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The dependence of free energy on magnetic flux is constructed for a system of charged bosons in a thin 
superconducting ring. This permits one to obtain the critical value of the magnetic flux, below which un­
damped currents can flow at quantized values of the magnetic flux. The ratio of the lifetime to the re­
laxation time of the metastable macroscopic current state can also be estimated. Peculiarities of Bose 
condensation in a parallelepiped with strongly differing edges are considered in the Appendix. A conse­
quence of these peculiarities is that superfluid and superconducting properties, and in particular quanti­
zation of the magnetic flux, may appear at temperatures which are smaller than that of three-dimensional 
Bose condensation. 

INTRODUCTION 

THE quantization of the magnetic flux in superconduct­
ing rings is connected with existence of maxima on the 
plot of the free energy against the magnetic flux. [lJ 

Bloch and Rorschach £2J considered the conditions for 
the presence of such minima in a gas of charged bosons 
at zero temperature. They found that in cylinders with 
thin walls the minima of the free energy occur at dis­
crete values of the magnetic flux so long as the field 
inside the cylinder does not exceed H*d/R, where dis 
the wall thickness, R the cylinder radius, and H* the 
critical field for the Meissner effect. 

In £3 ' 4J they considered the case when a periodic de­
pendence of the free energy on the magnetic field can 
occur in systems of various dimensions at T > 0, and 
the associated quantization of the flux. In the present 
paper we consider this question in greater detail for 
charged bosons in a thin ring. 

The constructed dependence of the free energy on 
the magnetic field is used to obtained the critical value 
of the magnetic flux at T > 0, above which the minima 
of the free energy vanish. For a hollow cylinder, the 
critical value of the magnetic field is connected in this 
case with the critical field for the Meissner effect by 
the same relation, as that obtained by Bloch and Ror­
schach £2J for T = 0. 

In addition, we consider in the Appendix the features 
of Bose condensation in a parallelepiped with differing 
edge dimensions, which can be significant both for the 
quantization of the magnetic flux and for other super­
conducting and superfluid properties. 

In Sec. 3 we calculate the relation between the life­
time and the relaxation time of a metastable current 
state, which is very important for the possibility of 
observing quantization of the magnetic flux in un­
damped currents. 

1. HAMILTONIAN OF THE SYSTEM AND ENERGY 
OF THE MICROSTATE 

We consider a thin ring with inside radius R and 
outside Radius R +d, with d « R. We introduce the 

coordinate x = R, which is connected with the angle of 
rotation about the axis of the ring. When a magnetic 
field is present inside the ring, the electromagnetic 
vector potential A in the volume of the ring differs 
from zero and is directed along the x axis. It can be 
regarded as constant in the volume of the ring, accu­
rate to small quantities of order d/R (see £4J). Then 
the Hamiltonian of a system of N particles with charge 
e and mass m can be written in the form 

H = ~ (p;- eA/c)2 + H' +$2 
~ 2m 2L' 
j=i 

(1) 

where Pj is the canonical momentum1 > of the j-th parti­
cle, connected with the coordinate x, il> = 27TRA is the 
magnetic flux of the ring, and L is the self-inductance 
of the ring. We have separated in the Hamiltonian the 
critical energy of the magnetic field produced by the 
current flowing through the ring. 
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We shall solve the problem in the single-particle 
approximation, choosing as the single-particle functions 
the eigenfunctions of the operator Pj· For each micro­
state of N particles, in the absence of external magnetic 
fields, the magnetic flux il> should be connected with the 
current 

N 
l=~(p;-eA/c) e 

m 2JtR 
j=i 

by the equation 

LJ e ~ e L 
<1>= 2JtRA =-= -- ~ (p;--A)-. (2) 

c 2:rcRm c c 
j=1 

From (2) it follows that 

D 1 N 

A-c() () ~ ---; p D + 1 ' p = N LJ p;, 
j=1 

where (p) is the average momentum of the particle, 
and the dimensionless quantity D is equal to 

(3) 

!)The term "momentum" is used throughout for the canonical mo­
mentum. 
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e2N L 
D=;;;;;;(2nR) 2 • ( 4) 

We represent the momentum of each particle in the 
form 

P; = (p) + fii. (5) 

Taking (2), (3), and (5) into account, the energy of the 
microstate is 

N 

E = ")' { (p;- eA/c)' +_!_~A p;- eA/c ·} 
•'--" 2 2 + BHJ 
;~ m c m 

(6) 

By EHj we mean the signal-particle energy connected 
with the term H' in the Hamiltonian (1). 

Thus, by expressing A in terms of the average mo­
mentum, we have eliminated A and .P from the expres­
sion for the energy of the microstate. 

2. DEPENDENCE OF THE FREE ENERGY ON THE 
MAGNETIC FLUX 

The free energy of an ensemble of microstates with 
specified .P, meaning also with specified (p), can be 
written in the form of a sum of two terms 

F=Eo+F, (7) 

where Eo= N (p)2/2m(D +1), and F is the fr~e energy of 
the ensemble of microstates with energies E, defined 
by the second terms in (6) 

(8) 

The investigated statistical ensemble can be charac­
terized by the set of quantities n(k, q), which character­
ize the average number of particles at the level with 
quantum numbers k and q. 

By q are meant the quantum numbers determining 
the energy EHj, and the quantum number k determines 
the momentum Pj, 

p, = (k- a) hI 2nR, (9) 

where 0! = t/N, and tis an integer smaller than N; in 
practice, 0! changes continuously from zero to one. The 
value of 0! is determined by the value of the average 
momentum (p), which can assume the following values: 

(p) = (s + a)h/2nR, (10) 

where s is an integer. For values of (p) that differ by 
a multiple of h/2?TR, the quantity 0! is one and the same, 
meaning that the spectrum of th~ momenta Pj is the 
same. It follows therefore that F is a periodic function 
of (p) with a period h/2?TR. 

In addition to the usual conditions for the canonical 
ensemble 

~ n(k,q)=!V (11) 
k,q 

the numbers n(k, q) are subject to the additional limita­
tion 

~ p(k)n(k, q) = 0. (12) 
k,:j 

If the distribution n(k, q) for the bose particles is der­
rived by any one of the methods known in statistics, [sJ 

with allowance for the conditions (11) and (12), then we 
get 

zexp(- e'(k, q)fkB(/') 
n(k,q)= ( 'k /k 1-zexp -e ( ,q) BT) 

(13) 

By E'(k, q) we mean a quantity which in general is not 
equal to the energy ?'(k, q) of the single-particle level: 

' - h 2(k- 11)2 
8 (k,q)- 2m(2nR)2 +,eH(q). (14) 

The constants whose selection makes it possible to 
satisfy conditions (11) and (12) are z and o (0 :so :s 1). 

We shall henceforth consider rings of macroscopic 
dimensions, satisfying the condition 

m ( h )' 1 t.' 
M= kBT 2nRm =2;Rz-> 1• (15) 

where >.. = (2?T:Ii2/kBTm) 1/ 2 is the thermal wavelength. 
Condition (15) makes it possible to replace summa­

tion over k by integration outside the region of the Bose 
condensation, for a definite total number of particles. 

However, the integration with respect to k, i.e., with 
respect to the momentum p, causes the left side of (11) 
to become independent of o; it follows from (12) that 
o = 0!. The free energy F does not depend in this ap­
proximation on 0!, meaning also on the magnetic flux. [sJ 

The dependence of t' on 0! and the associated quantiza­
tion of the magnetic flux can take place in the region of 
bose condensation, when one term in the sum over k can 
make a contribution comparable with the value of the 
total sum. The largest contribution to the sum over k 
can give either the levels with k = 0 or with k = 1. 

We therefore represent (11) and (12) in the form 

NOc+N,e+Nb=N, (16) 

-aNoc + (1- a)Nic + (b ·- a)Nb = 0, (17) 

Where Noc is the number of particles at the levels with 
k = 0, N tC is the number of particles at the levels with 
k = 1, and Nb is the number of particles at the remain­
ing levels. The expressions for Noc, Nte, and Nb are: 

{ ( 
/)2 BH(q)) }-! 

Noc = ::S z exp M Z + kBT 1 - z , 
'/ 

(18) 

, { ( (1- 1\)2 BH(q)) }-1 1\ 1, = ~ .z exp M + -- - z , 
• 2 kBT 

(19) 

r f ( (k-1\)2 BH(q)) }-1 
Nv = ::S J dkz lexp M-~+~T -z . 

q 

(20) 

In (20), the integral with respect to k replaces the 
sum over all k except k = 0 and k = 1. 

Further calculations will be made for the region of 
parameters where, besides the condition (15), the fol­
lowing inequality is satisfied: 

(21) 

and the quantity Nc = Noc + Ntc will be the called the 
number of particles in the condensate. 

In order for Noc or Ntc to be able to assume macro­
scopic values comparable with N, it is necessary that 
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the oenominators in (18) or (19) vanish, i.e., either that 

or 

~ 1 (1- b) 2 ~(qo)) 
z ~ exp M--2- -+ k"T ' 

where EH(qo) is the smallest value of EH(q). 
The indicated circumstance, together with the condi­

tion (21 ), can lead to the following singularities of the 
dependence of Noc, N1c, and Nb on z and o: 

1) When o differs from Yz, we get the inequalities 
Noc » N1c and N1c >> Noc when o < Yz and o > 1/z, re­
spectively. 

2) Changes of o and the ensuing small changes of z 
near unity do not affect the value of Nb, where there is 
no divergence as z - 1. In this connection, neither Nb 
nor Nc = N- Nb depends on a, i.e., 

N, = wN, Nb = (1- w)N, (22) 

where w is independent of a. 
By making these assumptions, we can readily deter­

mine from (16) and (17) the dependence of Noc, NlC, and 
Nb on a. When 0 < a(1- w)/2, we have 

{j =_a_, Noc = wN, N,, = 0. 
1-w 

When (1- w)/2 < Cl! < (1 +w)/2 we have 

(23) 

o=~, N0,=( t_t:w -a)'N, N,,='(u- 1j 10-)N. (24) 

When (1 +w)/2 < a< 1 we have 

6 = ~ =-~, N 0, = 0, N1, = wN. (25) 

For the free bosons, the individual terms in the sum 
over k can be comparable with the value of the entire 
sum only in the region of the bose condensation. 

For macroscopic rings, the approximate equations 
for the sums over q in (18) and (19) may include a term 
corresponding to the level with the lowest energy, and 
also one-dimensional and two-dimensional integrals. 

The one-dimensional and two-dimensional integrals 
may also enter in the expression (20) for Nd, together 
with a three-dimensional integral. This is shown in the 
Appendix. It is easy to verify that the term comparable 
with the entire sum in the sum over k can lead to the 
existence, over the periphery of the circle, of an "off 
diagonal long range order" (ODLRO), which, according 
to Yang, l7J should always accompany the appearance of 
superfluid or superconducting properties. 

Equations (23)-(25) make it possible to obtain the de­
pendence of F on a. The condensate makes no contribu­
tion to the entropy, which is determined by an integral 
independent of a: 

F = r:;- TS = ~ ;(k, q)n(k. q)-- TS =· 

h' ra' (1-a) 2 (6-a)2 J =Fo+------,--No.-+-- .---N,,+--,-N,,, 
m ( ~?7-h. 1 - L __ . 2 2 

(26) 

where Fo is the value of the free energy at a = 0. 
Substituting (23)-(25) in (26), we obtain 

h2N w a2 

m{2nR) 2 1-w 2' 

F=Fo+ h'N [ .<:_-::- a 2 _ 1 - w J, 
m(2nR) 2 2 8 

h2JV w (1- a) 2 

m(2n:R) 2 1- w 2 

1-w 
a<-2-, 

l21 -u1<;' 
1+w 

a>-2-. 
(27) 

It follows from (23)-(25) that when IYz- a I > w /2 the 
condensate is concentrated at levels with one value of 
k, and when a changes from (1- w)/2 to (1 +w)/2, the 
condensate goes over to levels with other values of k. 
At the points a= (1-w)/2 and a= (1 +w)/2, the ana­
lyticity of the F as a function of the magnetic flux is 
violated. In the study of the superfluidity of a Bose gas, 
such nonanalytic points appear on the dependences of 

. t t' 1 't [B] the thermodynamic properties on~ the ro a wn ve oc1 y. 
Figure 1 shows a plot of (F- Fo)/NMkBT (see (9)) 

against the quantity 

R c D 
(p) 71 = cD eh D + 1 

for the values w = Yz (solid line) and w = 1 (dashed line). 
The curves were plotted for D = 7 4. The minima of the 
free energy F are found at the points mo, m1, mz, ... at 
magnetic-flux values 

he Dw 
(J) = e Dw + 1 8' 

(28) 

where s is the index of the point m 8 • At the points a 8 

and bs we have a = (1-w)/2 and a = (1 +w)/2, respec­
tively. 

We present the values of the energy barriers sur­
rounding the minimum point m8 • We denote byE- the 
energy barrier on the side of the smaller fluxes (the 
energy difference between the points ts and ms on 
Fig. 1), and by E+ the energy barriers on the side of 
the larger fluxes (the energy difference between the 
points t8 +1 and m 8 on Fig. 1). 

E± = m(2:~)' ~: JJ_~~ 1 ( 1 ±[)-,;,2~ 1 )'. (29) 

The minima of the free energy occur so long as the 
barrier E1 does not vanish, i.e., so long as 

s ~ ( 1 + Dw) I 2. (30) 

This criterion depends on the temperature only via 
Nc, and was previously obtained by Bloch and Ror­
schach lZJ for T = 0 and for a hollow cylinder. The mag-

F-f~, 
NM,.,rJ 

0,15 tz 

t, /\ 

/'\ / \ 
11,10 I \ I \ 

; t, \ :A' ,~ \ i 
I I a, 11 

a, 6t I I J 
i/ ITlz 

2 

FIG. 1. 

J 
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netic field for a cylinder, corresponding to the limiting 
value of s, is given in the introduction. 

We shall need the energy differences between the 
point ts and b8 (Et_ ), T8 + 1 and a8 (Et+), bs and m8 (Em_), 
and also a8 and m8 (Em+ ); 

h2 N (Dw + 1)2( 2s )2 
Et± = m(2nR) 2 16 D(D + 1) 1 ± --oD:-w-+-:---:1- ' 

E h2 N(1-w) Dw+1 ( 2s )2 
m± = m(2nR)2 16 D + 1 1 + Dw + 1 · 

(31} 

(32) 

It should be noted that the presence in the sum over 
k of one term that is comparable in magnitude with the 
entire sum, and the associated presence of ODLRO, is 
not the only cause of a dependence of F on a. According 
to Bloch, [41 such a dependence takes place without 
ODLRO in one-dimensional and two-dimensional systems 
when the condition (21) is satisfied. However, the proof 
of the impossibility of ODLRO in one-dimensional and 
two-dimensional systems [sJ pertains to systems with a 
finite one-dimensional and two-dimensional density. 
This is not so in our situation, as follows directly for 
a one-dimensional system from the condition (21), since 
the density N/R increases more rapidly than R with in­
creasing R. Using the Appendix, we can verify that 
ODLRO takes place. In the next section it will be shown 
that the condition (21) is necessary for the existence of 
a steady metastable state for quantized values of the 
magnetic field. 

3. LIFETIME AND RELAXATION TIME OF META­
STABLE CURRENT STATE 

The undamped currents in the superconducting ring 
are non-equilibrium metastable states with very long 
lifetimes. To observe undamped currents experimen­
tally at values (28) of the flux <II, it is necessary, on the 
one hand, to have a sufficiently rapid momentum ex­
change between the system and the medium at values 
of 4.> different from (28), and on the other hand this rapid 
momentum exchange must not lead to a considerable 
change of the state of the system with time after the flux 
<II has reached the values (28). It is therefore of interest 
to find the ratio of the relaxation time and the lifetime 
of the metastable macrostate with average values 4.> 
equal to (28). We shall consider the situation when the 
interaction of the bosons with one another is more in­
tense than the interaction with the surrounding medium. 
We can then speak of a partial equilibrium within the 
limits of the ensembles of the microstates with identical 
values of the total energy E and the total momentum 
P = N (p). Such an ensemble will be called microcanon­
ical, although it is narrower than the ordinary micro­
canonical ensemble. The nonequilibrium state can be 
characterized in this case by a distribution function 
f(E, P), which determines the probability that an arbi­
trarily chosen microstate belongs to an ensemble with 
specified E and P. 

Further simplification of the problem can be effected 
in two opposite cases: 1} the energy relaxation is much 
more slow than the momentum relaxation; we can then 
consider the time variation of f(E, P) at a specified E; 
2} the energy relaxation is much more rapid than the 
momentum relaxation; we can then speak of equilibrium 
within the framework of the broader ensemble consid-

ered in the preceding section and characterized by spe­
cified T and P. 

In both cases the nonequilibrium state can be charac­
terized by a distribution function f(P) that depends only 
on the momentum P. The equilibrium values of f(P) are 
proportional to exp (S(<fl )/ks) in the former case and 
exp (- F(<fl )/ksT) in the latter case, where F(<fl) is the 
free energy calculated in the preceding section, and 
S = (E - F)/T is the entropy for the microcanonical 
ensemble defined above. For the microcanonical en­
semble, Tis a parameter whose variation satisfies the 
COEdition E = const at various values of 4.>. If F(<fl) 
- Fo ~Eo, where Eo is the energy of the system when 
<II = 0, then T varies little with 4.>, and the quantities S 
and F /T differ by a constant that does not depend on <fl. 

Inasmuch as Eo~ ksTN(1-w} and F- F0 ~ Nwh2/mR2, 

the condition F- Fo « Eo means that M « (1- w)/w, and 
is violated only at sufficiently low temperature, when w 
is very close to unity. Let us assume that momentum 
exchange occurs in collisions of individual bosons with 
objects of the external medium. Then, for each colli­
sion, the total momentum P changes by an amount of 
the order of (p ), which is small compared with P = N (p), 
and therefore the change of f(P) with time can be de­
scribed by the diffusion equation in momentum space P, 
as is done, for example, to describe the electron distri­
bution function in the Coulomb interaction [lol 

(33} 

where W is the diffusion coefficient, whose order of 
magnitude is (p)2 jT, T being the average time between 
the boson collisions that change the momentum of the 
system. 

We define the distribution function of the metastable 
current state corresponding to the index s in (28} as a 
function proportional to the equilibrium distribution 
function near the point m8 (see Fig. 1} 

fo(P) = ~exp(- _F_-_F---'(,_s!.-) ) 
G k8T 

(34} 

and equal to zero everywhere outside the interval be­
tween the points t8 and ts+l of the free-energy maxima 
adjacent to the point m8 • In (34}, F(s} denotes the free 
energy at the point m8 , and G is a normalization con­
stant. The quantity G characterizes the interval of mo­
menta near m8 , in which fo(P) differs noticeably from 
zero. In order for the arbitrary distribution function to 
assume in this momentum interval a form close to (34), 
it is necessary to have times on the order of the relax­
ation time Tr, determined from the relation 

1 /Tr = W /G2. (35} 

Once the distribution function assumes a form close 
to (34}, it changes slowly in time in accordance with 
fo(P} exp (- t/TM ), where TM is the lifetime of the meta­
stable state. To determine TM, we put in (33} afjat = 0 
and solve the obtained differential equation in the mo­
mentum interval between the points ms-1 and m8 with 
the boundary conditions f(P) = 0 at the point m8 _1 and 
f(P} = fo(P} at the point m8 • 

Then the constant TM can be obtained from 

1 __ w (at , oF 1 ) 
-rM - ap -r oF k8T ' (36} 
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where the right side contains the diffusion flux. In the 
general case, the expression for TM is somewhat com­
plicated. We present expressions for G and Tr/TM for 
the most interesting particular cases. All pertain to 
the situation in which E- » kBT and Dw » 1. 

1. E_<>< Et-» kBT, Em-« kBT. From (31) and (32) 
it follows in this case that w ~ 1, i.e., almost all the 
particles are in the condensate (dashed curve in Fig. 1). 

Then 

(37) 

_,, w 
G = '/mk8TN V 1 _ w , 

'tr 1/ 1- W ( E_ ) 
-= v--exp --- . 
,;,. w k 8T 

(38) 

3. Et_ « kT, E_ R1 Em_» kBT. In this case w is 
close to zero, 

- ,_, ,;, 1/ E_ ( E_ ) (39) 
G = '/mksTN'/w, TM = V ksT exp - ksT . 

In (37)-(39) we have left out coefficients of the order 
of unity. In all cases Tr/TM decreases exponentially 
with increasing E _/kB T ,_and in order to quantize the 
magnetic flux it is necessary to have E_ » kBT. We 
see from (29) that to this end it is necessary to satisfy 
the condition (21). 

We present E_fkBT for the conditions of the experi­
ment of Deaver and Fairbank, [UJ assuming, as usual, 
the number of condensed bosons to be equal the number 
of condensed spheres. This value is E_fkBT <>< 109 , 

which should lead to astronomical lifetimes of the cur­
rent state for any reasonable mechanism of momentum 
exchange. 

APPENDIX 

We consider here bose condensation in a parallele­
piped with different edge dimensions. 

We consider free bosons in a parallelepiped with 
edges Lx > Ly > Lz with periodic boundary conditions 
for the wave functions. The sum expressing the total 
number of particles is broken up into four parts, each 
of which is calculated21 within the limits of large 
Lx/>.., Ly/>.., and Lz/>.. (>..-thermal wavelength): 

N =No+Nt +N•+Na, No= 1 ~z , 

V n 1 
X ------1-z 1-z -

!.. 
1-z--.;:­

~Lx' 

1-z~J;-
x 

LxLv ( I. - v t.• ) =-2--ln _,/z+ --z..L1-z 
1.' Ly r L} ' 

2> After the first draft of this paper was submitted for publication, the 
author has learned of a paper by Krueger [ 12 ], who also obtained expres­
sions for the number of particles at different relations between Lx, Ly, La, 
and A. 

~I 
I. 

1~z~­
Lv 

1-z~~ 
Ly 

"" 00 00 f..2 f..2 
IV3 = ~ ~ ·~ z{ exp( n Lx' i2 + n L.,' k2 

r>=-"~ h=-= 1=-00 

(n=FC) 

+n~n')-zr1 = 2_ L,.LyLzx zfi.dt 
Lz' -yrr. t.• 0 et - z 

(A.1) 

In the calculation of N1 and Na we took into account 
the fact that these terms are significant only when 
z ~ 1. We shall call No, N1, Na, and Ns the numbers of 
the particles of the zeroth, one-dimensional, two­
dimensional, and three-dimensional phases. The ag­
gregates of phases N 111 = No + N1 and N <a> = N (1) + Na 
will be called the one-dimensional and two-dimensional 
gas. We define the temperature of the i-dimensional 
bose condensation from the condition that the number 
of particles in the i-dimensional phase equals the num­
ber of particles of the i-dimensional gas in the limit as 
z -1. Thus, we obtain the temperatures T1, Ta, and Ts 
and the corresponding thermal wavelengths >..1, >..a, and 
>..s. The temperatures Ts and Ta are non-analytic points 
on the plots of Na and Ns, and also of N<a> and N<u against 
the temperature: 

{ 
N, T>T3 {N<•>=O, 

T 'I N<•> =N(1-(-)), T3 > T> T2. 
Na= (T)'~> ;N2 = T, 

N T , T < T, T 'I T 
• N(1-(i))i T2 >T 

(A.2) 

In a one-dimensional gas near the temperature T1, 
the zeroth phase begins to be formed, but no violation 
of the analyticity of N1 takes place. For the thermody­
namic functions of the entire system as a whole, only 
the point Ts is non-analytic,and therefore only this point 
can be called a phase transition point in accordance with 
the customary terminology. The conditions indicated 
above for the determination of T1, Ta, and Ts lead to the 
following relations between the dimensions Lx, Ly, Lz 
and the critical temperatures T1, Ta, and T3 : 

6 T2 1-(Tt/Ta)'1•- (1- (T.fTs)"')TtfT,L Lv 
Lx=- , yin-, 

n T1 1-(Tz/Ta)'' A, 

Lz = _1_ r, 1 Ly -----,----,--, l.aln-. 
1.306 fa 1- (T,/fa) '' 1., 

(A.3) 

Let us see how the critical temperatures behave in 
the case of an unlimited increase of the dimensions Lx, 
Ly, and Lz and the number of particles Nat a constant 
three-dimensional density N/LxLyLz. This is the so­
called "thermodyanamic limit." The quantity Ts re­
mains unchanged in this case. On the other hand, the 
behavior of the temperatures T1 and Ta is determined 
by the relations between Lx, Ly, and Lz in the limiting 
transition. Several cases take place: 

Lx Lx 
1. = const.; = const. 

Ly In (Ly/1..2 ) In (Lv/l.z) 

In this case the ratios Lx/Ly and Ly/Lz increase 
without limit, and T1 ;e Ta ;e Ts. 

The temperature dependences of Lo, N1, Na, and Ns 
are shown in Fig. 2 by solid lines for the case Ts = 2Ta 
= 3T~o The dashed lines in the same figure show the 
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FIG. 2. 

numbers of the particles of one-dimensional and two­
dimensional gas N<l> and N<z>· 

Lx 
2. -= const; 

Ly 
Ly 
- =const. 
L, 

Here T1 = T2 = T3, and N1 and N2 are small throughout, 
i.e., N<2> =No 

Lx 
3 ...,-- = const· . L, ' 

L, 
--~=const. 
In (Ly/A.2) 

In this case T1 and T2 but T2 "' T3. No one-dimensional 
phase appears. 

Lx 
4. T2 = const; 

y 

Ly 
-= const. 
L, 

Here T3 = Tg but T1 "' T2. There is no two-dimensional 
phase, and N<2> = N(l>· 

Since the quantities No, N1, and N2 depend not only on 
the volume and the three-dimensional density but also 
on the form of the surface bounding the volume, they 
cannot be regarded as additive extensive thermody­
namic quantities. 

It should be noted that the one-dimensional and two­
dimensional gases considered above experience Bose 
condensation by virtue of the fact that the one-dimen­
siunal and accordingly two-dimensional density increase 
without limit in the thermodynamic limit. Bose conden­
sation in a two-dimensional gas was previously consid­
ered in Cl3J and Cl4 J. 

The foregoing results can be used to calculate Noc, 
N1c, and Nb in a cylindrical ring of height h, radius R, 
and wall thickness d « R, which, neglecting the curva-

ture of the surface, can be regarded as a parallelepiped 
with edges h, 27TR, and d. The quantization of the mag­
netic flux in different cases can take place either below 
T3 or below T2, or else below T1. 3> 

It follows therefore that the temperature of the tran­
sition of the superfluid and superconducting states can 
depend on the dimensions. Similar effects, namely the 
decrease of the temperature of the transition with de­
creasing thickness of the film of a material, actually 
take place for superfluid helium Cl4J and superconduct­
ing tin Cl5J films. 

The author is grateful to A. I. Ansel'm, A. G. Aronov, 
E. K. Kudinov, Yu. N. Obraztsov, and G. E. Pikus for a 
discussion of questions touched upon in the article. 

3) A criterion weaker than ODLRO is proposed in [ 12 ) for the pre­
sence of superfluidity and superconductivity (see also [ 3 •4 ) ). It is satis­
fied for all T < T 3 . For the quantization of the magnetic flux, such a 
weaker criterion is not suitable. 

1N. Byers and C. N. Yang, Phys. Rev. Lett. 7, 46 
(1961). 

2F. Bloch and H. E. Rorschach, Phys. Rev. 128, 169 
(1962). 

3M. Schick, Phys. Rev. 166, 404 (1968). 
4F. Bloch, Phys. Rev. 166, 415 (1968) 
5 L. D. Landau and E. M. Lifshitz, Statisticheskaya 

Fizika (Statistical Physics), Fizmatgiz, 1964 [Addison­
Wesley, 1958]. 

6 F. Bloch, Phys. Rev. 137A, 787 (1965). 
7 C. N. Yang, Rev. Mod. Phys. 34, 694 (1962). 
8 J. M. Blatt and S. T. Buttler, Phys. Rev. 100, 476 

(1955). 
9 P. C. Hohenberg, Phys. Rev. 158, 383 (1967). 

10 B. A. Trubnikov, Voprosy teorii plazmy (Problems 
of Plasma Theory) 1, Gosatomizdat, 1963, p. 98. 

11 B. S. Deaver and W. M. Fairbank, Phys. Rev. Lett. 
7, 43 (1961). 

12 D. Krueger, Phys. Rev. 172, 211 (1968). 
13 F. M. Osborne, Phys. Rev. 76, 396 (1949). 
14 J. M. Ziman, Phil. Mag. 44, 548 (1953). 
15 Yu. F. Komnik and E. P. Bukhshtab, ZhETF Pis. 

Red. 8, 9 (1968) [JETP Lett. 8, 4 (1968)]. 

Translated by J. G. Adashko 
115 


