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Expressions are obtained which describe the interaction of electromagnetic and of coherent spin 
waves in ferrodielectrics, on the assumption that the frequencies and wave vectors of the electromag­
netic waves are much larger than the frequencies and wave vectors of the spin waves. 

THE interaction of electromagnetic waves with oscil­
lations of the magnetic-moment density in ferromag­
netic media has been studied in a number of papers. [1- 41 

The theoretical investigation of the scattering of light 
on thermodynamic fluctuations of the magnetic-moment 
density was first carried out by Bass and Kaganov [ 11 

and was subsequently developed in papers of Elliott and 
Loudon,[ 21 Akhiezer and Bolotin,[3 1 and L'vov.[ 41 In 
PJ, account was taken only of the magneto-dipole inter­
action of the electromagnetic waves with the magnetic 
moment. Elliott and Loudon pointed out another mech­
anism of interaction, arising from spin-orbit interac­
tion. These two mechanisms lead to the appearance of 
gyrotropic components in, respectively, the magnetic 
susceptibility tensor fJ.ik and the dielectric permittiv­
ity tensor Eik; these components depend on the vector 
magnetization M. The size of the terms caused by 
spin-orbit interaction depends on the shape of the ferro­
magnet and on the frequency of the incident light and 
can vary by several orders of magnitude. 

The results of [ 1 ' 3 ' 41 enable us to describe the 
process of scattering of light on magnetic-moment fluc­
tuations in the approximation of single-stage scattering 
(the Born approximation). This approximation is appli­
cable if the dimensions of the ferromagnetic specimen 
and the correlation radius of the fluctuations of mag­
netic-moment density are small enough so that the ef­
fects of multiple and coherent scattering of the light 
may be neglected. 

Dillon et al. [ 51 and Ander son [ 61 experimentally ob­
served a modulation of the rotation of the plane of po­
larization of electromagnetic waves in ferromagnetic 
crystals with excited oscillations of the magnetic mo­
ment. The theoretical estimates used here[ 61 were ob­
tained in the "quas istatic" approximation, with neglect 
of the rate of change of the magnetic moment; they are 
very rough and are applicable only in the case of a uni­
form precession in sufficiently thin specimens. 

The present paper considers the scattering of elec­
tromagnetic waves on coherent spin waves (of fixed 
phase), on the assumption that the frequency w0 and the 
wave vector ko of the electromagnetic wave are much 
larger than the frequency n and the wave vector K of the 
spin wave: w0 >> n, ko >> K. Account is taken of the 
magneto-dipole and spin-orbit mechanisms of interac­
tion of electromagnetic waves with spin waves. The de­
pendence of the amplitudes of the scattered waves on 
the propagation distance is obtained for the case of a 
spin wave (K * O) and of uniform precession ( K = 0). 

1. On the surface of the half space x > 0, which is 

filled with an isotropic ferrodielectric, let there be ex­
cited an electromagnetic wave with frequency w0 and a 
spin wave with frequency n. As a result of the interac­
tion of the waves there appear, according to the degree 
of propagation, waves at the combination frequencies 
Wn = w0 +nil (n =arbitrary integer), and the ampli­
tudes of the original waves change. The problem is to 
find the amplitudes of the waves as functions of the dis­
tance of propagation. 

Maxwell's equations in a ferrodielectric have the fol­
lowing form: 

fJd / {)t = c rot h, 
divb = divd = 0, 

~ 

fJb /at= -c rote, 
b= h+4nM, 

d == ~ {e(t- t')e(t')+ i~(t- t')[e(t')B(t')]} dt', 

B = Ho + 4:n;M, e = e' + ie", (1) 

and the equation for the magnetic-moment density is 

aM 1 
-= g[MHe]--(M-Mo). 

{)t ,; 
(2)* 

In (1) and (2), t(t) is the specific Faraday rotation, 
caused by the spin-orbit interaction; He = H0 + a~M 
+ h, g is the gyromagnetic ratio, Ho is the effective 
constant magnetic field including the anisotropy field, 
a is the exchange-interaction constant, T is the relaxa­
tion time of a spin wave, Ii is the alternating magnetic 
field, and Mo is the component of the magnetic moment 
along H0• In the case in which a uniform precessio'!_ is 
excited in the ferrodielectric, the alternating field h in­
cludes, besides the high-frequency field of the light 
wave, also the external uniform alternating field that is 
exciting the precession: 

h{t) = h(t) + h.,e-iQt. (3) 

The boundary conditions corresponding to excitation on 
the surface (x = 0) of an electromagnetic wave with fre­
quency w0 and of a spin wave with frequency n can be 
expressed in the following form: 1 > 

*[MHe] =M X ne 

I) Since in the medium the oscillations of all physical quantities are 
coupled, the high-frequency oscillations of the magnetic field are accom­
panied by weak (of order O(rl/w)) oscillations of the magnetic moment, 
and, inversely, the low-frequency oscillations of the magnetic moment are 
accompanied by weak oscillations of the magnetic field. In the case under 
consideration, .12 /w ...:: I, and the coupling of the oscillations of the mag­
netic field and of the magnetic moment ,may be neglected. 
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h (x = 0, t) = h0e-;"'"' + c.c. , 

m(x = 0, t) = m0e-H" +c.c., (4) 

where m = M - M0 • 

For simplicity we shall suppose that the wave vector 
of the electromagnetic wave is directed along the x 
axis. From equations (1) and (2), the following equation 
for the electromagnetic field can be obtained: 

fj "' fj 
c2 rotroth+-.-- ~ {e(t-t') (---h(t')+4ng[Moh(t')l) 

ut . at' 
-oc 

+ i\;(t- t') [ ~' h(t')Bo ]}at' 

a "' a l} = -4n at~ { ge(t- t')[m(t')h(t')J + i~(t- t') [ Et' h(t')m(t') dt', 

(5) 
where B0 = H0 + 41TMo. In the derivation of this equa­
tion, terms have been omitted that are quadratic in the 
magneto-dipole and spin-orbit interaction constants. 

We shall seek solutions of equations (2) and (5), with 
the boundary conditions (4), in the form 

h±(r, t)= He L; an±exp {-iwnt + ik,.±r}. (6) 

Here the circular polarization has been introduced: 
h± = hy ± ihz; 

m(r,t) =Reb(x)e-i<>t+;xr. (6') 

The amplitudes a~ and b depend only on x, since the 
problem is uniform in y and z. The wave vectors k~ 
and K, as is clear from equations (2) and (5), are re­
lated to Wn and n by the known dispersion laws: 

and 

while 

w [ ( B0k 4nge' ( w) ))'/, 
k± + iy± = ---;: e' ( w) ± , ~ ( w) -k-+ wk Mok , 

w• 
y±=--e"(cu) 

c2k± 

(7) 

(8) 

(9) 

On substituting (6') into (2) and (5) and taking account 
of (8) and (9), we get the following equations for the am­
plitudes: 

where 
4:rtWn , 

v(n -1, n)= - 2-[ge (wn)+ Wn-1\;(wn)], 
C kn 

(10) 

cos6n"'=' 1+0(x2 /k2), c'.=Q/c-xx+O(x2 /k2 ), (11) 

and 

(12) 

where r = (agM0 KT)- 1• 

We recall that in our case the length of the electro­
magnetic waves is much smaller than the length of the 

spin wave. Furthermore, the interaction of the waves is 
weak enough, and the amplitudes change so little over 
distances of the order of the wavelengths, that their sec­
ond derivatives can be omitted in (10) and (12). 

In the case of a uniform precession of the magnetic­
moment density (K = 0), Eq. (12) ceases to be valid. In 
this case, b must be determined as the amplitude of a 
stationary solution of Eq. (2): 

b = (iQ + ,;-~)' + Q 02 {£2oMoh" + (iQ + ,;-•)[Moh.,] 

+ _[_ f [[M0h(t')] h(t')] ei<>t' dt' }. 
2n J (13) 

2. The solution of the differential-difference equa­
tion (10), correct to terms quadratic in n;w and K/k, 
can be found without difficulty by applying the WKB 
method in conjunction with the Laplace transformation: 

here 
an±= ao±(±i)" exp{-y±x ± infh}ln(vniBtl ); (14) 

Vn = (vovn) 'h, Vn = 1/,[v(n- 1, n) + v(n, n + 1)], 

X 

Bi(x)= ~ hx(y)eU•Ydy, ~1 (x)= argBt(x), (15) 
0 

and Jn(x) is a Bessel function. 
As was to be expected, the extinction of the light is 

determined by the imaginary part €" of the dielectric 
permittivity. As is well known, Bessel functions are 
negligibly small if the value of the index exceeds the 
value of the argument. Therefore the number of elec­
tromagnetic waves excited whose amplitudes differ ap­
preciably from zero is proportional to I B1 1. Since 
B1 (x), and consequently also I B1 1, is a periodic function, 
the whole process of transformation of electromagnetic 
waves is periodic in x with a period equal to the period 
of the function I B1 1. At the beginning of the process, 
waves appear at the combination frequencies; the num­
ber of appreciably excited waves reaches a maximum 
along with I B1l, and then it begins to diminish. At the 
place where I B11 vanishes, there is present only the 
wave at the fundamental frequency w0• The maximum 
number of appreciably excited waves is approximately 
determined by the following relation: 

Nmax "'=' 2max VoiBd. 

Since the coefficients Vn depend only slightly on n: 

Vn=Do+o(E), 
\w 

4nroo Vo = -- [ge (wo) + l;(roo)wo], 
c'ko 

therefore, with neglect of this dependence, 

a,.±= ao±(±i)" exp{-y±x ±in~,} In (voiBt I). (16) 

On substituting (16) into (6) and taking account of (9), 
we get 

h±(r, t) = a0± exp{-iw0t + ik±r} 
Xexp{±ivoiBd cos (Qt- 'XyY- 'X,Z- Qx / c + ~1)}. (17) 

From this formula it is clear that the interaction of the 
light with the spin wave leads to modulation of the light, 
in particular to modulation of the rotation of the plane 
of polarization of linearly polarized light. In fact, 

cp(x) = arctg ~~ = cpo(x) +Vol Btl cos ( Qt- XyY- 'XzZ- ~ x + ~~ ), 
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where 

<fo(x)= :-[\;(w) Bok +4.nge'(w)-~ok J. 
c re' k wk 

In the limit of small x (x << 2JTc/n), these formulas 
agree with the result of the "quasistatic" approxima­
tion. [ 6 J 

3. In order to clarify in more detail the peculiarities 
of the process of interaction of the waves, we turn to 
the calculation of B1(x). 

In the case of the uniform precession, as is clear 
from (13) and (11), 

b.= (iQ + ,:.) 2 + 002 {ooMoha.x +(i'! +-r1) (Moy, ha.z -MozhD.y) 

M = 
- !___<>_x ~ h2 ( t') ei<lt' dt'} ; 

2.1 

A= Q I c. (18) 

On noting that the last term in (18) is of order nh2/ w 
and therefore makes an unimportant contribution, we 
get . 

B1(x)= ~ bx(y)eil'•Ydy 
0 

= gc-r: (e-;Qxf•- 1) OoMohc,x+(iQ +;r-1) (Mo,ho,,-M0,h.,,,) 
iQ (iQ + ,;-1)2 + Q 02 ' 

jB,j= 2gc-r: I OoMoh<>,x+(iO+;r:-1_\_M~I_~"·'-Mo,ho,,) sin_g__xj. 
. Q (iQ + ,;-1)2 + Oo2 2c 

(19) 

Thus in the case of a uniform precession of the mag­
netic moment, the process of transformation of light 
waves is periodic in x with period 2JTc/n; the maxi­
mum number of waves excited at combination frequen­
cies is 

Nmax;::,; Vo 4gct I OoMoh<l. X+ (iQ + -r-1) <M,Oy ho, z- Mo, ho, y) I 
Q (iQ + ,;-1)2 + Q 02 

If the wave vector of the spin wave is different from 
zero ( K * 0), then in order to find bx it is necessary to 
solve Eq. (12). On substituting (16) into (12), to terms 
of order O(nh2/w), we get 

(a 1 ax + r) b. == o, 
that is, 

and consequently 

box 
Bt(X)= il'i-r (e<i<>-r)•-1). (20) 

When x << r- 1 and ~ * 0, the expression (20) coin­
cides in form with (19). In this case, B1(x) and the 
process of transformation of the waves are periodic 
with period 2JT/~. When ~ = 0, the magnitude \B1 1 is 
an increasing function, and consequently the number of 
appreciably excited waves at combination frequencies 
grows with increase of the scattering distance x. When 
x >> r-t, 

lB.\= lboxl (L\2 + f2)-'1'· 

Thus in this range, the number of appreciably excited 
electromagnetic waves does not change with increase 
of x: 

N ;::,; Vo I box I (.L\2 + r 2) -'lz. 

4. In closing, we shall consider a specific example 
of scattering in which the formulas obtained take the 
simplest possible form and the effect of interaction of 
the waves is greatest. Let Mo be directed along the z 
axis, K and Ito along the x axis; K = n/c. In this case 
~ = 0, and the effect of the light wave on the spin wave 
in this approximation is absent. Since the waves are 
connected in resonance fashion, B1(x) is a monotoni­
cally increasing function: 

I box ( -r•) \Bt =r-- 1-e . 

In the initial stage, the number of combination electro­
magnetic waves increases, as v0 \b0xlx. When x >>r-\ 
the number of excited waves approaches the limit 
N = v0 \b0xlr-t, 

The results can be easily generalized to the case of 
several sublattices. 

The authors express their thanks to v. v. Eremenko, 
M. I. Kaganov, and V. M. Tsukernik for discussions. 
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