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The quasiclassical expression for the wave function in a three-dimensional analytic potential is exam­
ined near the caustics, where the quasiclassical approximation breaks down. A function is constructed 
which approximates the exact solution of the Schrodinger equation in a finite region of space including a 
caustic. The amplitude in a scattering problem is found in the neighborhood of the caustic, where the 
ordinary quasiclassical cross section diverges. 

1. A very important question for three-dimensional 
problems is that of the violations of the quasiclassical 
approximation in space. In cases in which the quasi­
classical wave function is good in a large region of space 
the approximation makes it possible to derive important 
results. u,2 J For example, in the problem of scattering 
by a spherically symmetric potential for E ~ U, C2J 

when the classical limiting angle e omax is small, one 
can get an analytic expression for the amplitude in the 
entire range of angles that is of interest in practice. In 
the neighbor hood of e 0 max the approximation is no 
longer applicable. Here the scattering angle as function 
of the impact parameter, 00 (p), has a maximum, and the 
classical differential cross section do/dO goes to infin­
ity. 

As will be shown in what follows, the extrema of the 
function Oo(P) correspond to caustics, where the radius 
of the wave surface goes to zero. Such singular points, 
where dOo(P}/dp = 0, can occur not only on the boundary 
between classically accessible and inaccessible angles, 
but also inside each of these regions. Therefore it can 
happen that the usual quasiclassical expression for the 
wave function [lJ is of little practical use (for example, 
if eo max is not small and there are several caustics). 
We can, however, use a knowledge of the asymptotic 
form of the wave function in the direction toward a caus­
tic to construct the exact function in its neighborhood, 
and then construct an approximation in a finite region of 
space by means of Airy functions. This procedure (the 
WKB method in the three-dimensional case) can be car­
ried out independently of the boundary conditions of the 
quantum-mechanical problem and gives a corrected 
wave function where caustics invalidate the usual quasi­
classical approximation. 

In the present paper we expound the three-dimen­
sional WKB method and apply it to the treatment of the 
scattering problem. 

2. The quasiclassical solution of the Schrodinger 
equation with arbitrary boundary conditions can be writ­
ten in the form [l,sJ 

(1} 

Here Sn are particular solutions of the Hamilton- Jacobi 
equation 

(VSn) 2 = 2m(E- U(r)) ""'p2 (r) (2) 

with the boundary conditions of the corresponding 
classical problem [E is the energy of the particles, and 
U(r) is the potential in which they move]. Analogously, 
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the amplitudes An are solutions of the equation 

2(VSnVAn) +AnMn = 0. (3) 

The summation in (1} is taken over all of the particular 
solutions of Eq. (2) that exist at the given point r. [lJ 

Let the manifold of characteristic lines of Eq. (2) 
which satisfy the boundary conditions be given in the 
usual form: 

a a s = S(r, a,~). Sa.""' -~-S(r, a,~)= 0, s~ ""'-0-S(r, a, M = 0, (4) 
. oa aB 

where a and {3 are the parameters that define the mani­
fold. ll As will be seen from what follows, in the problem 
considered it suffices to take into account in (1) only 
those solutions of (2) that correspond to different a and 
{3. Generally speaking, however, there may be more 
than one solution corresponding to particular values 
a and {3.clJ Accordingly, we set Sn = S(r, an(r}, f3n(r)), 
where an(r) and f3n(r} are real or complex solutions of 
the system of equations 

Sa.(r, a, fl) = 0, S~(r, a, fl) = 0. (5) 

In the construction of (1) we need take into account 
only those of the nonphysical roots of (5) that do not 
violate the boundary conditions of the quantum-mechan­
ical problem under consideration. For example, one of 
a pair of complex-conjugate roots of (5) may give an 
exponentially large term in (1), since for these roots 
1m S1 =-1m S2 • Roots for which Im Sn < 0 are not to be 
included in (1}. Moreover, we need retain in the sum (1) 
only the terms with the smallest values of Im Sn, since 
inclusion of the others would exaggerate the accuracy. 

It is easy to calculate the amplitude An if we go over 
to curvilinear coordinates S, a, and {3 by means of (4) 
and use the identities 

VSVSa. = 0, VSVSa = 0, (6) 

obtained by differentiating (VS} 2 = p2 with respect to a 
and {3. Then 

.!'!S = 1/ 2 (VSV Inl), (7} 

where 

(8)* 

1>Here and in what follows lower indices a, !3 will denote the corres­
ponding partial derivatives with respect to a, f3 for constant r (indices 
a 2, ••• indicate second, ... derivatives), and the symbol \1 means that 
the gradient is taken for fixed a, f3. 

*[rarll] =ra X rp 
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(9) 

The factor (/}n is determined by the boundary conditions 
and the relation 

VSn Vq>n = 0. (10) 

For what follows it is convenient to bring into the 
treatment the set of trajectories with parameters a and 
{3 determined by Eq. (5). It is obvious that these trajec­
tories satisfy the boundary conditions of the correspond­
ing classical problem. To a set of solutions a = an(r), 
and {3 = 13n(r), n = 1, 2, ... , will correspond a group of 
trajectories, real or unreal, for example complex, pass­
ing through the given point r. 

It can be seen from (6) that the trajectories are 
orthogonal to the wave surfaces Sn = const, and conse­
quently the unit vector tangent to the n-th trajectory is 

(11) 

Then the condition (10) means that q;~ is constant along a 
trajectory. 

Finally, in the language of trajectories we can give a 
more intuitive formulation to the principle of construc­
tion of (1); the summation in (1) is taken over all trajec­
tories passing through the point r, except those that lead 
to a violation of the boundary conditions of the quantum­
mechanical problem or go beyond the permissible ac­
curacy. [ll 

3. Let us now consider the condition of applicability 
of the quasiclassical approximation in the three-dimen­
sional case. 

On using (7), (11), and a relation known from differ­
ential geometry, 

div I = 2H, H = 1/.(Rc-t + R2- 1) 

(His the mean curvature of the wave surface), we get 

/i~~=~!'(IVJ) =-IVJ\+~+2.._ X=-li- (12) 
(VS)2 2 l R1 R2 ' p(r) . 

From this it can be seen in particular that at the one­
dimensional turning points, which arise when one separ­
ates the variables in (2), there is no breakdown of the 
approximation (1), since only the total momentum p(r) 
is involved in the condition (12). 

It follows from (12), and also from (9), that the ap­
proximation breaks down near J = 0. Here, owing to the 
identities 

(a, b) E (a, P}, (13) 

obtained from (6) by differentiation with respect to a 
and {3, we have 

[VS,.VSp]"= (VS) 2 ((IVS,.•)(IVSp•)- (IVS,.p) 2)'1• 

and the factor (VS)2 in J, Eq. (8), does not give an inde­
pendent singularity. Finally, the geometrical locus of 
the singular points is determined by the equation 

(14) 

At these points Hand An go to infinity [cf. (9), (12)], and 
the cross section df = l[ra x rf3]ldad{3 of the bundle of 
trajectories goes to zero. 

The condition (14) is satisfied either at points where 
I[VSa x VS13]I = oo, which occurs, for example, along 

lines of concentration of the curvilinear coordinate sys­
tem in which (2) was solved, or else at points where 

(15) 

This last condition, together with the system of equa­
tions (5), defines the caustics, which will be investigated 
in what follows. 

It follows from the definition that on a caustic two 
solutions of (5) become equal. Depending on whether the 
coincident roots are real or complex, we shall distin­
guish between real and complex caustics. They can take 
different forms in real space; they may be surfaces or 
lines, or they may have no trace at all in real space. In 
six-dimensional complex space both types give four­
dimensional regions. The difference between the two 
types of caustics is the same as that between real and 
complex turning points of a one-dimensional problem. 
(As will be shown later, a caustic of a three-dimensional 
problem is analogous to a linear turning point of a one­
dimensional problem.) 

In order to have an intuitive geometrical interpreta­
tion, let us consider the case of real trajectories, a 
manifold of which in real space forms a curvilinear 
congruence. Then by definition a caustic will be the 
envelope of the congruence of trajectories; in other 
words, it will bound the classical motion in a direction 
perpendicular to it. A caustic can be regarded as a sur­
face consisting of singular solutions of the classical 
equations of motion, envelopes of certain one-parameter 
manifolds of trajectories. Each of the singular solutions 
is the locus of limiting positions of points of intersection 
of two infinitesimally contiguous trajectories. Accord­
ingly, in the neighborhood of any point of the caustic 
there exist on one side of it two real and infinitesimally 
different roots of the system (5), and on the other side 
these roots become complex conjugates; that is, on 
passage through the caustic the number of real roots of 
the system (5) decreases by two. At points of the caustic 
it is impossible to distinguish the two "different" 
trajectories, since they have identical directions 11 = 12 , 

and here the principle of superposition of trajectories, 
on which (1) is based, loses its meaning. It is reestab­
lished at a certain distance from the caustic, when the 
angle between 11 and l2 becomes larger than the quantum­
mechanical uncertainty in the angles. 

4. Let a1(r), f31(r) and a2(r), f32(r) be the two solutions 
of (5) which coincide at the corresponding caustic. Then 

a,(R) = a.(R) = a(R), ~1 (R) = ~2 (R) = ~(R) 

at points R where by definition ~(R, a(R), {3(R)) = 0. We 
shall assume that there are no other singularities of the 
wave function (1) near the caustic in question. Then to 
find the form of (1) in this part of space it suffices to 
consider in the sum (1) the terms with the correspond­
ing indices n = 1, 2. Let us find their expansion in 
Taylor's series in the neighborhood of the point 
Mo(Ro, ao, f3o), where ao = a(Ro), f3o = {3(Ro) and Ro is an 
arbitrary point of our caustic, i.e., ~(Mo) = 0. This can 
be done except at points where the first integral 
S(r, a, {3) of (2) is singular as a function of r, a, or {3. 
It is obvious that such singularities are due to singulari­
ties of the Hamilton-Jacobi equation, and not to the con­
dition (15), although coincidences are indeed possible. 
Cases of coincidence are not considered here. 
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In the expansion we keep in the amplitudes At,z only 
the first, main, term, in analogy with the linear approxi­
mation in the case of a one-dimensional turning point, so 
that we must neglect all derivatives of S(r, a, {3) of order 
higher than the third, and also the gradient of the poten­
tial. In fact, according to (8), (9), and (15), the main 
term of the expansion of At,z in the neighborhood of Mo 
is given by 

A,= (jlnC(Mo) I -yt.!Dn, n = 1, 2, (16) 

where 

t.!Dn = (an- ao)tPa (Mo) + (~n- ~o)!PB(Mo) + ( (r- Ro) V!P (Mo) ), 
C(Mo) = (p-2 (Ro)[VSa(Mo)VSB(Mo))2)''•. 

Since in (16) we have dropped terms containing second­
order partial derivatives of <l>(r, a, {3), which in our ap­
proximation are given by 

(17) 
V!Pa = Saa•V SB' + SaB'V Sa•- 2SaaB V SaB, 

where (a, b) E (a, {3), we shall also regard the corre­
sponding combinations of third derivatives as small. 

To supplement (6) and (13) we give a number of exact 
relations derived in similar ways: 

(VSV)VS = -VU, (VSaV)VS+ (VSV)VS. = 0; 
(VS.VSb,) + (VSbVS,.) + (VS,VSab) = -(VSVSabc), (18) 

(VSabVS,d) + (VS.,VSbd) + (VSadVSbc) = -(VS.VSdbc) 
- (VSbVSadc)- (VS,VSabd)- (VSdVSabc)- (VSVSabcd); (19) 

with (a, b, c, d) E (a, {3). It can be seen from (13) and 
(19) that we must neglect the quantities VSabVdc and 
(VSaVSb)2 , and it follows from (17) that we must also 
neglect K2 , where 

K = V Sa !DB- V S~!Pa. (20) 

In fact, in this case 

and we have 

(21) 

But when we regard K2 and (VSab)2 as negligibly small 
we must obviously also drop KVSab• and then, noting 
(23) (sic), we see that VSaVSbc is also to be neglected. 

Let us now consider the expansion of S(r, a, {3) to and 
including third derivatives: 

S(M) = S(Jl'/0 ) + Sl'l + Sl'l + SF11; (22) 

here 

Sl11 = r'VS + a'Sa + ~~s~ = r'vS 

[since at the point Mo we have Sa(Mo) = Sf3(Mo) = 0}, 

'2 ~i2 

S''' = .!!__Sa• + a'B' SaB + --SB' +a' (r'V Sa) 
2 2 

I 
+ B'(r'VSB)+zr'(r'V)VS, 

a'3 a'2B' a'p'2 p'' 
S(31 = -S • + --Sa•• -'- --Sa•' +- ·-SB' 

6 a 2 "' L " 6 

'2 !3'2 
+ _(l_(r'VSa•) + -- (r'V SB') + a'p' (r'V SaB) 

2 2 
fl' a' 1 a'S 

+ .-(r'(r'V)VSB)+-(r'(r'v)VSa)+-;-~x/x;'xh' f) f) d · 
2 2 6 X; Xj Xk 

r' = r - Ro, a' = a - ao, ~~ = P - Po. 

Since for the linear approximation in the three-dimen­
sional WKB method we can confine ourselves to the ex­
pansion of Sn(r, an, f3n) to second order in lr- Rol, we 
neglect the last three terms in s<3 1• Then we must drop 
the last term in S <21 , since its coefficients, according to 
(18), are equal to quantities which we are neglecting. 

Having determined S(r, a, {3), we then get from (22) 
the system of equations (5). Solving it by successive 
approximations to first order in !r- Rol, we find that 
near the caustic 

an- ao = f.SB•(Dn- M)- lPBL + 0( Jr'J';,), 

Pn- Po= - ]!Sa•(Dn- M) +!PaL+ 0( Jr'J''•), 
(23) 

where n = 1, 2. Here, using (15) and (20), we have in­
troduced the following notations: 

Dn = ei~(n-!1[2( (r- Ro)N) I dJ"', 

M = ( (r- Ro) V!P) I d, L = ( (r- Ro)K) I d', 

N = ]!Sa•V SB- ySB•V Sa, d = !Paf'SB'- !PBfSa•. (24) 

Accordingly the two solutions that coincide on the 
caustic are the two branches of the root (24). With the 
given choice of indices, the first solution corresponds to 
a wave incident on the caustic, the second to a reflected 
wave. 

After this (16), (22), and (23) allow us to determine 
the explicit form of the amplitudes: 

(25) 

and also Sn, with accuracy to lr- Rol 2 : 

Dn" ((r-Ro)v!P)((r-Ro)N) 
Sn=S(Mo)+(r-Ro)VS-3-d- d ---

1 ((r-R0)K) 2 

2 d2 
(26) 

Here, taking (21) into account, we can neglect the last 
term. 

It follows from this expansion that near an arbitrary 
caustic the main term of the asymptotic formula (1) de­
pends on a single (complex) variable TJ ..., (r- Ro)N; that 
is, the problem in six-dimensional space can be reduced 
to a problem on the plane of TJ. The only thing that is 
different for different characters (real or complex) of 
the caustic is the orientation of the TJ plane relative to 
real space. Obviously the form of the exact solution of 
the Schrodinger equation is as little dependent on the 
type of caustic as is the asymptotic form. Therefore 
for clarity we consider a real caustic, which is a sur­
face in real space. [In our approximation this is the 
plane (r- Ro)N(Mo) = 0]. 

Let us introduce rectangular coordinates ~ , TJ, t so 
that 

r- Ro = sl(Ro) + 1Jn(Ro) + sb(Ro). (27) 

Here I= p- 1 VS; n is the normal to the caustic; and 
7J > 0 defines the region accessible to the trajectories; 
b = [In) . To find n we differentiate the system Sa = S13 
= <1> = 0 that defines the caustic R = R(a, {3) with respect 
to a, {3; then, after finding Ra, R13, we have 

n = + __Qt~~_]__ = ± ~. (28) 
- J[R,.Rr,]J JNJ 

By definition the direction of n is found from the condi­
tion (n · N)/d > 0, since, according to (23) and (24), at 
points ((r- Ro) · N)/d < 0 the quantities an and f3n be­
come complex. 
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Let us examine the geometrical meaning of the ex­
pression 

NNZ/ d == p2yn, y > 0, (29) 

which appears in the main term Sn- D~d; to do so we 
select in the congruence (5) a one-parameter family of 
trajectories;;& which admits an envelope, and calculate 
its normal and curvature. We consider the congruence 
of trajectories in the following parametric representa­
tion, determined by the system (4): r = r(S, a, fJ); here 
Sis the parameter that changes along a trajectory. Then 
the caustic is 

R(a, ~) = r(So(a, n a, n 
where So(a, {:3) is found from ~(r(So, a, {:3), a, {:3) = 0; the 
manifold ilt is defined by 

r:,e (S, ~) = r(S, ao(~), n 
where a 0({:3) is found from the condition that the vector 
dR = Rada + Rad{:J be parallel to l(R). The envelope of .'1f 
as a function of the parameter {:3 is of the form 

q(~) = r(So(a, ~).a,~) l=a.<Pl· 

After this, and after calculating the quantity 

{qp(qp>qp]] - n 
(qpqp)2 - Vq q, 

we find 

yn = VtRt - 'VqRq, (30) 

where lit (vq) is the normal curvature of the trajectory 
(envelope); and fit (Ita) is the principal normal to the 
trajectory, directed toward the center of curvature. 

Finally, going over to the coordinates ~, 71, ?; in (25), 
(26) by means of (27) and using (13), (24), and (29), we 
find in our approximation the form of (1) far from the 
caustic: 

'I' = '1', + 'l'r; 

C(Mo) {·(S(Mo) -LX)} !J'1e-iY+!J'ze-in/2eiY 
'1', = (3d21i)'l• exp t li ' Y'l• 

(31) 

where 
Y=~l/8((r-Ro)N)• =~-.!y(2"')• 

3/i v d' 3"1., ., • 

1 li 
and X=x(~-~TJv), "= p(Ro)' 

(32) 

is regular in the neighborhood of Ro. 
The nature of the main term its shows that with re­

gard to the variable TJ the situation is analogous to that 
at a linear turning point in the one-dimensional motion 
in a field V = (VSn)2 /2 = p2 'Y'7, and therefore to deter­
mine the exact wave function We in the neighborhood of 
the caustic we carry out a procedure similar to the one­
dimensional WKB method. We write the Schrodinger 
equation in variables X, Y, Z = ?;/n, using the fact that 
Sn has been calculated to second order in r - R0: 

p3 ( 1 - 2T]y) '¥ x•" + 2T]yp2'1' r•" + lip V ~T] 'I' r' + 'I' z•" + p2'¥ = 0. 

The solution of this equation that has the asymptotic 
form its far from the caustic is of the form 

C(Mo) {·(S(Mo) n) } 
'l'c=Cjlt(3d21i)'l•exp t -/i-+X-{2 F(Y), 

(33) 

Hl1tN are the Hankel functions of first and second kinds. 
It follows from the boundary conditions that 

(JJ2 =<pt. (34) 

In the case of a real caustic Eq. (34) is obtained if we 
require that for 71 < 0 the function We contain no expon­
entially increasing term. This requirement is equivalent 
to the boundary conditions. In fact, beyond the caustic 
a1 and az, {:31 and fJz, and consequently 81 and Sz, become 
complex-conjugate pairs of quantities, and in accordance 
with what has been said its contains only one term, for 
which 1m Sn > 0. 

For a complex caustic the situation is somewhat 
different. At points on it a pair of complex roots of the 
system (5) coincide, and these roots are such that 
1m S (Mo) is positive for them; that is, its is exponen­
tially small in this neighborhood. Therefore here terms 
are admissible in We which increase exponentially as 
we go away from the caustic, but only far enough so that 
the quantity ImS (Mo) > 0 is balanced out. The points 
where this occurs, in other words the points where an 
imaginary term in Sn first appears, are the real caus­
tics. Accordingly, if in the real space we introduce the 
Stokes surfaces Re Y = 0 [Eq. (32)], two of them go out 
to corresponding real caustics. Along them W"c will in­
crease exponentially from exp(- 1m 80) to a quantity of 
the order of unity. Along the third Stokes surface, which 
goes out to infinity, there must be a further exponential 
decrease of W"c, and this is the required boundary con­
dition for We· 

The case we have considered is not the most general 
one; for example, all three Stokes surfaces can end on 
other complex caustics, but the character of the solution 
will be the same. 

5. Using the results that have been given, one can 
easily construct, just as in the one-dimensional case, a 
unique function which approximates the exact solution 
both in the neighborhood of the caustic and at finite dis­
tances from it: 

_ {i St+,Sa_i~}l/~ (82 -81) 
'¥a-exp 2/i 12 f 2 2/i 

X [ AtH~~.( 82 ; 81 ) + A2eini2H~! ( 8•; 81 ) ] , (35) 

with cp1 = cpz (Eq. (34)]. 
Near the caustic 

St=So+li(X-Y}, S•=So+li(X+Y) 

and ita - We (Eq. (33)]. At finite distances from the 
caustic (ISz- 81/ ~ 2:fi) 

'Ya-+ ~ A,.e!Snlll. 
fto=l, 2 

It is clear that in the vicinity of another caustic one 
can approximate the appropriate pair of terms in the 
sum (1) in precisely the same way. 

6. As a practical application of these results let us 
consider the concrete quantum-mechanical problem of 
the scattering of particles in a potential U(r). 

Suppose that the trajectories satisfying the boundary 
conditions of the corresponding classical problem are 
known.[ 10 J Then 
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r 

Sn(r)=) (pln-Po)dr+por. (36) 

Here Po is the initial momentum of the particles; the 
integration in (36) is taken from a point R, with p0 • R 
--00 

According to (9), the amplitude An is 

_ ( lo )'1• _ 1/ Po dfo I An- - -1y- , 
I a=a (r) ~=P (r) . P dj a=" , P=P 

n ' n -n n 

(37) 

where 

is the cross section of a bundle of trajectories located 
in the neighborhood dad,B of the n-th trajectory. J 0 (df0 ) 

is the value of Jn(dfn) obtained by moving along the n-th 
trajectory to the point poR = -oo. 

The wave function (1) resulting from this construction 
can be obtained by the method of steepest descents from 
the exact solution, if the latter can be written as a 
superposition of some particular solutions of the 
Schrodinger equation. Then the saddle points corre­
spond to the solutions of the system (5), and consequently 
the caustics will be loci where two saddle points come 
together. 

The advantage of the trajectory method over the 
method of steepest descents is that the class of poten­
tials in which the Hamilton-Jacobi equation separates 
is much wider than the class in which the Schrodinger 
equation separates. This question will be discussed 
further in later papers. 

Let us consider Eq. (1) for the scattering problem 
for r - 00 • It is obvious that among the trajectories that 
pass through the point (r, 8, cp), where r - oo, there is 
one real rectilinear trajectory that corresponds to the 
term exp (ipo · r /:ti). The others will be trajectories of 
particles which have undergone scattering in the direc­
tion (8, cp). For them 

r r 1 v dfo 
dfn-+-dfn=-r2dQn, An-+- ~d , r-+oo. 

r r r Qn 
(38) 

Here dfn is the vector cross section of a bundle of the 
n-th trajectory, and dQn is its solid angle. 

Let us find out what the caustic is in the scattering 
problem. It follows from (38) that 

(39) 

where e8 and ecp are unit vectors of the spherical coor­
dinate system, and a = (a , ,8). 

By means of (5) we introduce the scattering angles on 
the sphere of radius r as functions of the parameters a 
and f'~: 

8 = B(r, a,~), GJ = GJ(r, a, n 
Then (15), (8), and (9) can be written in the form 

il(8, q:) ii(SeS~) 
<D(r, a,~)=~ ii(a, ~) 

[VSaVS~]--+-r- ii(SeS,.) 
r"sin 8 il(a, ~) ' 

[ Ylo l'J. 
A --+ 

r"sin88(8,q:)/ii(a, ~) a=an.~=~n 

(40) 

(41) 

where an and .Bn are roots of (40). It follows from this 
that the caustic is determined by the condition 

j = &(8, cp)ja(a, ,8) = 0, together with the system (40). 
Letting r - oo , we get 

H = Oo(a, n q: = q:o(a, ~). jo = ii(flo, <ro) I ii(a~) = o. (42) 

Accordingly, at large distances the caustics that are 
of interest in the scattering problem asymptotically ap­
proach the conical surfaces (42). Furthermore complex 
caustics may have no trace in real space, but approach 
it asymptotically for r - oo; then the actual caustics in 
real space are surfaces which bound the beam of trajec­
tories. In particular, for E > U(r), when there exists a 
classically inaccessible region of scattering angles, its 
boundary will be one of the real caustics. Naturally the 
inaccessible region, unlike the accessible region, will 
contain no further real caustics. But there can be com­
plex caustics in it, and if the cross section falls off ex­
ponentially in this region they must be taken into ac­
count. 

The system (42) takes a simple form for azimuthally 
symmetric scattering. Here we can assume that 

8o = 8o(j3), {jlo =a. 

Then jo = 8~(,8), and the caustics are determined by an 
extremum of the scattering angle. 

Let us find the form of the scattering function for 
r - oo near a real isolated caustic. Writing 7)/Ro = ~X 
and using (24), (32), and (39), we have 

Y = (a I X) (llx)'h, 

where a is a finite quantity given by 

2 [' nVcSvJ'/• d -c;- iJ -,- iJ a=- ~(VaSv) 2-- , -=yS~·--Y.Sa•-. 
3po d iiy iia of\ 

(43) 

Finally, the value of >¥ on a sphere Ro (sic ! ) in the 
neighborhood of an arbitrary point of the caustic Ro, 8o, 
C{Jo is given by 

exp ( ipr/lo/ fz) 
'¥ = '¥,+---R.--/(8- Bo, q:- cpa), 

f = [__J!y___ ii(SeS~) 13fzd'l-';,]'!. 
Po sin So B(a, ~) ' 

X exp {.!:_(S (Ro)- pr/lo)- i ...::_}F (~(llx)"l•) (44) 
1i 12 l ' 

since for Ro - "" we have ~ - 0 for points of the sphere 
Ro. It can be seen from this that the scattering cross 
section near the caustic is finite, in contrast with the 
classical case, where it goes to infinity as y -l/3 

~ <~xrl/2. 
Beyond the caustic the amplitude falls off exponen­

tially: 

I ~ (!_\X) 'I•K•;, ( xa I 1\x I •;, 

and is of interest only if the caustic bounds a classically 
accessible region and if the potential is such that the 
further cross section will be exponentially small. 

The amplitude for this sort of case (spherically sym­
metric even potential) has been derived in[21 for U0/E 
« 1 in the range of angles 8 » (Uo/E) 114• For smaller 
angles e ~ (Uo/E) 114 to the classically accessible region 
the explicit form of the amplitude is unknown. Equation 
( 44), having been obtained from the exact solution of the 
Schrodinger equation in the neighborhood of the caustic 
(8o ~ Uo/E), gives the amplitude for the range of angles 
18- 8ol < (i\.o/a) 213 • For large angles it does not go over 
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into the result of[2 J. This question will be considered in 
more detail in a separate paper. 

7. Finally, let us compare the approximating function 
(35) with the exact function for the scattering problem 
in a field U(r) = ajr. In this case all of the quasiclassi­
cal quantities can be calculated exactly, and the results 
for Sn and An are 

where 

2E 
--Sn = 8,(5- BnT!J (!J- 2) )+ 
apo 

r r 
£, = a/E ( 1 +cos e), !J = a/E ( 1- cos 8), 

En = ei:r(n-1)' n = 1, 2; 

(45) 

the quantity Er being -1 on the part of the trajectory 
between Po· r--oo and ro, the radial turning point, and 
having the value Er = + 1 on the symmetrical part of the 
range; and 

An= ( ~~~~~f]~~~z~r. (46) 

Here the caustic is the paraboloid of revolution 7J = 2; 
7} = 0 (e = 0) is the line of concentration of the spherical 
coordinate system. 

The function (35), which approximates the expression 
(1) in the neighborhood of the caustic, is given by 

G. {·5-1-ln2y ·( ""')} 
'¥a= [4tj(tj-2)l'i•exp! 2y +t bo-12 , 

1/-;f/ (I) 
Ga = y 2[H'f, (Y) (1'1-1 + e2l'!J(!J- 2))'/, 

+ H~~),(y) (TJ- 1 + BtfT] (TJ- 2)) 'I•]. (47) 

Here S2-St 1 
y = --li- = -[l'TJ(!J- 2)-ln(!J -1 +l'TJ(!J- 2))], 

2 2y 
1 :X 

<'>o =-In-, 
2y r 

andy= ~Eja is the quasiclassical small parameter. 
The distance at which lJl a goes over into (1) is deter­
mined, in terms of the smallness of y, by the condition 
(TJ- 2)3/2/y » 1. 

The asymptotic form of the exact solution 

qt = e-n/4vr ( 1 + ~ ) ei<i-~)12vF(- 2~ , 1, i~ ) 

for y- 0 is given by Eq. (47) if we replace Ga with GF, 
where 

GF=f211 y[H:;,(y)+H~I;.(Y)]+O(y'lo). (48) 

A difference between Ga and GF appears as we go fur­
ther from the caustic, and begins with terms of order 
(7} - 2)1/2. 

In conclusion the writer expresses his gratitude to 
A. B. Migdal, A. I. Larkin, and D. P. Grechukhin for 
helpful discussions and their interest in this work. 
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