we make use of the Hankel inte
gral formula, which allows us to write an arbitrary 
function in the form of an integral that contains the 
Bessel functions: 

W(O,v>=S h(J.y)J.di.S W(O,u)h(l.u)udu. (28) 

Substituting x = 0 in Eq. (27) and comparing Eqs. (27) 
we can now determine A(x.) and find W(x, y): 

00 .. 

W(x,y)= ~ W(O,u)udu ~ e-~'xh(!.y)l•;,(J.u)'J...dl.. {29) 

Integrating with respect to the variable X. we have 

1 r ( y2 + u2 ) ( yu ) W(x,y)= 2x J W(O,u)exp -~ I•,, 2x udu. 
0 

(30) 

In order to find the radial distribution of density in 
the focused beam we now multiply both sides of Eq. 
(30) by -v'V;" and integrate with respect to vr from 
zero to infinity: 

nt(x)=; V: f W(O,u)exp(-;;)h(~)udu. (31) 
0 

The function W(O, u) that appears in Eq. (31) is the 
velocity distribution function for the beam particles at 
the beam axis. If the beam is monochromatic in 
velocity W(O, u) ~ o(u), then in accordance with Eq. 
(31) the density is nonzero only at the point r = 0, that 
is to say, the beam becomes infinitesimally thin. Under 
actual conditions, in which the initial velocity spread 
in the beam is finite, the transverse dimensions of the 
beam are nonzero. Assuming that 

we write Eq. (31) in the following form: 

1/ VT3 s ( VT8 ) ( VTS ) nt(r)= 2nt(O) y-- 6''•exp -63 ---63 I•1 --68 ds (32) 
3r2D 0 6r2D ' 6r2D 

( n1 ( 0) is the particle density at the axis of the focused 
beam.) 

In general the integral in (32) cannot be computed 
so that we consider the asymptotic expression of (32 ), 
making use of the parameter A = vT /3~D. Near the 
axis, with A >> 1, writing 

( ~63 ) 1 { 1 } I•1, - ~ -=-exp -~s• 
2 l'nd63 2 

we have 

nt(r) = nt{O), a> 1. (33) 

Far from the axis, with A « 1 we can take It;s(A ~% ) 
~ (Ae ?16• Then the quantity n1(r) is found to be 

n1 (r) ~ ,d'i•nt(O) ~ n1 (0). (34) 

According to Eqs. (33) and (34) the beam density is 
independent of the coordinate r within the region 
r « VT/D113 and falls off rapidly when r » VT/D113. 
The quantity 

thus determines the beam radius in steady state. The 
particle density at the axis can be estimated making 
use of the conservation of particles. Integrating both 
sides of (32) with respect to r from zero to a and 
assuming that the right side vanishes when r > Ro, we 
have 

a' 
nt(O) ~-fit. (35) 

Ro2 

It follows from Eq. (35) that a significant focusing of 
the beam occurs when Rg << a 2, that is to say, if the 
energy associated with the thermal motion of particles 
is not too large: 

(36) 

As the beam density increases the Coulomb repul
sion forces also increase: Fe F::J 21Tntr. However, if the 
density of the beam is small compared with the density 
of the plasma, the force Fe is found to be small com-
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pared with the high-frequency focusing force [the right 
side of the second equation in (7)] and polarization 
effects can be neglected. Furthermore, the Coulomb 
forces are reduced in a relativistic beamYl 

In the above we have considered self-focusing for 
the case of a nonrelativistic beam. If the beam velocity 
is close to the velocity of light 1 - vU c2 « 1 it is 
necessary to consider the relativistic increase in the 
the mass of the beam particles, which leads to a reduc
tion in the growth rate: y* ~ y 0 ( 1 - ~/c2 ) 112 and an 
increase in the focusing time T* ~ 1/ y* :[15l At the 
same time the focusing efficiency is increased since 
the energy transferred by the beam to the field is in
creased. It should be noted that the method of focusing 
considered here applies only when (ndno )113 

« ( 1 - vU c2 ) 112• In the opposite limit the beam ex
cited a volume wave which leads to defocusing of the 
beam since the amplitude of the longitudinal field 
diminishes with radius. 

The author wishes to thank Ya. B. Fa1nberg for 
suggesting this topic and for his continued interest and 
valuable discussions; the author is also indebted to 
V.I. Kurilko and V. D. Shapiro for valuable comments. 
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