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The magnetic properties possessed by single crystals of the hexagonal ferrite (Bao.2Sro.a)3Zn2Fe24041 
are investigated. Magnetization curves which exhibit the existence of critical fields are measured at 
different temperatures. The temperature dependences of the anisotropy constants are measured. Mag
netization curves are calculated using the model of two magnetic sublattices with a weak exchange 
interaction, and are found to be in good agreement with experiment. 

THE very diverse structures of hexagonal ferrites are 
accompanied by a diversity of their magnetic proper
ties. In the present work we have investigated the mag
netic properties (magnetization curves and anisotropy 
constants) of the hexagonal ferrite (Bao.2Sro.ahZn2Fe24041 
(abbreviated to Sr3Zn2Z) and have discovered that criti
cal magnetic fields exist at which the magnetic proper
ties of this ferrite are changed. At the present time 
only very few additional substances associated with such 
critical fields are known. It is therefore useful to pres
ent the results obtained in our investigation of the mag
netic properties exhibited by single crystals of Sr3Zn2Z. 

1.· The Sr3Zn2Z crystals were grown by spontaneous 
crystallization from a solution in a NaFe02 melt. An 
x-ray analysis yielded th~ unit cell parameters 
c = 52.26 A and a = 5.87 A. The strontium and zinc con
tents were determined with an x-ray microanalyzer. 

A vibration magnetometer was used to measure the 
magnetization curves of the Sr3Zn2Z single crystals in 
the temperature range 77-650° K. Curve 1 in Fig. 1 was 
obtained for a magnetic field parallel to the c axis of 
crystal symmetry; curves 2-6 were obtained with the 
magnetic field in the basal plane. 1> The respective tem
peratures corresponding to the curves are given. The 
existence of a critical field that is linearly dependent 
on temperature is clearly shown by curves 2-5 (the 
lower graph in Fig. 1). The slow rise exhibited by 
curves 2-6 in the region H <Her is evidence of a 
"paraprocess." For very low fields H < 0.5 kOe the 
curves are unreliable because the demagnetizing field 
that was present could not be taken into account com
pletely. 

The torque method was used to investigate magnetic 
anisotropy in the same samples. It was found that above 
230° K the direction of easy magnetization coincides 
with the c axis of Sr3Zn2Z crystals. Below 230°K the 
easy magnetization direction forms an angle a with the 
c axis and thus generates a cone of easy magnetization. 
The angle a increases as the temperature is reduced 
and has the value 23° at 77°K. The magnetic anisotropy 
energy of a hexagonal ferrite can be expressed by the 
equation 

(1) 

I) Additional curves corresponding to a field parallel to the c axis are 
omitted to avoid overcrowding the figure. 
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FIG. I. Magnetization curves (magnetization I versus applied mag
netic field H). For Hllc: I - T = 77°K; for Hlc: 2- T = 77°K, 3-
125°K, 4 - I 55°K, 5 - 205°K, 6 - 293°K. 

where 1J! is the angle between the magnetization vector 
I and the c axis. The anisotropy constants K1 and K2 are 
determined from experimental torque curves. Figure 2 
shows the temperature dependences of K1 and ~. 

2. The magnetic structure of ferrites is quite com
plex. l:lJ However, for a description of their magnetic 
properties it is often sufficient to consider the model of 
two magnetic sublattices characterized by the magnetic 
moment vectors M and M' ;[21 this model is used in the 
present work. Then the thermodynamic potential for 
unit volume of an infinite hexagonal ferrite crystal is 
given by 

<D = - 1/ 2K cos2 8- 1/ 2K' cos2 8' + K" cos 8 cos 8' 
+ K"' sin 8 sin 8' cos ('f- 'f') + xMM'- HM- HM'. (2) 

Here the terms having the different K coefficients 
represent the magnetic anisotropy in the first perturba
tion approximation; 8 and [I' are the angles between the 
principal axis c of crystal symmetry and the vectors 
M, M'; cp and cp' are the azimuthal angles of M and M' 
in the basal plane. The term KMM' is the portion of the 
exchange energy that depends only on the relative orien
tations of the two sublattices. This portion will be as
sumed much smaller than the exchange interaction 
within each of the sublattices; M and M' can therefore 
be taken as constant in first approximation. The as
sumption appears to be a realistic one for the investi-
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FIG. 2. Temperature dependences 
of the anisotropy constants K 1 and K 2 . 

gated ferrites. The last two terms in (2) represent the 
interaction energy of the crystal and an applied magnetic 
field H. 

It is easily seen that a minimum value of (2) can ex
ist when the angles cp, cp' equal 0 or 1r. We shall there
fore confine ourselves henceforth to the xz plane; the 
z axis coincides with the c axis of the crystal and the 
x axis coincides with the projection of H on the basal 
plane. The angles cp and cp' can be deleted in (2), while 
() and()' are taken as positive (when cp = 0) or as nega
tive (when cp = 11), having the range 0 to 1T or 0 to -11, 
respectively. We observe that the exchange term KMM' 
has the same form as the anisotropy energy terms with 
K" and K"'. Therefore KMM' can be dropped from (2) 
if we assume that this constant exchange energy is in
cluded in the coefficients K" and K"'. For additional 
convenience all terms in (2) are normalized to the co
efficient K"'. 2 > Equation (2) can now be written as 

where 

¢ = - 1/ 2k cos2 8- 1/ 2k' cos2 8' 
+ k" cos 8 cos 8' + sin 8 sin 8' 

- hx(sin 8 + msin 8') 
- h,(cos 8 + mcos8'), 

HM 
h=

K'"' 

K 
k=K'"' 

M' 
m=M. 

(3) 

(4) 

Since we are interested mainly in ferrimagnetic and 
antiferromagnetic states rather than ferromagnetic 
states, we shall assume K"' > 0. The conditions acpjaa 
= 0 and Bcf>/8()' = 0 lead to the equations 

k cos 8 sin e - k" sin 8 cos 8' + cos 8 sin 8' - hx cos 8 + h. sin 8 = 0, 

k' cos 81 sin 81 - k" sin 8' cos 8 + cos 81 sin 8 - hxm cos 81 + h,m sin 81 = 0. 

(5) 

The solutions of this system that correspond to the 
minimum of the thermodynamic potential (3) are derived 
by analyzing the second derivatives of cp. 

General analytic solutions of (5) cannot be obtained, 
but analytic solutions are obtainable in the special case 
k" = 0 for a field along the x axis. The experimental 
curves in Fig. 1 show that the solutions for h = hx are of 
principal interest. We therefore first consider the case 
k" = 0, after which we shall investigate the differences 
that arise when k" r" 0. 

2lNormalization to K" (instead of K"') would affect the subsequent 
analysis only by interchanging the roles of the x and z axes. 

FIG. 3. Plane of the variables 
k and k' when k" = 0 (m = 2.5). 
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For a zero external field h = 0 we obtain the follow
ing stable solutions of (5), corresponding to the absolute 
minimum of cp. In regions I and II (Fig. 3, where m > 2) 
there are two solutions with antiparallel M and M' along 
the x axis: 6' = -6 = ± 1T /2. In regions III and IV there 
are four solutions, two with parallel and two·with anti
parallel orientations of M and M' along the z axis: 
()' = () = 0, 1T and ()' = -6 = 0, 1T. In region V there are 
four solutions with M' along the x axis and forming an 
obtuse angle with M: 6' = ±1T/2, sin()= 'f1/k. In regions 
VI-IX there are four analogous solutions with M and M1 

interchanged: 6 = 'f1T/2, sin 6' = ±1/k'. The fact that in 
each region there exist several different but equally 
stable solutions signifies that the crystal can be divided 
into domains. 

If we now refrain from assuming k" = 0, the general 
character and the number of solutions for h = 0 are not 
altered. Changes occur with regard to the stable solu
tion regions in the k-k1 plane. For example, the stability 
boundary of the solutions 6' = -6 = ± 1T /2 will be the 
curve (k- 1)(k' - 1) - k" 2 = 0 (which for k" = 0 degener
ates into the two straight lines k = 1 and k' = 1, as in 
Fig. 3). The stability boundary of the solutions ()' = -6 
= 0, 1T will be the curve (k + k")(k' + k")- 1 = 0. The 
ferromagnetic solutions 6' = () = 0, 1T become metastable 
(for k" > 0) and their relative stability boundary runs 
along the curve (k- k")(k'- k")- 1 = 0. Similarly, for 
the ferromagnetic solutions 6' = () = ±1T/2, which have 
not been presented here previously because they are 
metastable (fork" 2: 0), the relative stability boundary 
runs along the curve (k + 1)(k' + 1)- k"2 = 0. 

We shall now obtain analytic solutions of (5) for h r" 0; 
it has already been mentioned that this can be done for 
h = hx. It is here sufficient to limit ourselves to the 
case of hx > 0 and m > 1 (for m < 1 the roles of the 
M and M' sublattices are interchanged). It will be con
venient to have the stable solutions of (5) numbered as 
follows: 

, :rt :rt rr h-1 
1) 8 =8= 2 , 2) 91 =-8=-z, 3) 8'= 2 , sin8=-k-, 

:rt I mh- 1 I :rt I mh + 1 
4) 8=-;;-, sinS =-k-1-, 4) 9=- 2 , sine =--k-1-, 

. (k1 - m)h . 1 (km- 1)h 
5) sm 8 = 1 , sm 8 = 1 • (6) 

kk -1 kk -1 

The following solutions, which are analogous to 1), 2), 
and 3), are metastable (for hx > 0, m > 1) and may be 
neglected: 
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1') 6' = 6 = - ; , 2') e' = -6 = -i-, 
' ' l't h+1 

3) e =---z· sin6=-k- (7) 

By investigating the stability of the enumerated solu
tions we can obtain magnetization curves, i.e., the de
pendences of the magnetization lx = M sine + M' sin 8' 
along the x axis on the applied magnetic field H = Hx. 
These curves are shown in Fig. 4, where h = hx of Eq. 
(4) is measured along the horizontal axis and i = lx/M 
is measured along the vertical axis. The Roman num
erals below the individual graphs correspond to the 
regions in Fig. 3. The critical fields and the associated 
magnetizations are shown. The numerals adjacent to the 
curves denote solutions listed in (6). The dashed lines 
are metastable states; Fig. 4 does not include the solu
tions that are given in (7). The existence of metastable 
solutions permits hysteresis in some instances. 

We note that the magnetization curves in Fig. 4 were 
obtained on the basis of certain assumptions. The omis
sion of a demagnetizing factor means that the results 
are valid for an infinite crystal. The domain structure 
of the crystal was neglected; this is equivalent to the 
assumption that even the weakest possible field produces 
a single domain. We also neglected the paraprocess, 
i.e., the change in the absolute magnetic moments M and 
M' of the sublattices during the magnetization process. 

By now taking k" into account we do not alter the 
general character of the magnetization curves in Fig. 4. 
Changes will occur in the boundaries of the regions of 
Fig. 3 that enclose some form of each curve. All 
straight lines in Fig. 4, except the horizontal straight 
lines representing solutions 1) and 2), will become 
higher-order curves (see the experimental curves in 
Fig. 1). 

Analytic solutions for the magnetization curves along 
the z axis cannot be derived even when k" = 0. How
ever, a general analysis reveals that in the most inter
esting regions (I and ll) of Fig. 3 the lz(Hz) curves will 
be of the type shown in Ill, IV of Fig. 4, except that the 
straight line segments will be replaced by higher-order 
curves (even when k" = 0). 

It is of decided interest to compare the proposed 
scheme with experiments performed to determine the 
easy magnetization axis and the anisotropy constants K1 
and K2. Fields of ~ 20 kOe were used in the experimen
tal work. It can be assumed that the magnetic vectors 
of both sublattices were aligned along these fields. The 
magnetic anisotropy energy can thus be represented by 
(1), which includes second-order perturbation terms. 
From a comparison with (2), where we now insert 8' = e 
= l/J, we obtain K1 = K + K'- 2(K" + KMM') 
+2(K"' + KMM'). Figure 2 shows the experimental tem
perature dependences of K1 and K2. We find K1 > 0 in 
the entire temperature range; this result is consistent 
with the already observed agreement between the experi
mental magnetization curve and the theoretical curve of 
magnetization along the x axis in region I. Agreement 
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FIG. 4. Magnetization curves for the different regions of the k-k' 
plane in Fig. 3; i = lx/M, h = hx = hxM/K'". [h1 = I + k,h2 = I - k,h3 = 
(k' + I )/m, h4 = (k' - I )/m, h5 = I, h6 = (kk' - I )/(k' - m), h 7 = 
(kk' - I )/(mk - 1), i1 = m + I, i2 = m - I, i3 = m - 1/k, i4 = I - m/k', 
i5 = m/k'- 1). 

was found for K" + KMM' = 0, K"' + KMM' > 0, K > 0, 
K' < 1. 

The curves in Fig. 2 show that the second anisotropy 
constant K2, which was neglected in the foregoing theor
etical treatment, becomes important below 230•K. If we 
now attempt in Eq. (2) to take into account terms of the 
next approximation in the anisotropy energy, an analysis 
shows that the total number of solutions will be in
creased. Great diversity of the magnetization curves 
appears. However, in some regions of the variables 
k, k', k" the previous curves are conserved, especially 
in regions I and ll; these are curves that agree well 
with experiment. Thus, even when K2 is taken into ac
count the previous agreement will be obtained, although 
there will be changes in the regions where the curves 
of I and ll exist. Also, the straight lines become higher
order curves (as occurred when k" was taken into ac
count). 

1J. Smit and H. P. J. Wijn, Ferrites, Wiley, New 
York, 1959 (Russ. trans!., llL, Moscow, 1962). 

2 L. Neel, Izv. Akad. Nauk SSSR, ser. fiz. 21, 890 
(1957) (Bull. Acad. Sci. USSR, Phys. Ser. 21, 889 (1957)]. 

Translated by I. Emin 
88 


