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General properties of averaged susceptibilities in the opposed-wave mode are considered for a 
polarizability that depends on a squared field modulus. The differential relation between the forward 
and backward wave susceptibilities is determined. The problem of the structure of stationary one
dimensional opposed waves in a medium with arbitrary susceptibility x ( I E 12 ) is reduced to quadra
tures with the aid of the obtained relationships. It is shown that in this case the direction of polariza
tion of the opposed waves depends on the coordinate and the polarizations of both waves rotate in one 
direction. 

1. INTRODUCTION 

THE quasi-optical approximation that is customary in 
the optics of nonlinear media is applicable to the case 
when the characteristic length of field variation with 
respect to one variable (not necessarily Cartesian) is 
of the order of the wave-length and the field varies 
much more slowly with respect to the remaining vari
ables. The Maxwell equations are reduced here to 
equations for slowly varying complex opposed-wave 
amplitudes C1 , 2 and P 1 , 2 that are related to field E 
and polarization P by 

(1) 

The dependence on the "fast" coordinate is repre
sented here by the factors e±ikz (the field and the 
dipole moment a,re assumed to be quasi-monochromatic 
and the factor e1wt is dropped). 

Under these conditions the material equation 

is replaced by the system 

1', = <:oc,-! <xe cu')c,, 

1'" ~= <x)C, + <xe'·'')C, (2) 
(angle brackets denote averaging over z for the period 
2JT /k ). Thus, instead of the nonlinear susceptibility, we 
must find, generally speaking, three functions relating 
the amplitudes of the opposed-wave field and the polar
izations, while the dependence of the latter on C, and 
C2 can be even more involved than the dependence of 
x on E. The nonlinear relationship between the op
posed waves obviously makes it difficult to study the 
field structure, while such a study is hardly feasible 
when the coefficients of C, and C2 are arbitrary. 

In the present work we note the fact that the depend
ence of averaged susceptibilities on C1 and C2 cannot 
be arbitrary. This has been demonstrated for the case 
of an isotropic medium for which x depends on the 
squared field modulus E: x = x ( I E 12 ). 

It is determined that the single fact of x depending 
on the real quadratic form alone gives rise to the 
general relations between ( x) and ( xe'~'2ikZ). These 
relations allow us to simplify the procedure of finding 
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the sought functions. Moreover the obtained relation
ship between the opposed-wave susceptibilities simpli
fies in many cases the solution of nonlinear equations 
for the field. As an example, the obtained relationships 
were used to reduce to quadratures the problem of the 
structure of one-dimensional stationary opposed waves 
in a medium with arbitrary x( IE 12) which until now 
could be solved only for certain special cases [l-4 l, 

2. RELATIONS BETWEEN DIRECT AND MIXED 
SUSCEPTIBILITIES 

We first introduce some designations: m1,2 
=I c,,21 2; w = m, + m2 =I C,l 2 +I C21 2 is the average 
field energy density; u = (C,, C~); v = lu 12 = I(C,C~) 12 
is the reciprocal energy of opposed waves. 

The squared field modulus has the following form 
in the new notation: 

The definition of the averaging operation shows 
directly that the averaging result does not depend on a 
change of origin of the "fast" variable z. It follows 
that the "direct" susceptibility. ( x) and the noqnalized 
"mixed" susceptibilities (xe-21kz)/u and (xe+2ikz)/u* 
are functions only of w and v, since there is such an 
origin of the averaging variable for which the result is 
independent of the phase of u. 

The result of averaging does not change for the 
above functions if the averaging variable z is replaced 
by -z with a simultaneous substitution of u ~ u*. On 
the ot&_er hand the application of this operation t9 
(xe-2 z)/u transforms it into the function (xe2ikz)/u* 
which indicates their identity. 

Consequently we reduced the three coefficients of 
vectors c, and c2 in (2) to two functions of w and v: 
the direct susceptibility 

a(w,u) =(z) (3) 

and the normalized mixed susceptibility 

b(w, v) = <xe--2 '"') I u. (3') 

We now show that also these two functions are not 
independent. For this purpose we differentiate the 
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direct susceptibility with respect to u. From the 
definition of v it follows that 

on the other hand 

oa_ = u'!!!.... 
ou iJv' 

oa_ = o(xl 
iJu ou 

The derivative with respect to u can obviously be 
placed inside the averaging brackets; then 

< ox ) ( ilx a IE I' ) ( ox ., , . ) 
o<t = iJIEI' au · = iJIEI" ,_,_ 

Furthermore, substituting differentiation with re
spect to IE 12 by the derivative with respect to w and 
removing differentiation with respect to w outside the 
averaging brackets we obtain 

a <x> a . 
-. - =- <xe''k'). on iJw 

Hence considering the definition of a mixed suscepti
bility (3') we find 

oa • f)b 
·--= u- -. 
Ou ow 

Comparing this relation with the identity for aajav we 
obtain 

aa I av = fJb I iJw. (4) 

In a similar manner, differentiating a with respect to 
w we obtain the second relation 

iJa I ow= iJ(vb) I iJv. 

Equations (4) and (5) are the sought relationships be
tween the direct and mixed susceptibilities. 

(5) 

We note that the dependence of x on I E 12 is the 
only significant consideration employed in the deriva
tion of these formulas. 

3. RELATION BETWEEN TRAVELING;-WAVE AND 
OPPOSED-WAVE SUSCEPTIBILITIES 

Equations (4) and (5) are sufficient for the deriva
tion of the relationship between the traveling-wave 
susceptibility (or orthogonal opposed-wave) x ( w) and 
the averaged susceptibilities a(w, v) and b(w, v) of 
arbitrary opposed waves. We first note that relations 
(4) and (5) considered as equations in terms of the 
functions a and b can be easily provided with boundary 
conditions. In the limit as v- 0 (the traveling wave 
or the polarizations of opposed waves are perpendicular) 
the susceptibility x ( I E 12 ) does not depend on the 
"fast" variable and obviously coincides with the direct 
susceptibility, i.e., 

a(u•,O) = x(w). (6) 

The corresponding condition for the mixed suscep
tibility follows from (5) and (6) 

h(w.O) =dx(w)ldw. (7) 

We take the Fourier transforms with respect to the 
energy w in (4)-(7). Then (4) and (5) turn out to be 
ordinary differential Bessel equations with respect to 
the variable v for a(s, v) and b(s, v) (a and bare 
Fourier images of a and b in terms of w) with the 
boundary conditions 

ii(s, 0) = x(s), v(.~. 0) = isx(s), 

where X ( s ) is the Fourier image of x ( w ). 
Solving the corresponding Bessel equation we 

finally arrive at the following formulas for Fourier 
images of the direct and mixed susceptibilities and 
x(s )1): 

ii(s, v) = lo(2sl'v)x(s), (8) 

(9) 

The obtained relations can in a number of cases 
significantly simplify the procedure of finding the 
direct and mixed susceptibilities since they allow us to 
use the Fourier transformation in place of the averag
ing operation. 

An important consequence of (4) and (5) is the pos
sibility to introduce potential functions Y( w, v) and 
K( w, v) which yield the direct and mixed susceptibili
ties by simple differentiation: 

fJY fJY 
a=a;;· vb=a;;;; (10) 

iJK 
a=-

ow' 

oK 
li=-. 

01' 

These formulas, together with the definition of a 
and b, lead directly to expressions for Y and K in 
terms of x(l E 12 ): 

(11) 

(12) 

(13) 

Thus the two averaging operations necessary to ob
tain a and b can be replaced by one to derive K or Y 
with the subsequent differentiation with respect to the 
energy and reciprocal energy. 

This result does not exhaust the role of potential 
functions. We show below that the quantity Re Y(w, v) 
is conserved in the interaction of opposed waves. 

4. CONSERVATION LAWS FOR ONE-DIMENSIONAL 
STATIONARY WAVES 

We use the obtained result to study the structure of 
one-dimensional monochromatic opposed waves in an 
isotropic medium whose polarizability depends on IE 12• 

Using the same averaging method as in[l-4) we readily 
obtain equations of complex amplitudes cl,2: 

dC, , a; = aL1 + ubC2, 

~~ =- aC.,- n'bC,, 
do -

(14) 

For the sake of simplicity we use a new x, from now 
on equal to 

2nik 
x=--Xold 

8 

and correspondingly 
2nik 

a=--aoid 
8 

b 2nik b 
=-- old 

e 

As noted in the introduction, equations involving 

!)It is of interest to note that the Kramers-Kronig relations with 
respect to the variable s hold for X (s). 
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opposed-wave amplitudes were discussed in the litera
ture for two particular relationships of x ( I E Ia) and 
for such media as have the polarization of the vector 
E and consequently of the vectors C,,a fixed in space. 
We can readily see that C1,a ( z ) with a corresponding 
x found in the above papers are particular solutions of 
(14). The set of solutions of (14) is significantly richer 
since there are possible solutions for the isotropic 
medium where the polarization plane of C depends on 
z. 

The system (14) comprises eight nonlinear first
order equations and cannot be solved for arbitrary co
efficients of C, and Ca. To some extent this is the 
reason for the comparatively particular nature of the 
solutions obtained in[l-4J. As noted above however the 
dependence of a and b on C1 and Ca is not arbitrary. 
Furthermore, the determined properties of the aver
aged susceptibilities are sufficient to find the integrals 
of (14). 

Adding the right-hand vector product of the first 
equation by Ca to the left-hand vector product of the 
second by c, we obtain 

d[C,C,J/d= = 0. 

This results in the first invariant for the field: 

[C1C2 ] =A, (15) 

where A is a constant vector. 
We show that the second conservation law for the 

field is the relation 

lk Y(w, u) = B = consl.. (16) 

For this purpose we first derive an equation for the 
energy density w and reciprocal energy v. 

We take the scalar product of the first equation in 
(14) by C! and add it to its complex conjugate. As a 
result we obtain an equation for m 1 : 

dm1 
--- = 2m1 Rea + 2vRe b; 

dz 

Similarly for rna: 
dm2 a;-=- 2m2 Rea- 2vRe b. 

Using the definition of u and the identity 

~_c. de, c de,· 
- 2 ---+ .~. 

dz rl= dz 

we readily obtain the equation for u: 

~ = -u(a-a' +m2b-m1b'), 
dz 

whence follows the relation for v: 
dv 

-d::. = 2v(m.,- m1)Re b, 

and from (17) and (18) an expression for w: 
dw 
dz = 2(m1 - m2)Rea. 

From the equations for v and w we see that 

v Re bdw + Re adv = 0, 

(17) 

(18) 

(19) 

(20) 

Finally, using the properties of the potential function 
(10) we arrive at the sought conservation law (16). 

Thus two opposed monochromatic waves in an iso
tropic weakly nonlinear medium can vary the energy 
density, mutual orientation, and phase so as to con-

serve the quantities 
\ 1~1" 

ll ~~ v H o I _!_ / e ed.: \ ;(( (;) d(;" i 
\lt"' ~ /,' 

A [C1C2]. 

The last invariant leads to a relation for m,, rna, 
and v of the form 

The invariants B and A, constituting the first two in
tegrals of the equation system for m,, rna, and v, al
low us in principle to reduce to quadratures the prob
lem of finding m,,a(z) and v(z) for any x(l E Ia). In 
turn, knowing m 1,a and v we can determine all the 
characteristics of vectors C, and Ca. In particular, 
in the case of a purely active medium and linearly 
polarized opposed waves (real vectors c, and Ca) we 
can easily determine the direction of their polarization. 

According to (15) the sine of the angle cp between 
vectors C1 and Ca is inversely proportional to the 
square root of the product of their amplitudes, i.e., 

(22) 

The equation for angular velocity of rotation of C, 
vector poarization is obtained from the first equation 
of (14) after vector multiplication by C,; it has the 
form 

dqJ, -
m, -c~;:: = - iv IJA. (2 3) 

Here cp1 is the angle of rotation of vector C, measured 
clockwise for the chosen direction of the z axis. Sim
ilarly for the rotation of vector Ca we have 

d<pz -m2 --=-ivbA. 
dz 

(24) 

It is of interest to note that the opposed-wave polar
ization rotates in one direction only. This effect is 
particularly clearly reflected in the rotation of the 
bisector of the angle between vectors C, and C2 • The 
variation of this average direction of polarizations is 
described by the equation 

ae - w - - = - ''v bA (2 5) 
dz ' 2(u+A') 

where () = ( cp, + C(Ja )/2. Hence it follows that any sym
metric system 2 L long with symmetric distribution of 
energy w( z) and reciprocal energy v( z) produces a 
"curling" of the mean direction of polarization to one 
side through the angle 

+L fvwb 
tJ = -A ),2 ( v + A 2) dz. (2 6) 

We evaluate the order of magnitude of the angular 
velocity of rotation of vectors C). The quantity mb is 
proportional to the second spatial harmonic of x and 
is of the order of a under strong saturation. a> In turn, 
a is of the order of Ya d ln m/ dz. Thus under optimal 
conditions (strong saturation, m 1 ~ rna, cp = cp1 - C(Ja 

~ 1T/4) the angle of rotation of c, along the length L 

2>It can be shown that the ratio of the second harmonic of x to 
the fundamental under strong saturation is in the gaseous medium of 
the order of the ratio of the "natural" line width to the Doppler line 
width. 
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is 
1 m(L) 

fJl 1 (L)- 'l'dO) ~-ln--. 
4 m(O) 

For a solid with a length of 40 em, Cfh( L)- rp 1(0) 
~ 180°. The large magnitude of the effect offers a 
promise of practical utilization. 

5. CONCLUSION 

Equations (4) and (5) can be generalized also to 
anisotropic media. In this case they are valid for each 
component of the tensor Xik· The fact that the latter 
depends on the quadratic form Em O!mnE~ rather than 
on I E 12 merely calls for a suitable reevaluation of w 
and v. 

Of interest is the derivation of analogous relations 
for the interaction of waves with significantly different 
frequencies and wave numbers. 

Although (4) and (5) are obtained for the quadratic 
dependence of x on the field, similar relations undoubt-

edly exist also in the case of other types of nonlineari
ties. 

The author is indebted to A. V. Gaponov for constant 
attention to this work and a discussion of results, and 
also to I. L. Bershte'in for valuable remarks. 
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