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The tetrad or y-matrix gauge is uniquely found on the basis of the method of observation by means of 
light rays (isotropic geodesics). The gauge is used to calculate the gravitational energy density near 
the observer in Riemannian normal coordinates. This method excludes any paradoxes of the Bauer 
type. Averaging over the observation angles yields for arbitrary fields a non-negative value of the 
gravitational field energy density. The density is zero on the world line of the observer. The case 
of weak plane gravitational waves is analyzed as an example. A short review of the problem of 
localizability of gravitational energy is presented. 

THE tetrad (orthogonal reference) formalism was first 
used in relativity theory in the late 20's [ll for descrip­
tion of the fermion field in Riemann space, where this 
formalism (or the isomorphic generalized Sommerfeld 
formalism of Dirac matrices) is indispensable. The 
next fundamental application of tetrads was a detailed 
analysis of the problem of localizability of the gravita­
tional energy[21 • These two cases, however, are quali­
tatively different, since in the general covariant Dirac 
equation the tetrads actually carry no additional infor­
mation whatever compared with the metric tensor 
(owing to the invariance of this equation against local 
tetrad rotations or, in the matrix formalism, against 
similarity transformations), in contrast to the fact that 
the expression for the gravitational energy depends es­
sentially on the indicated transformations. In view of 
this, Mpller[sJ proposed to subject the tetrad gauge to 
certain conditions, to which, however, he could not 
ascribe a deep physical meaning. 

By choosing the tetrad gauge it is possible, even in 
the case of an empty flat space, to "obtain" a nonzero 
and furthermore diverging gravitational energy, in 
perfect analogy with the behavior of the Einstein 
pseudotensor on transforming to spherical coordi­
nates[4l. In his well known theorem, Einstein[ 5J has 
shown, in connection with this and with a criticism on 
the part of Schrodinger[6 J, that in the analysis of the 
gravitational energy it is necessary to use asymptotic 
Cartesian coordinates on a spatial infinity, for island 
systems (models). The energy of the physical system 
is considered here either as a whole (integral energy) 
or, when dealing with the distribution of this energy, it 
is taken from the point of view of a remote observer 
(inertial or located in a practically flat space). The 
same pertains to the rseudotensor of Landau and 
Lifshitz[7 l and Fock[8 • Attempts to obtain a localizable 
representation of the gravitational energy[2 • 3• 9 • 10• 11 l 1> 

were not successful, and therefore the point of view 
that the gravitational energy is in principle not local­
izable (or does not exist at all[ 141 ) gained support. 
These conclusions are frequently connected with the 

l) References 9 and 10 were anticipated already by SchrOdinger [ 12 ], 

and were subsequently duplicated in a different mathematical form by 
Stanyukovich [ 13 ] . 
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inhomogeneity of space-time, due to the curvature, in 
view of which, generally speaking, there may be no 
Killing vectors characterizing the mobility of space. 
This, however, concerns only the integral energyr 
momentum conservation laws, since in the small one 
can always go over to a tangential plane space; indeed, 
Noeter's theorem gives differential conservation laws 
also in the case of gravitation[l5' 191 • The transition to 
correct integral laws is impossible in such an approach, 
in view of the appearance of another aspect of inhomo­
geneity of space-time, namely the absence of the opera­
tion of "covariant integration" in the traditional 
formalism. 

We consider in this article the gravitational energy 
from the point of view of an observer moving in the 
immediate vicinity of gravitating bodies. Unlike 
Mpller, we approach the tetrad-field gauge not as the 
introduction of new physical field components (M~ller 
hoped to obtain in this manner a new unified theory), 
but as the choice of a reference frame. In the curved 
space-time, generally speaking, there are no "rigid" 
reference frames; moreover, it is advantageous here 
to start not from a reference frame that is extended 
in space, but only from the observer's word line, with 
respect to which the physical system is ascribed. When 
speaking, for example, of the velocity of a body seen by 
him, the observer actually executes a parallel transfer 
of the vector of this velocity along an isotropic geodesic 
of the light ray that joins him with this body. This is 
equivalent to a parallel transfer of the tetrad from the 
observer to the body along the isotropic geodesic, with 
subsequent taking of the tetrad (invariant) components 
of the velocity vector (or of any other tensor quantity). 
The initial tetrad itself, naturally, is transported with 
the observer along its word line in accordance with the 
Fermi-Walker transfer rules (if the word line is a 
geodesic, i.e., the motion is inertial, the transfer is 
the usual parallel one). 

Thus, we have a constructive method of tetrad for­
mation (gauge) for a specified initial tetrad in a certain 
initial world point, based on the physical process of 
observation with the aid of optical signals. This method 
can be called also an extension of the reference 
frames; as a result, the observer's motion, by uniquely 
inducing a tetrad gauge (at least in the world tube 
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where the isotropic geodesics still do not intersect), 
leads to establishment of an effective homogeneity of 
space in this system, for in this case, besides the 
ordinary parallel transfer, there is induced also a new 
("tetrad") transfer, which is independent of the path. 
This, of course, leads to the appearance of covariant 
differentiation of a new type ("tetrad differentiation"), 
in the sense of which there always exists a maximal 
set of Killing vectors2>; the operation of covariant inte­
gration with respect to a given reference frame is also 
defined in a trivial manner. 

For simplicity, let us consider inertial motion of an 
observer and use the normal Riemannian coordinates 
yil with origin at that point P on the time-like geodesic 
word line r (t) of the observer, to which we shall refer 
the instant of the description of the physical system. 
The proper time of the observer s changes along r (t); 

assume that there is a variation of the canonical 
parameter u along the isotropic geodesics that begin 
on r (t) and are directed towards the past. We take the 
world point R with coordinates yil ; passing through it 
is an isotropic geodesic r (i)• which intersects r (t) at 
the point Q. In order to express the energy-momentum 
density accurate to terms quadratic in the coordinates 
(in the expansion for the normal coordinates), it is 
sufficient to confine oneself to two terms in the expan­
sion of the metric tensor 

(1) 

In the normal coordinates, the geodesics passing 
through the origin are described in the simplest man­
ner: yil = vil s. We choose for r (t) the direction vector 

vil = (1,0,0,0,). We then obtain for r(i) starting from 

the point Q (the instant s ), an equation in the form 

in view of the fact that 

r~~ = - 1/ a (R~.~, + R~~.,) y'. 

The directional isotropic vector of the geodesic r (i) 
has in this case the components 

a"= ( -1, sine cos <p, sine sin <p, cos 8), 

(2) 

where the spherical angles cp and e characterize the 
direction of the ray from the point of view of the ob­
server. Since in our case only world lines are geode­
sics, the field of the y matrices (equivalently-the 
tetrad) is established by parallel transfer along these 
lines, 

Dv• == ('\',"" +"Y'ri .. )dy" = o. 
Assume that yil = yil at the point P(yil are the stand­
ard constants of the Dirac matrix). Then successive 
transfer along the broken line PQR yields 

'\'<> = )f(6,., + 1/sR""'vY"Yv + 1/Ji"'"vy"v's) (3) 

(it is important that the terms contained in the paren­
theses here are not all symmetrical in the indices a 
and A.). By the same token, we obtained an expansion of 

2lit is easy to see that the tetrad vectors themselves are generalized 
Killing vectors corresponding to translations along the tetrad axis. 

the y matrices in normal coordinates for the general 
case of an arbitrary gravitational field; it is obvious 
that a similarity transformation of the initial y 
matrices at the point P involves precisely the same 
transformation of the matrices at all other points, i.e., 
does not affect the gauge. The same pertains to tetrad 
vectors and their rotations. 

To calculate the energy, we need expressions for 
the first derivatives of the y matrices with respect to 
the coordinates yil; they can be readily obtained on the 
basis of the relation 

os ap 
oyP = a"v" = - ap, (4) 

which is obtained when the result of the differentiation 
of (2) with respect to yf3 is multiplied by aJ.l. (the term 
with the Riemann-Christoffel tensor should be dis­
carded in this case) and account is taken of the ortho­
gonality property 

0 a.-. (a"u)= 0. 
OY" 

The sought derivatives are 

'\'a, p = y'[ - 1/s(R,,.pv + R,pa;v)yv + 1/2(R,,.pv- R,a"vv"ap)avu]. 

We note that the following relation holds 

(5) 

where ci> J.l. vA. is a tensor that is antisymmetrical with 
respect to the last two indices (the Ricci torsion sym­
bol), with 

(6) 

It is now easy to obtain the covariant derivatives of the 
y matrices 3 > and to obtain on the basis of (6) 

(7) 

In the Noeter theorem, it is possible to start from 
the requirement that the Lagrange function t\ of the 
physical system have the properties of a scalar 
densityf9 l (this is equivalent to invariance-in the tensor 
sense-of the action integral for an arbitrary integra­
tion region). If we consider the coordinate transforma­
tion x'J.l. = xil + 1;J.l., where 1;J.l. is an arbitrary infini­
tesimally small four-vector (strictly speaking, we 
separate from it an infinitesimally small scalar multi­
plier, which later is cancelled out), then this require­
ment takes the form 

or after a number of transformations 

(U:§a + !Dl~y,), a= 0. 

We note that the operation 
oF 

6'F =F'(x)-F(x)= bF- ox<"·s" 

(8) 

(9) 

(10) 

coincides, apart from the sign, with the Lie differen­
tial; for any quantity AB (henceforth AB will stand for 
the potentials of the fields) we have here 

(11) 

3>1n the sense of the usual covariant differentiation; the 'Y matrices, 
of course, like the tetrad vectors, are constant with respect to tetrad 
covariant differentiation. 
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The identity (9) is trivial by virtue of the satisfaction 
of the known relations of the Noeter theorem [91 
("strong identity"). We propose here that the Lagrang­
ian does not depend on the second derivatives of the 
field potentials, so that 

" at~ " Ia= ---As a-t\lla 
liAs... ' 

(12) 

(13) 

(14) 

(the latter quantity is well known as the canonical 
energy-momentum density in special relativity theory; 
the former is already closely connected with the spin 
of the field and is called the "generalized spin 
density"). It is obvious that the "strong" identity (9) 
cannot have a deep physical meaning, since it is valid 
not only for the physical Lagrangian t~, but also for 
any quantity with properties of a scalar density. For a 
synthesis of the consequences of invariance and of the 
dynamic properties of fields, it is necessary to take 
into account in this Lagrangian the field equations, 
particularly the Einstein equations 

"' " "' /It\ tta+tga = 0, ta= 2--g"'', 
llf!'" 

from which it follows, by virtue of (13), that 

(15) 

Therefore the sought "weak" differential conservation 
law is of the form 

(we have taken the g-variant of the identity (9), i.e., 
we have written it for the gravitational Lagrangian). 
So far we used the conventional reasoning for the 
traditional analysis of the Noeter theorem in field 
theory. 

(16) 

Let us turn to an arbitrary four-vector ~IJ. in (16) 
(according to the remark made above, it need no longer 
be infinitesimally small). We are interested not only 
in the differential conservation laws but also in the 
integral ones; by virtue of the known transformational 
properties of the quantities t3, tg and !111 gr psJ, and 
on the basis of the general definition of the covariant 
derivative for tensors of arbitrary ranks and for their 
densities (insofar as we know, used for the first time 
by Trautman[ 171 ) 

(17) 

where the coefficients aBIJ are determined from the 

relations (11 ), we can formally replace of ~a by ya in 
(16) as the first step in the construction of the covari­
ant integral for the energy momentum. We then obtain 
the weak conservation law 

w,".,.=O (18) 

of the matrix quantity 

(19) 

which is the true contravariant vector density. In view 
of the differential law (18 ), the integral conservation 
law is also satisfied under appropriate boundary con­
ditions for the scalar matrix quantity 

n = S w"' as ... (20) 

The concluding step in the construction of the covariant 
energy-momentum integral of the physical system is 
the simple operation 

(21) 

On the whole, the employed procedure consists (in 
simplified language) of a scalar multiplication of a 
certain operator AIJ. by yl.l., transferring the obtained 
scalar matrix to the world point of the observer, and 
taking there its trace with the y matrix at this point; 
an analogous transfer of scalar matrices from all _points 
of a hypersurface, their summation, and the calculation 
of the trace give the covariant integral. This operation, 
obviously, depends essentially on the gauge of the y 
matrices, and in our treatment on the choice of the 
reference system. Taking such a unit tetrad transfer on 
an infinitesimal path, we can easily find the tetrad co­
variant differential of the vector AIJ. and the tetrad co­
variant derivatives of this vector 

(22) 

Obviously, at a given gauge of the y matrices, the 
tetrad transfer does not depend on the path; the tetrad 
covariant derivatives of the y matrices themselves and 
of the tetrad vectors vanish identically. 

We see that the "nongravitational" part of the energy 
momentum is described by the ordinary symmetrical 
energy-momentum tensor, and in the limit of flat space 
and Cartesian coordinates, the principle of correspond­
ence with the special relativity theory is satisfied. We 
turn to the gravitational energy proper, assuming ~?a 

= 0. The expressions for t~ and !Ill.~~. with a Lagrang­
ian 

(23) 

that differs by a divergence term from the other gravi­
tational Lagrangians used in general relativity theory, 
were calculated earlier by one of the authors[181 (it is 
necessary only to correct some signs that were re­
versed as the result of a misunderstanding): 

"""' y"- B' S ( a • + ' all' v 'II c) ""ga = ~ P 'V: a'V Y: v'V 11- '\'; vY 11 ; 

"f-gsr"' '" "'ar• tga=~ P '\';v'\',a-'\';vY,a-'\';,.'\' av 

- 1l•~'~~M.y7 "'- yr,.y~.)J. 

Substituting these expressions in (19) and taking (5) 
into account, we obtain for the gravitational part of 
wa: 

(24) 

(25) 

a f- g "' <D ""<I> v <D aa<D v <D '"<I> v <D "'<D • +<I> "<I> a w,=-%-'V [ V•• lJ-•G- ~·· V•a-+· Y•• T•IJo- V•• ""'iJo V•• T•lJo 

- 1/oll~ (<Da::<D.~.- <D.~:tDa~.)]. (26) 

We consider here only the problem of the energy 
density; this corresponds, in accordance with (21), to 
taking the trace w = ( Y4) Tr (:Yow0 ). Simple transfor­
mations show that the general form of the gravitational­
energy density can be represented by 

w11 = j- g (o<l>i;h<l>;;,- <Dm<D;;h + <l>ijo<l>JiO- <D;;o<D;;o) (27) 
2x 

(the Latin indices run through the spatial values 1, 2, 3 
and obey the summation rule). Finally, substituting in 
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(27) the expression (7) for the Ricci symbol and taking 
into account the made choice of vectors viJ. and aiJ., 
we obtain 

(28) 
+ 4R;oo,.R;;oea; - 2R;;h,.Ru.o.a;) a"a"u2• 

This representation of the density of the gravitational 
energy does not yet help readily to analyze its proper­
ties, particularly to determine whether it is positive 
definite. Therefore, using the well known algebraic 
properties of the Riemann-Christoffel tensor, were­
duce it to the form 

1 
Wg = Sx (R;oo,.R;oos + Ro;;.,RM;s + 1/.fl.;;h,.Ri;hs 

(29) + 1/,R.;;oJl;;oa + 4R1ooJl;;oefJ;)a"'a•u•, 

for the first four terms are clearly not negative, and 
it is obvious here that the last term vanishes when 
averaged over the observation angles. Expression (29) 
can, in addition, be transformed in two ways. First, it 
is possible to simplify the first four terms, using the 
little-known quadratic identity for the Riemann­
Christoffel tensor[taJ, 

Ra~y,.Ra;. Y•- 114 Rar,ysRa:. yS 6~ = 2R~a~:R~ + 2R~R~- Ra~Ra~o5~ 

- RR~ + 11 • R•o5;. (30) 

For the case of a pure gravitational field (R~ = 0) we 
obtain 

1 w, = - (R;;h,.R;;ha + 3/ zR;oo,.R;OOE + 4R;oo,.ll;;oea;) a"'a"u2• ( 31 ) 
8x 

On the other hand, expression (29) can be reduced to 
the form 

+ 2(Ro;;,.Ro;;0 - R;;..,R;Me) a;ak] a"a"u2• (32) 

In addition, the initial form of (29) can itself be ex­
pressed simply in terms of known six-dimensional 
symbols (see, for example, [2oJ ): 

1 
Wg = 16x (RA 11wRAJ.18 + 8R;oo,.ll;;0ea;) a"a•u2• (33) 

Here A is a six-dimensional index subject to summa­
tion. 

By way of an example, let us consider the case of 
weak plane gravitational waves. It might seem possible 
to analyze directly the more general case of locally 
plane waves (see, for example, [211 ). However, in 
normal Riemannian coordinates the assumption of a 
locally plane character of the waves leads automatically 
to the absence of a real gravitational field, i.e., to a 
flat time-space (this indeed is the shortcoming of 
Weber's approach). On the other hand, in the case of 
weak plane gravitational waves it is always possible to 
go over to normal coordinates, thus depriving these 
waves of their flat character, but this does not change 
the values of the Riemann-Christoffel tensor compon­
ents in the approximation which is of importance here 
and which is customarily used. Then, if in the initial 
coordinate system (see, for example, [?J) a weak plane 
wave propagates in the positive direction of the x1 
axis, there can exist only the following two nonvanish­
ing components of the Riemann-Christoffel tensor (this 
corresponds to two possible polarizations of the gravi­
tational wave): 

R<Yl<Yl = Rtztz = Roats = -Roooa = -Rms = -R<Yltz =A; 

Rozoo = Rtzls = -Rozta = -Roa12 = B. (34) 

Recognizing that by virtue of the properties of the 
vector aiJ. this leads to the equations 

and also 

(R·;oo,.ll;oo. + R0;;,.R0;;8 )a"a" = 4(A• + B2), 

1/z(R;;k,.Ri;he + R;;o,.R;;oe)a"'a" = 4(A2 + BZ), 

R;oo.,R;;o. = -(A2 + B2) (6!o: + 6!1'1!)6~, 
we obtain from (29) the value of the energy density of 
the gravitational wave near the observer: 

rc,=: (A2 +B2) ·[ 1-fat(f-a1•) ]-u•. (35) 

Let us compare this result with the well known ex­
pression for the density of the gravitational energy of 
the plane wave[2214, 

1 . . 
to0 = ·-[(gzz) 2 + (gzs)2]. (36) 

2x 
Going over to coordinates on the light cone (see[2sJ, 
page 184), we can express the parameter u used above 
as u = ( x - s )/ /2 (the time axis coincides with the 
world line of the observer). On the light cone of the 
past x = -s, so that we have there u = -s f2. Then, 
setting the first derivatives of the matrix tensor at the 
origin (at the world point of the observer) equal to zero 
(the origin can always be chosen in this manner), we 
obtain 

.. 1 .. 
g11• ~ g11.s = --=g~<.u 

)'2 

as the expression for these first derivatives near the 
origin, in terms of the second derivative taken at the 
origin. Thus, for the only physically significant com­
ponents we obtain g22 = -gss = f2Au and g2s = f2Bu. 
Substituting these values in the expression for the en­
ergy density (36 ), we get 

1 
too=-(A2 +B2)u2, (37) 

X 

which coincides with the first part of the rigorous ex­
pression obtained by us for the energy density of a 
plane gravitational wave near the observer. The sec­
ond part, which depends on a1, vanishes upon averag­
ing over the observation angles and can lead to a devi­
ation of the energy density of the wave from the value 
(37) by at most ±19.2% (for a deviation of ±55° from 
the wave propagation direction). Of course, such a 
comparison should be regarded as purely qualitative, 
all the more since the previous expressions for the 
gravitational energy did not pretend to define its local­
ization. 

The proposed gauge for the tetrad fields, which is 
conceptually simple, encounters technical difficulties 
when we seek the form of the y matrices far from the 
observer in Riemannian space. These difficulties are 
not fundamental in character, since they are connected 
only with finding equations for the isotropic geodesics 
in algebraic form in specified gravitational fields. Our 
deduction that the density of the gravitational energy 
vanishes on the world line of an inertial observer is 
closely connected with the Einstein equivalence princi­
ple; in accordance with the fact that this principle has 
only a local character, the gravitational energy differs 
from zero away from the observer's world line. Since 

4 >see also [7 ], where the component t 10 of the Landau-Lifshitz­
Fock pseudotensor is calculated; it coincides with (36), since the 
gravitational waves propagate with fundamental velocity. 
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wa is a true vector density, and PJ.l. is a true vector, 
the determination of either the energy-momentum 
density or the corresponding integral quantities is in 
our approach strictly covariant in the sense of the 
transformations of the coordinates for one and the 
same prescribed observer. On going over from one 
observer to another (changing the reference system), 
a change takes place also in the localization of the 
energy momentum, as would be expected from general 
physical considerations. The proposed approach ex­
cludes in principle the possibility of paradoxes of the 
Bauer type [ 41 • It is easy to see, that in the absence of 
a gravitational field (in flat space-time), the gravita­
tional energy vanishes identically in all of space, re­
gardless of the character of motion of the observer 
(inertial or non-inertial). Thus, the field of the inertial 
forces does not have energy and momentum, unlike the 
gravitational field (the absence of global equivalence 
principle), and the energy density of the latter in the 
vicinity of the observer is on the average non-negative. 
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