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We describe a theoretical investigation of the electromagnetic properties of semimetals in the vicinity 
of cyclotron resonance. It is shown that the spatial inhomogeneity of the high-frequency field can play 
a very important role even in the frequency region corresponding to the normal skin effect in the ab
sence of a magnetic field. Non-local effects near resonance cause the dielectric constant of the elec
tron-hole plasma to become positive, and an "ordinary" cyclotron wave can exist in the crystal. The 
properties of such waves are investigated. It is shown that their presence leads to singularities in the 
semimetal. 

1. INTRODUCTION 

CYCLOTRON resonance in metals was theoretically 
predicted by Azbel' and Kaner[ 1l and first observed 
experimentally by Fawcett [2l, It is presently one of the 
main methods of investigating the properties of conduc
tion electrons in metal. As is well known, resonance 
takes place when a constant magnetic field H is paral
lel to the surface of the sample, and the frequency of 
the high frequency field w is a multiple of the cyclotron 
frequency of the carriers 0 (for metals with a non
quadratic dispersion law-to the extremal value of the 
cyclotron frequency Oext). The increase of the high
frequency conductivity as 0- w/n (n-integer) leads 
to resonant maxima of the reflection coefficients and 
to minima of the high-frequency impedance (surface 
impedance). In view of the high conductivity of the 
metals, it is usually assumed that the characteristic 
distance over which the electromagnetic field attenua
ates is much smaller than the dimensions of the elec
tron orbits, i.e., that the cyclotron resonance takes 
place under the conditions of the anomalous skin effect. 

Kaner and one of the authors[3l called attention to the 
fact that in the vicinity of the resonance the dielectric 
constant of the electron gas becomes real and positive, 
and cyclotron waves may propagate in a metal, with a 
wavelength much smaller than the Larmor radius of 
the electron orbit R = v/0 (v-characteristic velocity 
on the Fermi surface). 

Subsequently Walsh and Platzman[4 l have shown that 
beside the short-wave branch (kR >> 1, where k is the 
wave number), there exists also a long-wave branch 
(kR « 1 ), which has anomalous dispersion. The trans
fer of the dispersion extracted from the waves changes 
in the region kR > 1, where the wave length becomes 
smaller than the Larmor radius R. The long-wave 
branch is excited much more weakly than the short
wave branch responsible for the cyclotron-resonance 
line. However, the attenuation length of the long-wave 
branch turns out to be so large that standing waves are 
produced in thin metal plates and lead to a fine struc
ture of the resonance line. 

In bismuth, the carrier density is smaller by five 
orders of magnitude than in typical metals. Accord
ingly, the characteristic distance over which electro-
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magnetic field changes appreciably is much larger. In 
the microwave region of frequencies, the effective 
range l * = v/w (the high frequency field accelerates 
the carriers within a time on the order of 1/ w) becomes 
smaller than the skin depth of the plasma 

bo=c/roo, (1.1) 

where 

(1.2) 

w oj is the plasma frequency of the carriers of group j, 
and Nj and mj are their densities and effective 
masses. 

If the inhomogeneity of the high frequency field over 
distances on the order of l * is small, then the nonlocal 
effects do not play any role and the skin effect is nor
mal (classical). In the absence of a constant magnetic 
field, the dielectric constant of an electron-hole plasma 
is negative: 

(1.3) 

and the field actually attenuates over a distance 50 

from the surface. In other words, the condition of the 
normal skin effect at H = 0 is given by 

z•.,;,; Oo. (1.4) 

In the region of cyclotron resonance, where n ~ w, the 
characteristic radius of the carrier orbits is of the 
order of l*: 

R -l*. (1.5) 

It can therefore be assumed that in the limiting case 
(1.4) the spatial inhomogeneity of the high frequency 
field on the trajectory of the electron is small, and 
consequently, local theory is applicable. Cyclotron 
resonance in bismuth under the conditions of the normal 
skin effect was investigated by Smith, Hebel, and 
Buchsbaum [sJ. They reached the conclusion that in the 
local limit cyclotron resonance of one definite group 
of carriers is impossible. The resonance is screened 
by a longitudinal depolarizing field[ 8 l, which couples 
strongly the longitudinal and transverse degrees of 
freedom of the plasma and shifts the resonant frequen-
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cies away from the cyclotron frequencies of the elec
trons and the holes. The resonant frequencies are hy
brid and include the cyclotron masses of all the car
rier groups. On the other hand, in the region of true 
cyclotron resonance, n- w, the intrinsic polarization 
of the electromagnetic field changes in such a manner 
that it becomes strictly orthogonal to that necessary 
for the excitation of the resonance. As a result, the 
effective dielectric constant for the intrinsic polariza
tions has no singularities at n - w. Resonance at 
n - w is possible only at such directions of the mag
netic field H, for which the cyclotron masses of two 
or three non-equivalent electron groups are the same, 
but their orbits are inclined at different angles to the 
magnetic field. Such a resonance is called "cyclotron 
resonance on inclined orbits" [51. 

Actually, besides the hybrid resonances and reso
nances on inclined orbits, the experimental curves 
of[ 5J reveal the presence of maxima corresponding to 
cyclotron resonance of individual carrier groups. This 
fact offers evidence of the nonapplicability of the local 
theory to the analysis of cyclotron resonance. Subse
quently Hebel has shown (?J that a small but finite spa
tial inhomogeneity of the field gives rise to a resonant 
term in the dielectric constant and in the absorption 
coefficient. Hebel considered cyclotron resonance of 
holes for the polarization of the electric field E along 
a constant magnetic field H ("ordinary wave"). He 
confined himself to the case of relatively small hole 
free path l, when the resonant part of the dielectric 
constant due to the nonlocal effect is a small resonant 
addition to the main local term. In this case the propa
gation of the wave in the crystal is impossible, as be
fore, since the dielectric constant remains negative. 

It is shown in the present paper that nonlocal effects 
can play a very important role if the carrier mean 
free path is large. In the direct vicinity of the cyclo
tron resonances, the dielectric constant along the 
constant magnetic field becomes positive. As a result, 
an "ordinary" cyclotron wave can propagate in the 
semimetal. We shall also show below that the exist
ence of a wave in narrow frequency intervals leads to 
singularities in the reflection and in the absorption 
coefficients. 

2. DISPERSION EQUATION AND CONDUCTIVITY 
TENSOR 

We are interested in the properties of electromag
netic waves that can propagate in the volume of a 
semimetal. The influence of the surface of the sample 
on the field distribution near the surface will not be 
considered. We therefore consider first the propaga
tion of waves in an unbounded electron-hole plasma, 
and then study the singularities of the surface imped
ance of a semimetal, due to the presence of these 
waves. 

The electromagnetic field in a crystal is described 
by Maxwell's equations, which can be written, after 
eliminating the high-frequency magnetic field, in the 
form 

(2 .1) 

where E ( r, t) and j ( r, t) are the electric field and the 
conduction-current density at the point with radius 
vector r at the instant t, Eo is the dielectric constant 
of the lattice. The second term in the right side of 
(2.1) is connected with the displacement current. At 
frequencies w much smaller than the plasma frequency 
w0 , this current is small compared with the conduction 
current. Therefore the displacement current can be 
neglected. 

The conduction current density is proportional to 
the electric field. However, in the presence of non
local effects, the connection between them is integral: 
the value of the current density at the point r at the 
instant t is determined by the value of the electric 
field in a certain region of states in the preceding in
stants of time. If the medium is homogeneous, then 
the kernel of the integral operator is of the difference 
type. It follows therefore that in the Fourier repre
sentation the connection between the current density 
and the field becomes algebraic: 

ia(k, w) = <Jap(k, w)Ep(k, w), (2 .2) 

where k is the wave vector and w the frequency; 
ia(k, w), E13(k, w), and aaf.l(k, w) are the Fourier 
components of the current density, the electric field, 
and the conduction-tensor elements; summation over 
the repeated vector indices {3 is implied. 

The dependence of the elements of the tensor aa{3 

on the frequency is a consequence of the retardation 
effects. Nonlocal effects become manifest in the de
pendence of aaj30n the wave vector k. We note that 
in the local limit a a{3 does not depend on k. 

For an unbounded medium, the field equation (2 .1) 
now takes the form 

- . w" ~ 
Lk[kEl] + -;,:;-e(k, w)E = G, * (2 .3) 

where the elements of the dielectric tensor are 
4ni 

Ba~(k, w) = eollaB +- Oap(k, w) (a, B ~~ .r, IJ, z). (2 .4) 
(J) 

By equating to zero the determinant of the system of 
the three homogeneous equations (2 .3) we obtain the 
dispersion equation that determines the properties of 
the electromagnetic waves. 

We are interested in frequencies w much lower 
than the plasma frequency w0 • At such frequencies, 
the displacement current is small compared with the 
conduction current, and the dielectric permeability of 
the lattice Eo in (2.4) can be neglected. Consequently, 
the properties of the electromagnetic waves are deter
mined completely by the elements of the tensor aa{.l. 
An explicit form can be obtained with the aid of the 
kinetic Boltzmann equation for the distribution function 
of the carriers in a constant magnetic field and in the 
field of a plane monochromatic wave with wave vector 
k at frequency w. The general expression for 
aa{.l (k, w, H) in the case of a complicated prior 
energy spectrum was obtained by Azbel' and Kaner[ 1 l. 
Before we present it, we shall discuss briefly the 
dynamics of the carriers in a constant magnetic field1 8 l. 

We consider a conduction electron with an arbitrary 
dispersion law E = E ( p), where E is its energy and p 
the momentum. The electron velocity is 

v(p) = oe(p) I ap. (2 .5) 

*[kE) =k X E 
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In the presence of a magnetic field H, the electron 
executes a very complicated motion, and the trans
verse components of its momentum are not conserved. 
Therefore it is convenient to describe the state of the 
electron with the aid of two integrals of motion E and 
pz ( z II H ), and the phase of the periodic motion cp. 
The phase cp determines the position of the electron 
on its orbits, and varies within one revolution from 
zero to 27T. 

Using these variables, we can write the conduction 
tensor in the form 

2R cp 

X~ va(e,p,,q:)d<p ~ v~(e,p,q:')dq/ 
0 

~· 

X exp{_!__) [v- iw + ikv(e p,, rp")]dq:"} (2 .6) 
Q_cp 

where e is the absolute value of the electron charge, 
21Tti is Planck's constant, EF is the Fermi energy 

!J(e, p,) =eli I m(e, p,)c (2. 7) 

is the cyclotron frequency, 

( ) 1 aS(e,p,) 
m e,p, = 

2l't ae 
(2.8) 

is the cyclotron effective mass, S( E, pz) is the area 
of the intersection of the constant-energy surface 
E(p) "'E with the plane pz "'const, and va(E, pz, cp) 
are projections of the velocity vector (2.5), in which 
Px and Py are expressed in terms of E, pz, and cp. 
The factor 2 preceding (2.6) takes into account two 
possible spin projections, the sign of the sum denotes 
summation of the contributions from different carrier 
groups. 

In the present paper we consider cyclotron waves in 
bismuth in which the carrier dispersion law is well 
known. We used the Shoenberg ellipsoid model[9 J. In 
this model, the electronic zone consists of three 
ellipsoids, slightly inclined to the basal plane (the 
plane perpendicular to the trigonal axis). The energy 
of the electrons of one of the ellipsoids is given by the 
formula 

1 
ea(P) = -2- (a1P12 + a2p22 + aapa2 + 2a.p,pa), (2 .9) 

mo 
where m0 is the mass of the free electron; P1, P2, and 
p3 are the momentum components along the binary, 
bisector, and trigonal axes; 

a1 = 197, a2 = 1.64, aa = 81.1, a• = 9.41 (2 .10) 

are the values of the elements of the reciprocal-mass 
tensor taken from [101 • This ellipsoid will be designated 
(a). The other two ellipsoids, (b) and (c), are obtained 
by rotating ellipsoid (a) through ±120° around the tri
gonal axis. 

The hole band is an ellipsoid of revolution, the axis 
of which is parallel to the trigonal axis. The hole 
energy is 

Pt2 P22 P•2 ( ) 

e(p)= 2Mt + 2M1 + 2M3 ' 2 ·11 

where, according to[ 101, M1 "'0.06mo and Ms "'0.55mo. 
Let us consider first the cyclotron resonance of the 

holes in the case when the field H is directed along 

the bisector axis and the vector k along the binary 
axis ( y axis). The x axis in this coordinate system is 
parallel to the trigonal axis. In this case the cyclotron 
hole mass 

(2.12) 

is approximately one fifth of mo, and the cyclotron 
electron masses are 

(2.13) 

mb=mc=ma/lcos 2;1 =2ma. (2.14) 

In view of the smallness of ma, mb, and me compared 
with m the diameters of the electron orbits are much 
smaller than those of the hole orbits, and the electrons 
feel the spatial inhomogeneity of the wave field much 
more weakly than the holes. Therefore, near the hole 
cyclotron resonance, the electronic part of the con
ductivity is practically independent of the wave number 
k. To the contrary, the nonlocal effects play an impor
tant role in the hole part of the conductivity a~J· Let 

us examine a~J in greater detail. 

It follows from (2.11) and (2.5) that the hole velocity 
components va can be written in the form 

[ 2 ( p 2 \ ]'/• 
v,(e,p,,<p)= .Ma e- 2~1 } • sin<~. 

[ 2 ( p 2 )]''• Vy(e,p,,<p)= Mt e-· ~~ cosq:, 

v,(e, p,, <p) = Pz I Mt. (2.15) 

We substitute these expresions in (2 .6) and integrate 
with respect to cp " : 

1 ~'!'' k ~~· - kv(q:")dq:" =- vy(q:")dq>'' = x(sinq:'- sin rp), (2.16) 
~~ ~~ 

cp cp 

where 

kc [ ( p ' )]'/, 
x = ell 2M3 e - 2~1 (2 .17) 

The product of the velocity v a ( cp ) by the phase factor 
exp( -iK sincp ), describing the variation of the wave 
field along the carrier trajectory, is a periodic func
tion of cp with period 27T. Consequently, it can be ex
panded in a Fourier series 

(2.18) 

1 2n 

.Wan=-) exp {i(nq:- xsin rp)} dq:. (2 .19) 
2rr 0 

We now substitute the expansion (2.18) in the expres
sion for the conductivity tensor and integrate with re
spect to cp and cp '. Noting that the integration with re
spect to E in (2.6) reduces to a substitution of E by EF, 
and introducing in lieu of pz the dimensionless vari
able 

1.1 = p, I l'2M!e, (2.20) 

we obtain 

(h)_ 3Ne2 t1 d ] Wan(f.I)W~n"(l.l) 
Ua~- 4eF J 1.1 v+i(nQ-w) ' 

-1 n=-oo 

(2.21) 

where N is the hole density 

(2.22) 
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and the components of the complex vector w depend 
on n and J.1. in accordance with formulas (2 .19) and 
(2.17). To obtain the explicit form of Wan(J.J.) it is 
necessary to substitute (2.15) in (2.19). This yields 

i [ 2e,. ]''• ) u•,,(ft)=-,--{J,_,[x(ft)]-Jn+d><(!-1)]} A/
3 

(1-!-1') , (2.23a 

1 ( 2eF ]''' ll'n,(!t)=-.:;-{ln-t[X(ft)]-Jn+dx(!-1)]} M, (1-!-12) , (2.23b) 

Won (ft) = ln(X(ft)]( 2eF )''' fl. 
M, 

Obviously, Wz is an odd function of J.1., while wx and 
wy are even. Consequently, the non-diagonal elements 
are 

(2 .24) 

The remaining elements of the conductivity tensor 
differ from zero. Their explicit dependence on k, w, 
and H is quite complicated and cannot be obtained in 
the general case. In the direct vicinity of the cyclotron 
resonance, where n - w/n, the principal role is 
played by the resonant term. This greatly simplifies 
the expression for a(h), but the integrals 

a{3 

+• 
la~n(kR)= ~ d!-IWan(!-l,kR)w~n'(!-l,kR), 

-1 

11 = (c I eH) V2M,e.,, 

(2.25) 

(2 .26) 

are expressed in terms of elementary functions only in 
the limiting cases of small or large values of kR. In 
the intermediate region, these integrals are represented 
in the form of a series in powers of (kR)2, and the 
dispersion equation must be solved numerically. 

We now turn to consider the electronic part of the 
conductivity. It was noted above that the dimensions of 
the electron orbits are small compared with the dimen
sions of the hole orbits. Therefore in the region of the 
hole resonance the electrons practically do not feel the 
spatial inhomogeneity of the wave field and there are 
no nonlocal effects in the electronic part of the conduc
tivity. In other words, in the calculation of a (h) we 

a{3 
confine ourselves to the local limit k - 0. 

The contribution of the electrons of ellipsoid (a) to 
the conductivity along the magnetic field H is 

(2.27) 

where the longitudinal effective mass is 

m,<~>=mo(a,-a."faa)-1 . (2.28) 

The expressions for a~~) and a~~) are similar. The 

masses m~~) as m~'i) can be obtained from the tensor 

m~J by rotation through ± 120° around the trigonal 
axis (the x axis). It is easy to show that 

(!1) (r) (a) 2 :Jt (a) • 2 Jt (2 29) 
111" = m" = m, cos T + my• stn -3 . . 

m~~) is of the order of mo, while m~~) = mu/ a, is 
smaller by two orders of magnitude. We can therefore 
neglect the second term in (2 .29) and we obtain 

soids to the longitudinal conductivity is 

(e) 3N e2 1 (a) 

Ou::;::;: m('(v,.-iw) me=3mzz' N=3N •. (2 .31) 

It should be noted that owing to a certain inclination 
of the electron ellipsoids ( a4 .., 0 ), the nondiagonal 

elements a~V =-a~~) differ from zero. They cause a 

coupling of the ordinary wave ( E 11 z) with the extra
ordinary and longitudinal waves. This coupling, how
ever, is quite weak (the coupling coefficient is propor
tional to a! 1 an, and will not be taken into account. 1t 
then follows from (2 .3) and (2 .4) that the dispersion 
equation of the ordinary wave ( E 11 z ) is of the form 

Jclc2 = roleu = 4niro (a~~ + a;~>), (2. 32) 

where a~~) and a~~) are determined by expression 
(2.31), (2.21), and (2.23c). 

3. PROPERTIES OF ORDINARY WAVES 

As already mentioned, we are considering in this 
paper hole cyclotron resonance in bismuth under con
ditions when the maximum radius of the hole orbit is 
smaller than the plasma depth of the skin layer: 
R < 50 • It is therefore natural to begin the analysis of 
the wave properties with the long-wave limit 

kR~1. (3.1) 

In this wavelength region, the integrals I~~) can be 
calculated, and the expressions for a~~) becomes much 
simpler. In fact, the function Wzn can be expanded in 
powers of K 2 and only the first few terms retained. 
Even in the form of the Bessel functions at small values 
of the argument, we can easily verify that the integrals 
I~n) behave asymptotically like ( kR )2 n. This means 
thit the largest amplitude is that of the zero harmonic 

(Ol 4eF [ 1 2 J 
1,, = 3M, 1-5 (kR) +··· . (3.2) 

The first term in the right side corresponds to the 
local limit k - 0, and the second represents a small 
nonlocal correction. The existence of the remaining 
terms is due completely to nonlocal effects, and their 
amplitudes ~n)are small compared with (3.2 ). Never-

theless, near the corresponding resonances they can 
play a very important role. Thus, the amplitudes of 
the fundamental resonance 

J~'l= 48F [~(kR)2-~(kR)•+ ... J (3.3) 
'· 3M1 10 70 · 

contains the small factor (kR)2 • At a large hole mean 
free path ( 11 << w ), however, this moment can be com
pensated for by the resonant factor 

(..e_-1-i~-r', (3.4) 
\(i) (J) 

the magnitude of which in the direct vicinity of the 
resonance becomes very large. 

Thus, the dielectric constant Ezz near the funda
mental hole resonance can be written in the form 

_ -~{ __ '1_[ (kR)2 _ (kR)•]} (3.5 ) 
e,- w2 1 !'J. - iy 10 70 ' 

(2.30) where 

Thus, the contribution of the electrons of all the ellip-
m. 

lj=---, 
m.+Mt 

(3.6) 
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Q v 
!'.. = --- 1, ''/ = --·' (3. 7) 

(I) W 

We note that for the considered orientation of the mag
netic field, the effective electron mass me is larger 
by one order of magnitude than the hole mass M,. 
Therefore the coefficient T/ is close to unity and the 
dielectric constant E zz is determined almost com
pletely by the holes. 

We now substitute (3.5) into the dispersion equation 
(2 .32) and introduce a new variable 

u = (kR) 2• (3.8) 

Then the dispersion equation takes the form 

_'L_ = -1 + _1)_ ( _u - _ll~ l 
S /'.. - iy \10 70 I' 

(3.9) 

where 

£ = (R I Oo) 2 , Oo -= c I Wo. (3 .1 0) 

The unity in the right side of (3.9) corresponds to the 
local limit, while the second term describes the cyclo
tron resonance. It is obvious that it is completely due 
to the spatial inhomogeneity of the wave field (the reso
nant term vanishes when u - 0). This has a simple 
physical meaning. In fact, the homogeneous high-fre
quency field E, which is parallel to the constant mag
netic field, on the average does not accelerate the 
carriers, and their motion in this direction does not 
depend on the value of H. Therefore in the local limit 
there is no cyclotron resonance. The situation is differ
ent when the high-frequency electric field E is inhomo
geneous in a direction perpendicular to the vector H. 
As a result of this inhomogeneity, the phase of the al
ternating field, within the limits of the cyclotron orbit, 
changes by an amount equal to 27T. Now the actions of 
the electric field on the particle in opposite sections 
of its orbit no longer cancel each other completely, and 
when the cyclotron frequency of the carriers equals the 
frequency of the wave field, resonant acceleration of 
the carriers is possible. 

Let us investigate the solutions of the dispersion 
equation (3 .9) in various cases. 

1. The hole mean free path is not very large and y 
satisfies the inequalities 

s<y~t. (3.11) 

In this case the resonant term in the right side of the 
inequality (3.9) is small compared with unity, and we 
obtain Hebel's result Pl: 

u;:::::-~(1+-:;___'1__), (3.12) 
- , 10 A- iyi 

The real part of the right side of (3.12) is negative and 
wave propagation is impossible. The cyclotron reso
nance consists of the appearance of a small resonant 
term, which slightly changes the depth of the skin layer. 

2. Of greatest interest is the limiting case of large 
mean free paths: 

(3.13) 

At small positive t., the resonant term in (3 .9) now 
becomes larger than unity, and the dielectric constant 
is positive. A weakly damped cyclotron wave can 
propagate in the frequency interval defined by the 
condition t. < 1)~/10. 

The experiment is usually performed with a fixed 
field frequency w, so that the dispersion equation 
should be solved with respect to the complex wave 
number, assuming w to be real. The solutions of the 
quadratic equation (3.9) are 

7 { "" y [ ( !'.. y )2 40 ]'{,} U1,2=--- 1--+i-=t= 1---+i- --(/'.. -iy) , 
2 !'.. 0 -~ 0 ' !'.. 0 !'.. 0 7 '1 

where 

l'..o = '16 I 10. 

In the vicinity of the resonance, where 

1'.. ;;;> y, 1 - 1'.. I l'..o :.> l'.!'J.o, 

(3.14) 

(3.15) 

(3 .16) 

the second term in the square brackets in (3.14) is 
much smaller than the first, and the solutions (3.14) 
can be approximately represented in the form 

10 ( 1 1 y )-1 
U! ;:::; --:;] ---s_-~ + i ~2- , (3.17) 

( "" . y \ U2 ;:::; 7 1 -- -- + ! -- I . 
' f. 0 /'.. 0 I 

(3.18) 

The imaginary part of u, is negative, and therefore, 
when finding the wave number k 1, it is necessary to 
take the square root with the minus sign, i.e., 

1 ( 10 )'/, ( 1 1 )-'/'[ y ( !'.. )-'] "'' == k,' + ik/' ;:::; - -- - - -- - --- 1 - i --\ 1 - --- . 
R '1 , L'. L'.o . 21'.. L'. o ' 

(3.19) 
We note that by virtue of the inequalities (3.13) and 
(3.16), the relative attenuation of this solution is small: 
k;' « I k; 1. 

Since k; < 0, the phase and group velocities of the 
wave have opposite directions. This means that the 
solution k, is a branch with anomalous dispersion. To 
the contrary, the second branch has normal dispersion: 

k2 == ki + ik2";:::; 17. {(1- ~- )'{, + i_y__ ( 1- L'._ (''}. (3.20) 
R i\o 21'-.o L'lo• 

It must be emphasized that expressions (3 .18) and 
(3 .20) for u 2 and k 2 are applicable only at those values 
of t., for which u 2 < 1. This is connected with the fact 
that the expression used by us for the dielectric con
stant is valid only in the long-wave region (3.1). To 
obtain the true form of the second branch in the short
wave region it is necessary to know the behavior of 
Ezz at u » 1. 

It follows from (3 .19 )- (3 .20) that when t. « t. 0 the 
solution u 1 is small, while u2 is large. With increas
ing A, u 1 increases and u 2 decreases. As A ap
proaches t>o, the radicand in (3.14) decreases and both 
solutions come close together. The damping of both 
branches increase, p<>.rticularly that of the first branch. 
When 

(3 .21) 

the solutions u 1 and u2 differ only in the sign of the 
imaginary part: 

-[ ( 5y \'{,( 7 \'/'] 
111,2 ;:::; 175 1 + i --I , -"' I · 

f] ' ' ' ' 
(3 .22) 

This means that at this point both branches merge and 
the dispersion curve of the cyclotron wave has a mini
mum. The damping of the wave reaches here its maxi
mum value, but by virtue of the inequality (3.13) the 
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w/!11:\== ~='t;to 

J.ijl ~ 
:.:l \~=1/J 
tuo 

I.P.f (• t 

FIG. I. Spectral curves of the ordinary cyclotron wave for values of 
~equal to 11 I 0, 113, and/-> oo. 

relative damping k"/k' still remains small. The cor
responding values of the damping length L, over which 
the wave amplitude changes by a factor e, is propor
tional to the square root of the hole mean free path 
l = v/v: 

_ 1 ( 41) Rl 'I• ( ) 
Lmin= -."-=R 3562) . 3.23 

kmax 0 

The spectrum of the ordinary wave is shown in Fig. 1. 
The curves were obtained by numerically solving the 
equation 

(3.24) 

where 

(3.25) 

When t::.. > !::.. 0 , the solutions of the dispersion equation 
(3.14) are negative, and the corresponding wave num
bers k1, 2 are imaginary. The propagation of the ex
traordinary waves in this region of frequencies turns 
out to be impossible (the dispersion curve lies in the 
interval 0 < !::.. :s !::.. m ). 

The dependence of the wave damping length L on !::.. 
is shown in Fig. 2. L decreases in the vicinity of the 
points !::.. = 0 and !::.. = l::..m, when the character of the 
dispersion changes. 

We shall now stop to discuss the question of the 
limits of applicability of the obtained results. 

The most stringent requirement is that the relative 
damping be small at the minimum of the spectral 
curve. This requirement can be represented in the 
form of the inequalities 

1 '> R I 6o 'Ji> 2n ( {Jo I Z)''•. (3.26) 

The first of them denotes that the characteristic kR 
are small, justifying by the same token the long-wave 
approximation (3 .1 ). The second inequality represents 
the condition of smallness of the relative damping of 
the wave. These inequalities limit the region of values 
of the magnetic field at which the properties of the 
waves are described by the expressions given above. 
If the second inequality is violated, then the damping 
becomes large when !::.. - l::..m and the wave vanishes. 

u----------------L.4 
4, 

FIG. 2. Dependence of the damp
ing length of the long-wave branch 
of the cyclotron wave on the value 
of!::... 

Nonetheless, it remains weakly damping in the region 
y « t::.. < l::..m, if the less stringent conditions 

1 ',> R I bo ~ 2nl>o /l. (3.27) 

are satisfied. The spectrum and damping of the waves 
in this region are described by expressions (3 .19) and 
(3.20). 

We have seen above that in the case R < Oo the 
spectrum of the cyclotron wave exists both in the 
region of long waves (3.1) and in the region of short 
waves kR > 1. On the other hand, Walsh and Platz
man[11J have shown that in alkali metals, which usually 
have a very large ratio R/ 00 , the dispersion curve of 
the cyclotron wave also begins with k = 0 and goes on 
the region of large k. It is quite clear that the weakly 
damped waves exist also in the intermediate region, 
where 

R;?6o, R«f,l. (3.28) 

It is apparently easiest to experimentally observe the 
cyclotron waves in bismuth precisely in this region of 
magnetic fields. Unfortunately, it is impossible here 
to exchange analytic expressions for the spectrum and 
for the damping of the wave, inasmuch as the long-wave 
approximation is less applicable. The wave spectrum 
should be obtained by numerically solving the disper
sion equation. It is then necessary to take into account 
in the expression for the dielectric constant not only 
terms with n = 0 and n = 1, but also terms with large 
values of n. The dispersion equation at TJ = 1 and 
11 - 0 is of the form 

u [( nQ \2 J-1 --e= -Fo(u)+2 2:F,(u) ) - J 
~ (IJ 
~ ll=i 

(3.29) 

The results of the numerical solution of this equation 
for three different values of 1; are shown in Fig. 3. 

4. WAVE EXCITATION. SURFACE IMPEDANCE 

So far we have considered the properties of the 
cyclotron wave in an unbounded crystal. We now inves
tigate the excitation of a wave by a high frequency ex
ternal field in a semi-infinite semimetal. We confine 
ourselves to the limiting case (3.26) and disregard the 
changes of the conductivity operator resulting from 
collisions of the carrier with the surface. This can be 
done, since only a relatively small fraction of the car-

z J 

t/,1 

FIG. 3. Spectral curves of the cyclotron wave for~ equal to 3, 10, 
and 30 as/-> oo. 
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riers collides with the surface when kR « 1. Neglect
ing the contribution of such carriers, the dielectric 
constant E:zz remains the same as in an unbounded 
crystal. 

The distribution of the electromagnetic field in the 
semimetal is determined by the function 

-~ eihy dk 
Z(y)= -4iul 

k2 2- 2 (k) , 
.-,..,_) C W Ezz 

(4 .1) 

the value of which on the surface y = 0 constitutes the 
high-frequency surface impedance Z = Z(O). 

We substitute expression (3.5) for E:zz in the inte
gral (4.1 ), introduce a new integration variable x = kR, 
and transform the integral into 

Z(y)= _ 4iw_~!_0_(1'>_=: iy) y ~··-·-d:___ exp iy !. (4 .2 ) 
· c2 '1:0 _·" (.> 2 - n,) (:r2 - u,) n 

where the complex quantities u1,2 are defined by (3.14). 
We close the integration contour in the upper half of 

the complex plane and take the residues of the inte
grand of (4.2 ). As a result we obtain 

4nw t. - iy l ( t. - iy ) 2 ;,o . 
Z(y)=····-·-· -- 1--- -o;-(:\-ty) 

c2 Ao . l'>o • I~ 

xfl __ i_eik,y + _1 .eii••Y} 

"' k, 
(Hek,<O). (4.3) 

The first term describes the field of the long-wave 
branch, which has anomalous dispersion, and the sec
ond the field of the short-wave branch. In the vicinity 
of resonance in the region (3.16), the wave numbers 
and attenuations of both branches are determined by 
expressions 3.19 and (3.20). At the corresponding 
values of the magnetic field, the first branch is excited 
much more strongly than the second ( I k1 I « I k2l ). 
The field distribution has here the form 

z (y);::::; 4nw6o2 ( ~o_ \'(, ( __ 1_.-- t_ r·f, 
c2R r] ! :\ - 'V .~ o 

X exp{-i Y_ ( ~.~ f ( --1---- 1 - k/'yjl (4.4) 
H \ 11 . ..•\ - iy L'lu 

It follows from this formula that when t:.. = 0 the 
damping length is L0 ~ ( RZ/12 • In the region y « t:.. 
<< t:.. 0 the wave number and the amplitude of the wave 
increase like ..fiS., and the dam ping length is L ~ l ..fiS.. 

With further increase of t:.., the wave number of the 
first branch increases and that of the second decreases. 
The damping increases in both branches. 

Finally, as t;,.- t:..m the wave numbers and the 
dampings of both waves, and also the corresponding 
amplitudes of the field, become equal. The field distri
bution takes on the form of a standing wave 

4:rt(!) ' .. · ' q \1,"2 
z,.,.,,(y) ~ ( t- i) --2- (lltl.,i') ·i :,-0. 1 

c \ .... ' 

(4.5) 

where the damping length Lmin is given by formula 
(3.23 ). 

The field amplitude turns out to be proportional to 
the square root of the free path l. This means that in 
the limit as l - oo the amplitude increases without 
limit. In other words, the presence of a minimum in 
the spectral curve of the cyclotron wave leads to singu-

Re 2 

FIG. 4. Behavior of the real part of the surface impedance in the dir
ect vicinity of the cyclotron resonance for values ~ = I ; 'Y = 0.00 I, and 
Z 0 = 41fwli0 c- 2 . 

larities in the surface impedance of the semimetal. 
The dependence of the impedance z' on the value of 
t:.. is shown in Fig. 4. 

We have considered cyclotron waves whose proper
ties are determined completely by the holes. Similar 
waves can exist in bismuth in the vicinity of the elec
tron cyclotron frequencies. Electron cyclotron waves 
apparently are most conveniently observed when the 
magnetic field H is parallel to the binary axis C2 , and 
the normal to the crystal surface is parallel to the 
trigonal axis C3. In this case the cyclotron mass of the 
electrons of ellipsoid (a) is rna = mo( a2 a3 - an-112, 
and the plasma frequency w 0 is determined by the 
longitudinal effective mass mo/ a1 and by the electron 
density Na = N/3. At such an orientation of the vectors 
k and H, the cyclotron mass is minimal, and the value 
of the parameter ~ is maximal. In the frequency region 
w ~ na there should exist an electromagnetic wave due 
to the cyclotron resonance of the electrons of ellipsoid 
(a). On the other hand, the contribution of the remain
ing carriers to the dielectric constant of the semi
metal plasma turns out to be small. 

1M. Ya. Azbel' and E. A. Kaner, Zh. Eksp. Teor. 
Fiz. 32, 896 (1957e) lSov. Phys.-JETP 5, 730 (1957)]; 
Phys. Chern. Sol. 6, 113 (1958). 

2 E. Fawcett, Phys. Rev. 103, 1582 (1956). 
3 ' E. A. Kaner and V. G. Skobov, Fiz. Tverd. Tela 6, 

1104 (1964) lSov. Phys.-Solid State 6, 851 (1964/65). 
4 W. M. Walsh and P.M. Platzman, Phys. Rev. Lett. 

15, 784 (1965); Proc. lOth Int. Conf. on Low Temp. 
Phys., Moscow, VINITI, 1966. 

5 G. E. Smith, L. C. Hebel, and S. J. Buchsbaum, 
Phys. Rev. 129, 154 (1963). 

6 P. W. Anderson, Phys. Rev. 100, 749 (1955). 
7 L. C. Hebel, Phys. Rev. 138, A1641 (1965). 
8 1. M. Lifshitz, M. Ya. Azbel', and M. I. Kaganov, 

Zh. Eksp. Teor. Fiz. 31, 63 (1956) lSov. Phys,-JETP 
4, 41 (1957). 

Translated by J. G. Adashko 
85 


