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The problem of appearance of axially-symmetric instabilities in a plasma discharge of arbitrary 
conductivity is solved. Two configurations are investigated: a simple cylindrical discharge ( Z 
pinch) and a discharge with an inverse axial current. The increments of the most dangerous long­
wave instability that disturb a considerable part of the plasma are found, and it is shown that the 
multimode instability in an infinite-conductivity plasma revealed in Trubnikov's work[ll changes 
into a single-mode instability with decrease of conductivity. The finite conductivity does not affect 
the fundamental unstable mode, whereas the higher modes are stabilized by the finite conductivity 
of the plasma. The present analysis makes it possible to rigorously justify the two approximations 
which have hitherfore been employed in investigations of stability of plasma discharges, viz., the 
limiting case of high conductivity (see[l,sJ and the literature cited there) and the case of low con­
ductivity, which is of special interest in connection with the use of self-compressed discharges as 
light sources[4 ' 5 l. The analysis also points to the correctness of such limiting approaches in in­
vestigation of spiral and kink modes. 

1. SIMPLE CYLINDRICAL DISCHARGE 

UNDER conditions of strong radiant thermal conduc­
tivity, the plasma temperature changes little over the 
cross section of the discharge in the equilibrium state, 
and temperature fluctuations with a wavelength exceed­
ing the average photon range in the plasma can attenu­
ate within times much shorter than the characteristic 
frequencies of the oscillations. The corresponding con­
ditions were obtained earlier[4 l. When these conditions 
are satisfied, the system of equations for the axially 
symmetrical oscillations of a cylindrical plasma dis­
charge of finite conductivity is written in the form 

1 8 
- irop1 +-;:-a, (rpovr)+ ik,v,po = 0, 

{) 
iropovr = -,- (pt + BoB~/4n) + BoB~/2nr, 

or 

iropov, = ik, (Pt +BoB~/ 4n), 

ic 2 ( B<) . a u;B.--- !!..B0 -- = k,v,Bo- •-(v,Bo), 
4naow r2 or 

p, = v,2f!t, v,2 = xTo(1 + z) / M. (1) 

Here Vs is the velocity of isothermal sound, To is the 
temperature of the plasma, which does not change dur­
ing the oscillation, and Bo and Po are the equilibrium 
magnetic field of the current and the density of the 
cylindrical discharge[ 1l: 

-- r 
Bo = )'4:npo(O)-, 

l'p 

where rp is the equilibrium radius of the discharge. 
Using (2), it is convenient to reduce the system (1) 

to two equations for the quantities u and v, defined by 
the relations 

(3) 

The corresponding equations are 

ro'[r(ou ) J 1 {) -- --v +u +--vr-kfu=O, 
v,2 2 or r or 

[ B0 iroc2 ( 1 ) r ] ( ou) 2k,2B02 2Bo {) Bo 
ro' ---;:- 4nao !!.. - 7z" Bo v- fir = 4:nrpo u- 4nr arP. v. 

(4) 
The boundary conditions of this system follow directly 
from the equations of motion for Vf and Vz, if it is 
recognized that the equilibrium density vanishes on the 
discharge boundary, p(rp) = 0. Hence, taking into ac­
count the boundedness of the perturbations of the 
velocities vr and Vz on the plasma boundary, we ob­
tain 

u(rv) = v(rv) = 0. (5) 

We shall show that the condition u( rp) = 0 has an 
illustrative physical meaning of the conservation of the 
total current in the case of oscillations in the dis­
charge. Obviously, the conservation of the total current 
at small perturbations means vanishing of the expres-
sion 

Tp rp+ir 

~ (rotB1),rdr+ ~ (rotB0),rdr= 0, 

where ~r is the perturbation of the plasma surface, 
the equation of which is written in the form 

F(r) = r- rp- (;,(rp, z) = 0. 

(6) 

(7) 

If it is recognized that h « rp, then we get from (6) 
4n 
-M,rrp + Bcprp = 0. (8) 

c 
On the other hand, this relation follows from the con­
dition u(rp) = 0, with allowance for the continuity 
equation, written on the plasma boundary, and the equa­
tion of motion of the boundary itself 

2 
irop1 +-Vrpo(O) = 0, (9) 

l'p 

(10) 

Substituting p 1 from the condition u ( rp ) = 0 and (1 0) 
in Eq. (9 ), we obtain the condition (8 ), proving the state­
ment made above. 
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Proceeding to solve the system (4), we introduce the 
dimensionless quantities 

ra m"rp2 iooc2 
x=- x=k,rp, A.=--, 1]=---- (11) 

rp2 ' Vs2 43tO'oV82 • 

Solving the first equation of (4) with respect to v in 
substituting the solution in the second equation, we 
reduce the system (4) to a single differential equation 
of fourth order in u, or else we represent it in inte­
integro-differential form 

(12) 

The boundary conditions (3) are then written in the form 

u(1)=0, (13) 

We consider throughout the most dangerous long­
wave perturbations, for which K « 1, with A << 1 (if 
K « 1 and A >> 1 there are no unstable oscillations). 
In this case it is easy to show that for K2 << A and 
for arbitrary 11 Eq. (12) has a unique solution, finite 
everywhere, satisfying the boundary condition u ( 1 ) = 0. 

u(x) =canst· (1- x). (14) 

Substituting this solution in the second boundary condi­
tion (13), we obtain the spectrum of the unstable oscil­
lations 

(15) 

This expression coincides exactly with the growth in­
crement of the fundamental mode, obtained by Trubni­
kov(1J for the case of a plasma of ideal conductivity. 
The derivation of the solution (14) shows that there 
exists an unstable oscillation mode that is independent 
of the conductivity and has the character of a constric­
tion of the plasma pinch. 

It should be noted that the growth increment of the 
fundamental mode of the oscillations can be estimated 
directly from the second boundary condition (13 ). 
Since the eigenfunction of the fundamental mode has no 
nodes inside the segment [ 0, 1], this boundary condi­
tion can be satisfied only when A 2 :::o K 2, or, what is the 
same, y - ..J I kz I rp v s / rp, as is confirmed by exact 
calculation. 

We shall continue the analysis separately for the 
cases 11K 2 < 1 and 11K 2 > 1. If 11K 2 < 1, Eq. (12) re­
duces to the form 

x• 1J 
uii----u +-[4x(1-x)uiV + 4(3-5x)uiii-16uii] = 0. 

A(1-x) A (16) 

When 11/ A - 0 ( o- 0 - 00 ), it goes over into the equation 
obtained and investigated in[lJ. Besides the considered 
fundamental mode K2 «A, Eq. (16) contains also 
higher unstable oscillation modes, whose growth in­
crements cannot be estimated simply from the boundary 
condition, since their eigenfunctions have an oscillatory 
character. To investigate these modes, let us analyze 

(16) in the geometrical optics approximation! devel­
oped for similar fourth-order equations in[6 • 

We seek a solution of (16) in the 
:r: 

u=Aexp(i ~ k(x)dx). (17) 

In the zeroth geometrical-optics approximation we then 
obtain the following eikonal equation: 

x• TJ 
k"+---4-x(1-x)k"=O, 

A.(1-x) A 

k122 = 1 ±ve-t-16T)"K'x/A2 . 
' 8'T)x(1- x)/A 

We are interested in unstable aperiodic solutions 
that increase in time. We therefore introduce 

(18) 

(19) 

y = -iw > 0. With this, 11 > 0 and A < 0. One of the 
roots of (19) is always negative, k~ < 0, and the corre­
sponding wave cannot exist in the plasma. The second 
root, to the contrary, is positive in the entire region 
occupied by the plasma. Therefore, using the results 
of(e], we can write the dispersion equation for the 
spectrum of the higher modes in the form of the quanti­
zation rule 

{ dxk2 (x)=S dx{ 1 -l'f+16~}'''=n(n+~). (20) 
0 0 8T]x(1- x)/J.. 4 

Here n is an integer (number of oscillation mode) 
much larger than unity. It is precisely because of this 
circumstance that the function u(x) oscillates rapidly 
on the segment [ 0, 1] and satisfies automatically the 
second boundary condition (13 ). 

The dispersion equation (20) can be easily analyzed 
in two limiting cases. 

a) High-conductivity plasma: 16 11K 2/A 2 « 1. In this 
case we get from (20) the following spectrum 

4x2 4kz"v.Z (21) 
A= --n-=•.,...(n-+-:---=-:3/S2' or v•= n•(n+3/.)2' 

which coincides exactly with that obtained in [1 1 for high 
modes in an ideally conducting plasma. The region of 
applicability of this spectrum is determined by the 
inequality 

11znscz :rt2c2 

1> >-- (22) 2crorp2k,v. 2crorpvs · 

This inequality corresponds to skin-penetration of the 
field perturbations into the plasma, and is the inverse 
of the inequality used as the basis for the stability 
analysis in[sJ. 

b) low-conductivity plasma: 1611K2/A2 » 1. Equa­
tion (20) yields in this case1> 

4x• 4k,•r"'2 v,• ( ) 
lJ ~ n•(n + 3/ 4) 4 , or 'V ~ ~-'/-4ncr0-. 23 n•(n + 3 4)• c• 

The condition for the applicability of formula (23) is 
the inverse of (22) and coincides with that used in the 
analysis of the oscillations of a plasma discharge of 
low conductivity[s]. 

Finally, in the plasma-parameter region where 
11K 2 >> 1, i.e., in the case of exceedingly low conduc-

llThe integral appearing in this case is equal to 
1 1 -

I= ~ x'l• ~- x = 2 ~ l:u~:, = B (: '~) ~ 2. 
0 0 
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tivity, which essentially is the one considered in[sJ, the 
equation for the oscillations is of the form 

4.x(1- x)uiV + 4(3- 5x)uiii- 16uii = 0 (24) 

and contains a unique bounded solution satisfying the 
boundary condition-the fundamental mode considered 
above, 

Thus, we see that the growth increment of the funda­
mental mode of the unstable oscillations of the con­
striction type does not depend on the conductivity of 
the plasma and is determined by expression (15). On 
the other hand, the growth increment of higher modes 
decreases monotonically with increasing conductivity 
of the plasma, in accord with formula (23). 

2. DISCHARGE WITH INVERSE AXIAL CURRENT 

We now consider the pinch effect in a discharge with 
inverse current. For this case, the equilibrium solu­
tion was obtained earlier[sJ. The kinetic equation of a 
plasma in such a discharge is balanced by the mag­
netic field of the current in the plasma and by the 
magnetic field of the inverse current. The plasma fills 
a cylindrical layer bounded by radii r1 and r 2• An 
analysis of the plasma oscillation is based on the same 
equations (1) as in a simple cylindrical pinch, but using 
the equilibrium state for a discharge with an inverse 
axial current. Boundary conditions analogous to those 
obtained for a simple cylindrical pinch are formulated 
in the case of an inverse pinch on the two boundaries 
r 1 and rz (or Ro ± Xp for the case Ro >> Xp ). Ro is 
the point at which the maximum plasma pressure is 
reached[ 51 : 

Io 
Ro2 = rt2 +-, 

xt]o 

Introducing the dimensionless variables 
r2 

x=­
Ro2 

(25) 

(26) 

we can reduce the system (1 ), describing the oscilla­
tions in the discharge, to a single integro-differential 
equation for u( x) 

[ X-'1( 0 0 1 ) X ]{eAx/~ r "-+'11-- 4-x-;:----xz -- ----J dz'e-Ax'i' 
X Ox OX X X- 1 ' 2yx "' 

( Oux') -Ou} VA2 1 Ou:t X x•u- A.-- -2l'x- -21..---=-_-
0x' O:t v,2 l'x Ox 

VA2 eAx/4 ( {j Bo ) r ( iiux') +2---=- -Jn--_eAx/4 . J dx'e-Ax'/4 x2u-A.-- =0, 
v,z l'x fix p0 l'x "' Ox' (27) 

(28) 

Here x1 2 = r~ 2 /Rg, and the quantities v_A. 
= Bgj41TPo and p 0 /B0 are functions of x, determined 
from the equilibrium state (25), with 

Bo = ~11 ior ( 1- ·!!I'-)= 2; iJlo 'I~ ( 1-~) . (29) 

The boundary conditions for Eq. (27) are written in 
the form 

u(xt) = u(x2 ) = 0, ~ dxu(x)e-AxJ•( x- ~~2 ) = 0. (30) 

"' 

An analysis of the fundamental mode of the oscilla­
tions for I A I « 1 is even simpler in this case than 
for the case of a simple Z pinch. Its development in­
crement for the case Ro >> Xp can be obtained directly 
from the second relation in (30 ), if it is recognized 
that in this case x1,2 = 1 ± 2xp/Ro. Indeed, for the 
fundamental mode (n = 0) the function u(x) has no 
nodes and is smooth in the region x1 $ x $ x2 occupied 
by the plasma (this is proved rigorously below), and 
since I x1,2 - 1 I « 1, we have 

A.• ~ 4xz, or 'Y' = - wz = 21 k, I v,z < _v!.__. (31) 
Ro Ro2 

To find the eigenfunction of the fundamental mode, 
and also to analyze the higher modes ( n > 1 ), we go 
in (27) and (30) to the limit K 2 << 1, A<< 1, assuming 
that K 2/A is a finite quantity. We introduce the variable 
y = x - 1 and, assuming R0 >> Xp (i.e., y « 1), we 
substitute in (27) the equilibrium values for v_A. and 
B0 /p 0 , As the result, the equation reduces to the 
following: 

( 1+4y.2'! Ql ~) iiu +2y!_____!!!!__ 
i. Oy2 y oy {}y 4a2- y2 

x,z 4a2 + yz 'f 
-2yT (4a•-y2)2 .l u(y')dy'=O, 

f-2·1. 

(32) 

and the boundary conditions assume the form 
2« 4 2 

u(±2a)=0, ) dyu(y)( 1+y- 'A:) =0, a""';:. ~1. (33) 
-2« 

For the fundamental mode of the oscillations, as seen 
from (31 ), we have K 2/A- 0. In this case the last term 
in (32) can be neglected, and a solution satisfying the 
first of the boundary conditions (33) is written in the 
form 

u(y) = con~t- (y2 - 4a2). (34) 

This function actually has no nodes in the region oc­
cupied by the plasma, i.e., when y 2 < 4 a 2. Substitu­
tion of this solution in the second condition (33) leads 
to the spectrum (31 ). 

We consider now the high modes ( n > 1 ), from 
which K 2/A is finite. An analysis of such modes can 
be carried out in the geometrical-optics approximation. 
We then obtain from (32) the following eikonal equation 

2x2 y 1J 4a2 - y2 ( ) 
k•+-~·+4-k'--- -=0, 35 

t.. 4a'-y2 A. 4a2 +Y' 

2 { 1/ x2 -------y--) I TJ 4a2 - Y2 

kt,z= 1±V 1+32T]ii" 4a•+y2f/8-i-4a•+y'. (36) 

We are interested in solutions that grow aperiodically 
in time, for which y = -iw > 0, and therefore T/ > 0 
and A < 0. Taking this into account, we can easily see 
that the root k~ is either negative or has a large imag­
inary part in the region occupied by the plasma. No 
solution corresponding to this root can exist in the 
form of a wave in the plasma. The second root k~ 
turns out to be positive in the region 0 $ y $ 20!, 
Therefore oscillations are possible only in this part 
of the plasma, and their spectrum, according to[6 J, is 
determined by the dispersion equation 

(37) 
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where k2 is given by formula (36 ), and n is an integer 
much larger than unity (number of the mode). Because 
of this, the function u(y) oscillates rapidly on the seg­
ment [0, 2aj and the second boundary condition of (33) 
is automatically satisfied with a good degree of ac­
curacy. 

Let us analyze the dispersion equation (37) in the 
limiting cases of high and low plasma conductivity in 
the discharge. 

a) High-conductivity plasma: 411K 2/ aA. 2 << 1. In 
this limit, we obtain from (37 )2, 

4x2alt2 

/..=------ or 
n2(n+li2)2' 

.2 _ 2 4k,2v,ZJ12 Xp xp v,2 "--(J) =------<-­
n2(n+1h)2Ro 'R0 R02 • 

The condition for the applicability of the obtained 
spectrum is of the form 

c2 1 1/ Ro c2 ( R0 )'/, 
1~4-----v ->--- __ 

4na0xp2 kzVs Xp JHJoXpVs Xp • 

(38) 

(39) 

b) l.Dw-conductivity plasma: 41/K 2/ aA. 2 >> 1. In this 
limiting case, Eq. (37) leads to the following oscillation 
spectrum 3, 

or 

(40) 

The condition for the applicability of this formula is the 
inverse of the condition (39 ). 

2lHere 

1 

l,=~ dt[t(1+t') ]'" ," __ 
0 (1-t2 ) 2 2 

From the foregoing analysis of perturbations of the 
constriction type it follows that in an inverse pinch, 
just as in a simple Z pinch, the growth development of 
the fundamental mode of axially symmetrical oscilla­
tions does not depend on the cond_yctivity of the plasma, 
and may become of the order y :::, v s /Ro (i.e., smaller 
by a factor R0 /rp than in the case of a Z pinch). The 
development increment of the high modes ( n > 1) de­
creases with decreasing plasma conductivity, and at a 
faster rate than the corresponding modes in the Z 
pinch. Thus, the inverse pinch has at R0 >> rp a much 
greater stability with respect to very dangerous long­
wave instabilities, thus confirming the conclusions 
made in [51 on the basis of an analysis of a plasma with 
"zero" conductivity. 
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