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A two-component mixture of multi-level particles in the gaseous state is examined. Generalized 
kinetic equations are obtained by the Bogolyubov method for single-particle density matrices with 
collision integrals defined both by the motion of center of gravity of the particles and by their in­
ternal states. The possibility of various types of energy exchange between the colliding particles, 
including the transformation of kinetic energy into internal and vice versa, is taken into account. 
The derived equations are used to analyze excitation in gas-mixture lasers. A correct description 
of excitation processes in integral form (with respect to momenta) is found. The effect of inelastic 
collisions on the polarization of the gas is discussed. The, emission-line broadening and shift due 
to collisions with impurity particles are examined. 

1. INTRODUCTION 

IN spectroscopy one encounters, as a rule, three types 
of kinetic problems, namely the broadening of spectral 
lines, the excitation of interatomic states, and the in­
teraction of the atomic system with an external electro­
magnetic field. Each of these problems has its own 
history, its own methods and procedures for theoreti­
cal analysis, its own formalism, etc. In the study of the 
broadening of spectral lines, the most developed is the 
approach based on the theory of random functions and 
correlation analysis (see, for example,P1 ). Incidentally, 
successful attempts were made recently to formulate 
the problem on the basis of the kinetic-equation 
method[2-sJ. 

For the analysis of the excitation of atoms, it is as­
sumed that elementary considerations concerning the 
balance of the excitation and de-excitation acts are 
sufficient[ll. Recently, in connection with the appear­
ance of lasers and intense electromagnetic-radiation 
fluxes, interest arose in the problem of the interaction 
of a strong field with an atomic system. The mathe­
matical difficulties here are so great, that the relaxa­
tion model is chosen frequently only from computational 
considerations. 

It is perfectly clear that the indicated kinetic prob­
lems can be regarded as particular solutions of a gen­
eral kinetic equation. In spite of the obvious advantage 
of such an approach, the kinetic equation has at pres­
ent no rigorous derivation whatever capable of provid­
ing a unified point of view for different spectroscopic 
problems. Strange as it seems, the universally ac­
cepted Bogolyubov scheme (see, for example,r7 l) is 
used very rarely under conditions that are canonical 
for spectroscopy. Indeed, spectroscopic objects have 
stationary states with a clearly pronounced discrete 
spectrum, and the main interest attaches to changes of 
the interatomic motions (rotations and vibrations of 
molecules, motion of electrons in molecules and atoms) 
under the influence of external actions-collisions with 
other particles or interactions with the external elec­
tromagnetic field. Bogolyubov's scheme, on the other 
hand, deals with structureless particles and with mo-

tion of their inertia centers[7 l. An exception is the 
paper by Andreevar61, in which, however, a very par­
ticular problem (adiabatic relaxation, stationary 
structure less perturbing particles) is considered. 

In the present paper we derive, on the basis of 
Bogolyubov's methods, a kinetic equation for the single­
particle density matrix. Our main purpose is to in­
clude in the analysis all three kinetic problems of 
spectroscopy. 

2. GENERAL EXPRESSIONS 

We consider a closed system consisting of particles 
of two kinds in the gaseous state. We denote by 
Xk(k = 1, 2, ... ,N) and Ya(a = 1, 2, ... ,M) the co­
ordinates of the centers of inertia of the particles, and 
by ~k and TJa the aggregate of their internal coordi­
nates. The total density matrix of the system F satis­
fies the equation 

oF I at= [de, F], de= de.+ deb+ ar&ab, (2 .1) 

where ::JC is the total Hamiltonian of the system, con­
sisting of the Hamiltonians of the two kinds of particles 
( :JCa, :JCb ) and the operator of their interaction energy: 

N M 

a'&a6 = S ~ W(k, a), 
k==t a.=t 

M 1 
deb= ~deb(a)+ 2 ~G(a,p), 

a=i a::;t:f.. 

Pu.Z 
deb(a) = 2-+ar&b(TJa;), 

mb 

W(k, a)= W(x., y", s•. ll"), 

Here 3Ca(~k) and JCb(TJa) denote the Hamiltonians of 
the internal degrees of freedom of the particle; 
~/2ma and p~/2mb are the operators of the kinetic 
energy; W(k, a), U(k, j ), and G(a, (j) are the opera­
tors of the pair-interaction energies. 

The formulation of our problem differs from the 
initial premises of the kinetic theory of Bogolyubov 
and Gurovr7 l in that the internal coordinates ~k and 
TJa are explicitly introduced. This circumstance is 
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important (from the formal point of view) for the follow­
ing reason: As is well known, the case most thoroughly 
investigated in kinetic theory is the spatially-homo­
geneous case. We shall likewise make this assumption 
(at a definite stage) with respect to the coordinates of 
the center of inertia. For the internal variables, on the 
other hand, this assumption or its analogs is in no way 
a satisfactory approximation and is not admissible. In 
addition, in spectroscopic problems it is necessary to 
take into account the dependence of the energy of the 
pair interaction on the internal states of the colliding 
particles. It is in these respects that the kinetic equa­
tion obtained in the present section differs from the 
results of[7 ' 8 l. Nonetheless, the subsequent calculations 
are performed in accordance with a scheme close to 
that of[7 J (see Sec. 10 ). 

We introduce single-and two-particle density 
matrices: , , 

F 1 (k) = F,(t, xk, 5~; XA, SA) = V Sp[kJF, 

Fz(k, a) = F2(t, xk, Ya, SA. 'I') a; XJ. 1, y,/, SA1 , 1)a1 ) = V2 Sp[A, a]F, (2 .3) 

where the indices [k] and lk, a] indicate the particles 
over whose coordinates no averaging takes place; V is 
the volume of the system. We shall seek the matrices 
F2 in the form of a sum of correlation matrices g and 
the product of single particle matrices: 

F2 (k, a)= F1 (k)F 1(a) + g(k, a). (2.4) 

Relations of the form (2.3) and (2.4) are satisfied also 
by the matrices F1(a), F2(k, j), and F2(a, f3 ). 

From the general expression (2.1) follows a well 
known chain of equations for F1 and F2, containing 
also the three-particle matrices Fs. From these equa­
tions, using the representation (2.4), we obtain differ­
ential equations for the correlation matrices g(k, a), 
g(k, j ), and g( a, {3). It is easy to ascertain that allow­
ance of terms proportional to the concentrations 
M/V and N/V in the equations for the correlation 
matrices gives rise to terms quadratic in the concen­
tration in the equations for the single-particle density 
matrices. Since we deal with limiting case of rarefied 
gases, we shall not take into account these terms in the 
equations for g. 

In addition, we shall assume the interaction energy 
to be small and omit terms containing products of the 
correlation matrices and of the operators U, G, and 
W. Thus, the equations for the correlation matrices 
assume the relatively simple form: 

og(k,a) 

{)t 
[~a(k)+ a16b(a),g(k, a)) +{W(k, a),Ft(k)F1 (a)]. (2 .5) 

In the derivation of (2 .5) we omitted, for simplicity, the 
symmetrization operators, i.e., quantum exchange ef­
fects were disregarded. 

To solve (2 .5 ), we go over to a momentum repre­
sentation (with respect to the variables of the inertia 
center) and an energy representation (with respect to 
the internal variables), i.e., we put 

1' 1 (k) = ~ 1Pm(5k)'¢n' (sk')exp{- iCIImnt} (2n/1)-3~ dpAdPA' Fmn(IIJ., PA') 

mn54Y 

X(2:rt/1) -B ~ dpk dpA' dp.,. dprr.' gmn~v (PA, PA1, Poo, Pa') 

{ i ( PA2 - P~<'2 pa2 _ p.,.'2 )} 
xexp -._ XAPk + y.,.p.,.- x~<'P~<'- y.,.'p.,.'--- -- -=---:::---=---

" 2ma 2mb 
(2.6) 

and analogously for F( a), g(k, j ), and g( a, {3). As be­
fore, Latin indices (k, j, m, n, ... ) number the states 
of the particles of the first kind, and Greek indices 
(a, {3, IJ., v, ... ) the states of particles of the second 
kind. Going over from (2 .5) to equations for gmnjJ.v 
etc., and solving them, we obtain 

lmn~&v(PA, PA'; p .. , p .. ', t) = gmn~&v(PA, PA'; Poo, P<t', to) 

I 

+ ~ (mflP~<Pai[W(k,a),Ft(k)Ft(a)Jinvpk'p .. ')dt'. (2.7) 
t, 

Analogous expressions are obtained also for the matrix 
g(k, j) and g( a, {3). 

We use Bogolyubov's initial condition[aJ 

lim g(pA,PA'; p.,.,pa',to)= 0, 
~ ... -

which, as is well known, leads to the appearance of 
irreversibility in the kinetic theory. In accordance 
with Bogolyubov's main idea, we seek also solutions of 
(2.5) having only an implicit time dependence, via the 
time dependence of the single-particle matrices. In 
addition, we assume as usual that the single-particle 
matrices change to a considerable degree only over 
times that greatly exceed the collision times. As a 
result we should pue> t' = t in the matrix elements 
Fmn and FiJ.v, which appear in the integrand of (2.7). 
We can thus obtain 

where 
""~ 1 i ll+(x)= e;x,d.,;=-li(x)+-·, (2.9) 

2 2nx 
0 

Wmi~&~(PA,Pt; pa, P2; t) = 

= (2:rtl1)-" exp{ i ( wm~ + w11~ + P.•;:.~12 + p,.~~:22 ) t} 

X ) d5k d1J,. dxk dy .. '¢m' (s•)'i'!(~•)q>"' (TJa) (P,(TJ<>) 

X W(k, a)exp {- ~ [Pk- Pt)xA + (Pa- Pz)Ya]} (2.10) 

We shall not write out the expressions for the matrix 
elements of g(k, j) and g( a, {3). They are obtained 
from (2.8) and (2.10) with the aid of the obvious substi­
tution of Greek indices for Latin ones and vice versa 
(and accordingly 1/J ~ cp ). 

The succeeding steps raise no fundamental difficul­
ties, since it is possible to calculate with the aid of 

0 It is precisely because of this fact that we chose in the expansion 
(2.6) a representation in which the factors exp[ -iEmt/li), which are 
connected with the internal motions, are separated in explicit form. 
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(2 .8) and (2 .4) the collision integrals in the kinetic 
equations for the single-particle density matrices Fr. 
We present the final results for the spatially-homogene­
ous problem, when 

Fmn(Ph,Pk',t) = (2nfi) 3{)(pk- p/)Pmn(P;,t), 

F~v(Pa, Pa', t) = (2nfi)3b(Pa- Pa')/~v(Pa, t). (2 .11) 

We assume, in addition, that the interaction between the 
particles depends only on the difference of their co­
ordinates ( x - y ). In this case the matrix elements of 
the interaction operators can be written in the form 

(2 .12) 

and analogously for the matrix elements U and G. 
Taking the foregoing considerations into account 

during the course of the transformations, we obtain the 
equations 

(2 .13) 

Here Smn and SJ.l. 11 are the integrals of collisions with 
particles of their own kind, and amn and aJ.l. 11 are 
integrals of collisions with particles of the other kind 
(impurity particles): 

<Jmn(P•)= ~) Amu•n(P•,P)pw(P)dp 
ll' 

- ~ [Bm,(P•)Pin(P•) + Pml(Pk)Bn!' (P•)]; (2 .14) 
l 

X b • ( + + p'- P•2 + P•' - p,z) 
+ Wh W~v ' 2mah 2mbh 

XW'm''"~(P•- P) Wl',~v(P- p,)/v"(P2); (2 .16) 

Smn(Pn)= ~) dpldp,am'''""·(Pk,PI,Pz)Pil'(Pi)p,..(p2) 
ll'ss' 

- ~ ~ dp [bml"' (Ph, P) Pin (P•) p,dP) + Pm~(P•) p,,. (p) b,~h'' (P•· P)], 

'"' (2.17) 

where in turn 

iY 1 
aml'ln"' (pk, PI, P2) = V /i2 2; ) dp b (Pk- PI + P- Pz) 

q 

xU,nlq,-(•Ph- PI)U,.n,q(PI- P•l{ 6+'( Wml + Wq,,• 

P•2 - Pl2 P2 - P22 ) , ( P12- Pk2 P22- P2 )} 
+~.,-~.-+ 2 fi + /)+ Wl'n + W,q +-2-;;-+ 2 fi ' .... m 0 rt ma man ma 

(2 .18) 

(2 .19) 

The collision integrals SJ.Lv and a J.l.ll are obtained re­
spectively from Smn and amn by replacing the indices 
of the particles of the first kind by the indices of the 
particles of the second kind and vice versa; in addition, 
we make the substitutions N :: M, U- G, etc. Within 
the framework of the employed scheme, it is easy to 
take into account also the quantum effects connected 
with the identity of the particles. 

So far we have considered the kinetic-equation terms 
that are due to collisions. To solve spectroscopic prob­
lems it is necessary to take into account the interaction 
with the external electromagnetic field and with the 
thermostat. In many cases this can be done by adding 
corresponding additive terms without changing the col­
lision integrals. Indeed, if the external field is not too 
intense, then the processes occurring during the colli­
sions do not depend on whether the field is present or 
not. Further, the external field produces a spatial in­
homogeneity, the scale of which is the wavelength. If, 
however, the wavelength greatly exceed the correlation 
radius (this is satisfied in the optical region), then it 
is easy to show that the collision integral will have 
practically the same form as in the spatially homogen­
eous problem, which was considered above. In this 
weakly-inhomogeneous problem [7J, the density matrices 
should be regarded as functions of the coordinates. If, 
in addition, we go over to a representation different 
from (2.6), without introducing factors of the type 
expl-i!Jk/2mati], then convective terms ima1Pk VkPmn 
and imj;1Pa V af J.l.ll appear in the left sides of the kinetic 
equations. Thus, under the assumptions made, inclu­
sion of the external field means addition of ordinary 
"dynamic" terms in the kinetic equations without 
practically changing the statistical or collision parts. 
The same considerations are valid, obviously, also with 
respect to the interaction between the atoms and the 
thermostat. 

The kinetic equations thus assume the final form 

( :t ...)... :a V) Pmn = [V', p(k)]mn + Smn + amn + f mn, 

( {) Pa ) , at...)...--;;;: V /"v = [V ,/(a)]~v + S~v + a"v + f"v' (2 .20) 

where v' is the operator of interaction of the particles 
with the electromagnetic field, and rmn and rJJ.v are 
due to the interaction with the thermostat (see, for 
example, [9 ' 101 • 

The kinetic equations (2 .20) with the collision inte­
grals (2.14) and (2.17) can serve as a basis for the 
analysis of those basic problems of spectroscopy, re­
ferred to in Sec. 1. We shall consider below certain 
problems in the theory of excitation of atoms (Sec. 3) 
and broadening of spectral lines (Sec. 4). 

In concluding this section, we note the following. If 
we take into consideration the approximations made 
in [BJ, and if the impurity particles are assumed to be 
immobile and structureless, then we obtain in lieu of 
(2.14) expressions for amn which coincide with those 
obtained in [aJ. 

3. EXCITATION IN A MIXTURE OF GASES 

In the widely used scheme for describing the excita­
tion of atoms, one introduces in the right side of the 
equation for the diagonal element Pjj a certain term 
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qjj ( Pk:), with the meaning of the number of excitation 
acts per unit time (see, for example,r9 • 12• 13 J ). It is 
also assumed usually that the same processes have no 
great influence on the nondiagonal elements Pmn, and 
that there are no corresponding terms in the equations 
for Pmn[l3 ' 14' 111 • Such a scheme is physically quite 
clear. However, insofar as we know, it has not been 
rigorously proved, and the limits of its applicability 
are not clear. 

We shall use the results of the preceding section to 
clarify this question, and consider first the equations 
for the diagonal elements. We assume that the parti­
cles of the first kind are excited only by collisions with 
particles of the second kind. The processes of the ex­
citation of the level m are described, obviously, by 
the "inelastic part" of the arrival term in the collision 
integral (2.14): 

qmm(Pk) = ~~ s 4-mAZ'm(Pko P) PU'(p)dp, (3.1) 
ll' 

The prime at the summation sign denotes that l .._ m 
and l 1 

.._ m. From (2.12) and (2.15) we see that 
Amll1m ~ exp[iwzz 1t ]. For transitions lying in the 
visible region of the spectrum, these will be rapidly 
oscillating terms and can be neglected. Therefore 

qmm(Pk)= ~' S Amum(Pk,p)pu(p)dp. (3.1 1 ) 

l 

Formula (3.1 1 ) states that the number of acts of excita­
tion of the level m per unit time consists of the transi­
tions l - m and p - Pk with probabilities Amzzm ( Pk, 
p ). In other words, the kinetic equations (2.13) corre­
sponds fully to the aforementioned intuitive representa­
tions, so long as we are dealing with populations. Thus, 
this scheme is applicable if conditions are satisfied 
under which our derivation of the kinetic equation is 
valid, and in addition if it is possible to disregard 
terms with l .._- l' in (3.1 ). The most important condi­
tions for the applicability of Eqs. (2.13) are smallness 
of the collision time in comparison with the free path 
time, and smallness of the interaction energy. The 
general structure of the collision integral is apparently 
determined by the first of these assumptions, whereas 
the second determines the explicit form of the kernals 
Amzz'n. 

In the theory of gas quantum generators, the term 
qmm ( Pk) is usually approximated by a given function 
Pk (for example a Maxwellian distribution 
WM( Pk )1 11• 131 ). This indeed takes place in the so-called 
model of strong collisions[3l, in which it is assumed 
that 

(3.2) 

In this case 

qmm(Pk) = QmWM(Pk), Qm = ~1 
Amz) p.zz(p)dp. (3.3) 

An analogous situation arises in the opposite limit­
ing case, when the collision does not change the velocity 
(model of weak collisions, excitation by electrons). 
Here 

I 

Amum=Amz<'l(pk-p), qmm(Pk)= ~ Am~pu(Pk), (3.4) 

and if the distributions W( Pk) of the atoms with re­
spect to the momenta are identical at all levels, then 

formula (3 .3) remains in force. 
As is well known, excitation of atoms in atom-atom 

collisions in gas-kinetic conditions is effective only for 
resonant processesr151 • In our formulas, this is re­
flected in the arguments of the o+ functions in (2.15), 
(2.16), (2.18), and (2.19): the kernal Amzzm, for exam­
ple, will have an appreciable value if wmz ~ wA/1' i.e., 
the transition m - l of the atom of the first kind is 
accompanied by a transition A - 11 of the atom of the 
second kind between the levels with approximately the 
same energy difference. In the case of resonance and 
ma ~ mb, the model of strong collisions is realized[41 , 
but if I wmz - wA11 1 :ti ~ kT, then the distribution with· ·­
respect to the velocities of the excited atoms has an 
appreciable probability of differing greatly, from equili­
brium, since the difference of the energies of the in­
ternal degrees of freedom ti( Wm[ - WA/1) is trans­
ferred to the translational motion2 l. 

We now turn to the equations for the nondiagonal 
elements. These equations include terms analogous to 
(3.1 ): 

q,.n(Pi<)= ~ S Amwn(Pk,p)p".(p)dp. (3.5) 
ll' 

We can see from (2.15) that qmn has an aJ?preciable 
magnitude only if 

ffiml + {J)JL). ~ 0, ffinl' + ffiJLv ~ 0. (3.6) 

If the particles of the second kind are not polarized 
( f A/1 = o Ailf u ), then both conditions (3 .6) are satisfied 
simultaneously only when wmz = wnz', i.e., it is neces­
sary that there exist levels l and l' equally remote 
from the levels m and n respectively, with PU' .._ 0. 
Certain interference phenomena occurring in this situ­
ation are discussed in[l8 • 191 • On the other hand, if 
p ll' ~ o ll ', or else wmz .._ wnz', then the nondiagonal 
elements are "not excited," although in the same colli­
sions the populations are produced quite effectively. 

Thus, the collision integral (2.14) includes in the 
form of particular cases also the "incoherent" exci­
tation of the atomic system (the case qmn = 0) and the 
polarization transfer in collisions. 

4. BROADENING AND SHIFT OF SPECTRAL LINE 
In this section we consider the question of broaden­

ing of a spectral line in the canonical formulation, i.e., 
for the transition between nondegenerate states and in 
the resonant approximation. We confine ourselves, 
furthermore, to broadening by extraneous particles. 
In this case it is necessary to retain only amn in Eq. 
(20) for pmn, and only the terms containing Pmn should 
be retained in amn: 

(~+~ v)Pmn = -[r, + i/1, +v(Pk)] Pmn ot m. 

+ )A(pk,P)Pmn(P)dp+ iVmn(Pmm-Pnn), 

v(Pk) = Bmm +Bnn•, A (PA,P) = Ammnn(PA,P); (4.1) 

( :t + !: V )r;; = -{r,; +v;(PA)] P;; 

2> Analogous effects are characteristic of the occurrence of atoms in 
dissociation of molecules (photodissociation [ 16 ] , dissociation in col­
lisions [ 17 ]). 
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+ ~ A;(PA,p)p;;(P)dp ± 2Re[ipmnVmn'], 

v;(PA)=2ReB;;, A;(PA,P)=A;;;;(PA,P). (4.2) 

The terms I\j and r 1 + iD- 1 are due to the interaction 
with the thermostat. The collision integrals written 
out in (4.1) and (4.2) coincide in the form with those 
used in[3 • 11l. By the same token, the conclusions drawn 
in[3 • 11 l acquire a physical meaning, for in the indicated 
papers the equations with such collision integrals were 
only postulated, but now they are the result of the ap­
plication of the general Bogolyubov method. This makes 
it possible to explain in greater detail the structure of 
the functions v, Vj, A, and Aj introduced phenomeno­
logically in [n], and to establish important relations be­
tween them. 

It is seen from (2.15) and (2.16) that the quantities 
of interest to us depend, generally speaking, on all the 
matrix elements fiJ.V• including the nondiagonal ones. 
In other words, the obtained formulas contain unique 
interference effects connected with the possible co­
herence of the states of the perturbing particles. In 
our paper, however, we shall not consider these phe­
nomena, and assume that the matrix fiJ.v is diagonal. 
In this case 

(4.3) 

M 1 r 
A;w;•(PA,P) = Vhz ~ J dptdp.II(Pk- P + Pz- Pt) 

•• 
( PA2 - P2 Pz2 - Pt2 ) 

X/1 W<•+ 2mali + 2mbli W;;A•(PA-p)Wn•l.(P-PA)f •• (Pt). 

In writing down (4.3) we used the fact that 

W;zo~.(P) = Wzj~..(- P) 

in view of the Hermitian character of the operator W. 
The structure of expressions (4.3) is quite clear. 

In our problem, the perturbing particles have a dis­
crete spectrum of states; the terms of the series in 1J. 
in (4.3) determine the contribution of the population 
fiJ.IJ. of the level 1J. to the broadening of the line in the 
transition m - n, and to the probability of quenching 
of the levels j = m, n. The term linear in W deter­
mines the addition to the energy resulting from the 
correlation between the particles in the self-consistent­
field approximation. In the case of structureless par­
ticles, this term is of no interest, since it means a 
shift of the energy reference point (see[7 l, p. 235). In 
our problem, on the other hand, it makes a definite 
contribution to the shift (but not the width) of the line, 
since the renormalization of the energy turns out, 
generally speaking, to be different for different levels 
j. 

Terms quadratic in W 2 can be interpreted in the 
following manner: IWjl>..IJ.I 2 determines the probability 
of the transition j - l of a particle of the first kind 
with a particle of the second kind located at the level 
A and undergoing the transition A - 1J.. In each act, the 
momenta of the particles can also change in accord­
ance with the scheme Pk - Pk• Pa- p~, a fact regu-

lated by the laws of the conservation of the total energy 
and of the total momentum (the I> and I)+ functions in 
(4.3)). 

On the whole, the real part of Bjj (and consequently 
also of Vj) gives the total probability per unit time) of 
the departure of a particle located at the level j with 
momentum Pk to other points of momentum space. The 
terms I WjlAIJ.I 2 , j"' l, correspond in this case to the 
simultaneous transition j - l and >..- IJ., i.e., to 
quenching, and the terms with I Wjj AIJ.I 2 are connected 
with quasielectric processes-a particle of the first 
kind remains at the level j, and the internal state of 
the particle of the second kind may change. It is easy 
to verify that the integral with respect to Pk of the 
elastic part (in the indicated sense) of the collision 
integral ajj vanishes. This means that only the velocity 
changes, but not the level, i.e., the interpretation 
presented above is confirmed. 

The integral terms in (4.1) and (4.2) describe the 
"arrival" of particles with momentum Pk from other 
parts of momentum space. It is seen from (4.3) that 
in the discussed approximation they are determined 
entirely by the quasielastic processes, and only pro­
cesses in which the particle does not lead either the 
level m or the level n contribute to the nondiagonal 
element Ammnn· 

Let us compare the diagonal and nondiagonal colli­
sion integrals. We conclude from (4.1) and (4.2) that 
the "departure frequencies" are connected by the 
simple relation 

2Rev = Vm +vn. (4.4) 

With respect to the arrival terms, we can only setup 
the inequality 

Am(PA, p) +An(PA, p);;;;.: 2ReA(pA, p), (4.5) 

which is equivalent, by virtue of the definitions (4.1 )­
(4.3), to the obvious inequalities 

(4.6) 

The inequality (4.5) means that the rate of arrival in 
the populations is not smaller than the rate of arrival 
for the nondiagonal element. The equal sign in (4.5) is 
reached only when WmmAjJ. = WnnAIJ.> i.e., for identi­
cal perturbations of the combining levels m and n. In 
such collisions, the phase of the equivalent atomic 
oscillator does not collapse. Consequently, it can be 
stated that the inequality (4.5) is connected with the 
fact that the lifetime of the nondiagonal element is due 
not only to quenching processes, but also to the 
"phase memory" of the oscillator. 

In certain simplest cases, the quantities r 1j, r 1, D., 
v, and v · determine directly the width and the shift of 
the levels, but in the general case this cannot be said 
without specifying concretely the form of the kernels 
A and Aj. Let us therefore consider first the general 
problem of the power absorbed (or emitted) by the 
atomic system. We start from the work performed by 
the field: 

P = -2Re [iVmn°Pmn]. (4.7) 

We assume that the external field is weak, i.e., the 
populations Pjj of the levels j = m, n, are practically 
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independent of the field. Then the term with 
iVmn(Pmm - Pnn) in (4.1) can be regarded as a speci­
fied function of Pk, rk, and t, and the problem reduces 
to finding a solution of the inhomogeneous equation (4.1). 
We express this solution in terms of the Green's func­
tion f( r, p, t I ro, p0 , t 0 ) of the corresponding homogene­
ous equation: 

Pmn (r, p, t) = i ~ f(r, p, t lro, Po, to)· V mn (ro, to)N (ro, Po, to) dro dpo dto; 

(;t+ ~: V +r,+i~+v )t- S A(pk,P)fdp (4.8) 
1 

=-6(t-to)O(r-ro)6(p-po). (4,9) 
lt 

We shall assume, as usual, that N, A, r1, t::.., and v do 
not depend on r or t. It is then natural to go over to 
the space-time Fourier transform of the Green's func­
tion, after which (4.7) can be rewritten in the form 

P = 2Re {SF(k, p, Qjpo)N(po)dpodkdQ 

xexp [ -tC(t- to)+ ik(r- ro)] Vmn • (r, t)V mn (ro, to)dro dto},1 (4.10) 

where the function F(k, p, 0 I Po) is a solution of the 
equation3 > 

[ v+f,-i(Q-~- k !J ]F- s AFdp =! ll(p- p0). (4.11) 

The factor in the second line of (4.10) determines ob­
viously the intensity of the field concentrated in the 
plane monochromatic wave with frequency 0 and wave 
vector k. Consequently, the Fourier transform of the 
Green's function F(k, p, t I p0 ) determines the absorp­
tion (emission) line shape for atoms having a velocity 
v = p/ma, and of excited atoms having a velocity v0 

= p0 /ma. The absorption of energy from the plane wave 
by the ensemble of atoms is described by the function 

I=~ dp dp0 F(k, p, ~1jp0) w(po), (4.12) 

where w( p0 ) is the distribution of the atoms with re­
spect to the velocities, at an excitation normalized to 
unity. Under such a normalization, as can be readily 
shown, we have Re JI(O)dn = 1. 

Formulas (4.11) and (4.12) solve the problem of the 
shape of the absorption line in general form, without 
specifying concretely the form of a kernal A(Pk, p). 
The principal role is played here by the Fourier trans­
formation of the Green's function of the kinetic equa­
tion (2 .20 ). 

Let us consider the so-called Lorentz-Weisskopf 
case, when the change of the velocity by the collision 
is neglected, i.e., A~ o(p- p' ). Then 

n-t.s (P - Po) 
F(k,p,tjpo)= f-i(Q-kpfm -a); 

f= r,+ v'- v', ~ = ~, +v"-~". ; =v'+iv" = SA(p,p')dp'. 

(4.13) 
The width r and the shift t::.. of the line are made up of 
components due to the interaction with the thermostat 
(r 1 , t::..d and the particles of the second kind. We are 
now interested in the latter components: 

3>we hope that the symbols F(k, p, tlp0 ) and N(Po ), V mn• f(r, p, 
tiro, Po, t0 ), adopted to be consistent with [ 11 ], will not be confused 
with F, F(k), etc. 

f2""' v'- ~~ = Re{ Bmm" + Bnn"- ~ A(p, p')dp' }, 

~2""' v"- v" = Im{Bmm0 +Bnn"- ~ A(p,p')dp'}. (4.14) 

From (4.14) and (4.5) we can see that 

2r.;;;;, r2m + r2n; r2; = Vj- V;, V; = ~ Bi!dp. (4.15) 

The quantities r 2j represent the rates of quenching of 
the levels j = m, n. The inequality (4.15) signifies that 
the line width is determined not only by the quenching 
of the levels (Lorentz mechanism), but also by the 
quasielastic processes which appear as a result of the 
collapse of the phase of the atomic oscillator (the 
Weisskopf mechanism). 

We take the opportunity to thank A. V. Solodov for 
constant interest in the work and valuable advice. 
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