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It is shown that longitudinal collective oscillations of the free carriers (of a "surface wave" type) 
exist on the interface between heavily doped n- and p-type semiconductors with identical work func­
tions (a heterojunction) but with substantially different effective masses for the conduction electrons 
and holes ( mn « mp ), the mobility of the holes being sufficiently large. The problem of the inter­
action between the conduction electrons in a film and the surface oscillations of the "heavy" holes 
in p-semiconductors is considered for lamellar structures (of a "sandwich" type) consisting of 
p-semiconductors separated by thin layers of degenerate n-semiconductors (semimetals), and it is 
shown that under certain conditions this interaction in principle may lead to the formation of bound 
electron pairs (Cooper pairs) and, consequently, may lead to the appearance in such systems of two­
dimensional superconductivity with rather high critical temperatures ( Tc ~ 102 to 103 °K). 

1. INTRODUCTION 

IN 1964 Ginzburg and KirzhnitsPl conjectured the pos­
sible existence of superconductivity on the surface of 
a metal due to surface electron states (Tamm levels[2 l) 
and surface phonons (Rayleigh waves). 

Later on [3-s] in order to obtain such a surface (two­
dimensional) superconductivity, it was proposed to use 
dielectric or semiconducting overlapping layers of 
metals and; in particular, thin metallic films (so­
called "sandwiches"). In this connection, in analogy 
to Little's ideas for one-dimensional systems, [6 1 it was 
conjectured that a pairing of free electrons near the 
surface of a metal may take place as a result of their 
interaction with the excitations of bound electrons in 
the dielectric or semiconductor (the so-called ''exci­
ton" mechanism of superconductivity[sJ ). 

At the same time, the characteristic features of the 
phonon and "electron"[9 l mechanisms for superconduc­
tivity in very thin (quantizing) metallic and semicon­
ducting films, in which the electron motion is actually 
two-dimensional, were investigated in a series of arti­
cles. [?,a] 

In the present article we show that longitudinal 
collective oscillations of the free carriers of a "sur­
face wave" type exist on the interface between heavily 
doped n- and p-type semiconductors with identical 
work functions (a heterojunction) but with substantially 
different effective masses for conduction electrons and 
holes (mn « mp ), the mobility of the holes being suf­
ficiently large. In principle the interaction of the de­
generate conduction electrons of ann-type semiconduc­
tor with these oscillations may lead to the formation of 
bound electron pairs near the interface between the 
crystals and, consequently, it may lead to the formation 
of surface superconductivity. 1 > This interaction is 
especially effective in thin n-semiconducting (or semi-

!)In its nature this mechanism is the two-dimensional analogue 
of the "plasmon" mechanism for superconductivity which is considered 
in [10 ) (also see [16 )). 
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metal) films which are bounded on both sides by p­
semiconducting crystals, that is, in lamellar structures 
of "sandwich" type. Numerical estimates indicate that 
the critical temperatures for the transition of such 
systems into the superconducting state may be rather 
high ( Tc ~ 102 to 103 °K). 

2. SURFACE WAVES 

Among the numerous branches of eigenvibrations in 
unbounded, semiconducting crystals there exist, as is 
well known, collective (plasma) branches of longitudinal 
oscillations of the free carriers (conduction electrons 
and holes), whose frequency in the case of isotropic 
semiconductors is equal to 

A 

(where m*, e, and N are, respectively, the effective 
mass, charge, and concentration of the carriers, and 
E is the dielectric constant of the crystal). In finite 
crystals, together with such volume plasma oscilla­
tions, surface oscillations of the charge density may 
also exist whose amplitude falls off exponentially with 
increasing distance from the surface (compare with 
surface phonons[sJ ). 

Let us consider the contact of semi-infinite iso­
tropic impurity semiconductors of the p- and n-type. 
Let the region x < 0 correspond to a p-semiconductor 
with effective mass mp for the holes, and let the 
region x > 0 correspond to ann-type semiconductor 
with effective mass mn for the conduction electrons, 
where mp » mn.2 > 

Let us further assume that the donor concentration 
in the n-semiconductor is large enough so that the con­
duction electrons are degenerate up to a temperature 
on the order of room temperature and above, 3 > 

2lin what follows we shall be interested in effects with characteristic 
lengths which appreciably exceed the lattice constant a so that distortion 
of the band structure and, consequently, changes in the effective masses 
of the carriers near the crystal boundaries can be neglected. 

3lWe note that a semimetal with a sufficiently small electron effec­
tive mass may be chosen in place of a heavily doped n-semiconductor. 
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whereas the "heavy" holes remain nondegenerate even 
at comparatively low temperatures (see below). 

Finally, we shall assume that the semiconductor 
work functions are identical, xn = Xp. so that in the 
absence of an external electric field the thickness of 
the transition layer tends to zero (the so-called hetero­
junction), and in any case it is much smaller than the 
wavelength of the oscillations. 

The corresponding energy band scheme for a hetero­
junction is shown in Fig. 1a. As we see, for a certain 
choice of the semiconducting parameters one can ob­
tain the result that their forbidden bands (the valence 
band of the p-semiconductor and the filled conduction 
band of the n-semiconductor or semimetal) are con­
tiguous to the corresponding forbidden bands so that 
the electrons cannot pass from one crystal into the 
other (in spite of the fact that Xn = Xp ). 

The collective longitudinal oscillations of the 
"heavy" holes in a p-semiconductor may be described 
with the aid of the equations of motion and the equation 
of continuity: 

ovp e , I . 
-=---·- Vcrp-'v -rp, il(llNpf 1'1' d. 0 (2 1) -,--+ p !VVp= • 

at mi. r.: ~ 

(where Vp and oNp are small perturbations of the 
velocity and concentration of the holes, Np is the un­
perturbed concentration of holes, i.e., the concentra­
tion of acceptors, and Tp is the momentum relaxation 
time of the holes due to scattering by phonons and im­
purities) and with the aid of Poisson's equat.ion for the 
potential of the self-consistent field cpp ~ eiwt of the 
oscillations. The latter equation, with Eqs. (2 .1) taken 
into account, may be represented in the form 

e;(w)~IJlp=O, ep(w)=ep {t-W((~;~/tp)}; (2.2) 

where Op = ( 47Te2Np / mpE )112 is the Langmuir 
(plasma) frequency of the ~oles, and Ep is the dielec­
tric constant of the crystal (it is assumed that Ep 
~ const in the range of frequencies of interest to us). 

Under the condition wrp >> 1 (i.e., for sufficiently 
large mobility of the holes) Eq. (2.2) als<? has, along 
with solutions of the plane wave type ~ eik · r with 
frequency w = Op (volume plasma oscillations), a 
solution of the following form (x < 0) near the surface 
of the crystal: 

(jlp (r) ~ exn {Y-pX + i (qyy + q,z)}; 

Xp = q ""' Ylfv + q,i; (2.3) 

corresponding to oscillations of a "surface wave" type. 
The frequency of these oscillations is determined by 
the boundary conditions on the surface of the semicon­
ductor (see below). 

On the other hand, neglecting the inertia of the light 
conduction electrons in the frequency region w << qvFn 
(where VFn = PFn/mn is the Fermi velocity, PFn 
= ti ( 3JT 2Nn)173 is the Fermi momentum, and Nn is the 
concentration of conduction electrons, i.e., the concen­
tration of donors), we bring Poisson's equation for the 
potential cpn in an n-semiconductor to the form 

En{~Ql"- 'Jln i rln2 } = 0, (2.4) 

where dn = ( EnEFn/6JTe2Nn )112 is the effective elec­
tronic screening radius, EFn = PFn/2mn is the Fermi 

a 

FIG. I. Energy band scheme 
(a) and distribution of the surface 
wave potential (b) for a hetero­
junction. (If the forbidden band 
of the p-semiconductor has a 
sufficently large width, the 
heterojunction is impenetrable 
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energy of the electrons measured from the bottom of 
the conduction band (see Fig. 1a), and En is the die­
lectric constant of then-semiconductor. Hence for 
oscillations of the surface wave type we obtain (x > 0) 

(jln(r) ~ exp {-XnX + i(qyy + q,z)}; (2.5) 
Xn = f q2 + 1/ dn2• 

In the case of an ideal infinitely thin (in comparison 
with the .Debye radius or the wavelength of the oscilla­
tions) interface between the crystals, the boundary con­
ditions reduce to the conditions for continuity of the 
normal component of the electric displacement vector 
D and of the potential cp describing the longitudinal 
oscillations. 41 With the aid of these conditions it is not 
difficult to obtain the following dispersion equation for 
the collective surface oscillations of the free carriers 
in a heterojunction: 

Hence, with the aid of Eqs. (2.2), (2.3), and (2.5) we 
obtain the following expression for the frequency of 
the surface waves (OpTp >> 1): 

11 1 }-'/, Rew""'ulq=!Jp{1+~ V 1+---z-d 2 • 
Bp Q n 

(2 .6) 

(2 .7) 

In ?articular.' for En = Ep _the _frequency of oscilla­
tions m the region qdn « 1 IS given by wq = Op -J qdn, 
and for qdn » 1 (but qa « 1) it tends to Op/-/2. 

Now let us consider the collective oscillations of 
"heavy" holes in a system consisting of two semi­
infinite isotropic p-semiconductors separated by an 
n-semiconductor film of thickness L (see Fig. 2), as­
suming as before that mp >> mn and Xp = Xn (hetero­
junction). Choosing the solution for the potential inside 
the film in the form q1n(x) ~ cosh Knx, with the aid 
of the boundary conditions mentioned above we obtain 
the following dispersion equation for the oscillations in 
such a system: 

(2 .8) 

So we see that as L - oo this equation goes over into 
the dispersion equation (2 .6) for the oscillations on the 
surface of semi-infinite crystals whereas as L-0 it 
reduces to the condition €p(w) = 0, i.e., in the case of 

4lThe latter condition assumes that no oscillations of a "double layer" 
type, when If> is discontinuous are present on the boundary. 
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FIG. 2. Band structure (a) and 
a distribution of the potential for 

the oscillations (b) in a system of 
the "sandwich" type. (Reflection 
of the electrons at the boundary of 
the n-semiconductor film leads to 
quantization of their transverse 

b motion and to a splitting of the 
conduction band into discrete 
levels-- the two-dimensional 
subbands). 

sufficiently thin films ( Kn L « 1) the oscillations in a 
lamellar structure of the "sandwich" type are little 
different from the ordinary plasma oscillations of the 
holes (wq ~ Op ), and these oscillations freely pene­
trate through then-semiconductor film (cosh KnL 
~ 1). 

3. SUPERCONDUCTI~TY 

Here we shall demonstrate that the interaction of 
the conduction electrons in a thin film of degenerate 
n-semiconductor (or semimetal) with the above-con­
sidered collective surface oscillations of "heavy" 
holes in p-type semiconducting crystals, which are in 
contact with the film (a lamellar structure of the 
"sandwich" type), may lead to the formation of bound 
electron pairs and, consequently, to the appearance of 
superconductivity in such a film. s> 

Singularities of the electron spectrum in thin 
metallic and semiconducting films were investigated 
in articles[7,aJ where it was shown that as a conse­
quence of the quantization of the electrons' transverse 
motion, the conduction band is split into a series of 
discrete levels (subbands) with energies Ek = (n 2/2m*) 
(krr/L)2 (k = 1, 2, ... ). In this connection, if the elec­
tron concentration is not very large ( N :S L-3 ), as oc­
curs for example in semiconductors or semimetals, 
and if the temperature of the film is sufficiently low 
( T « I E2 - E1 I ) or, what amounts to the same thing, 
if the thickness of the film is sufficiently small, then 
only the first (lowest) subband turns out to be occupied, 
and the electron motion in momentum space turns out 
to be two-dimensional (although one can regard the 
film as three-dimensional since L >> a (where a is 
the lattice constant). 

It should be noted that for heavily doped n-semicon­
ductors with a small effective mass of the conduction 
electrons, the basic upper bound on the film thickness 
may be not the temperature condition T << (fi 2/2mn) 
(rr/L)2 but the condition L << Zn which is associated 
with finite mobility of the carriers (here Zn is the 
mean free path of an electron), since the scattering by 
impurities makes the electrons' momentum distribu­
tion isotropic. 

5>we note that in a bulk n-semiconductor the intensity of the inter­
action between the electrons and the surface waves falls off rapidly with 
increasing crystal thickness. 

As mentioned in Sec. 2, the heterojunction is opaque 
to electrons for a specific type of semiconductor band 
structure (see Fig. 1a). If it is assumed that in this 
case the reflection of the conduction electrons from 
the boundary of the n-semiconductor with the p-semi­
conductor occurs analogously to their reflection from 
a boundary with vacuum, 6 > then everything asserted 
above also pertains to the case of a semiconductor 
(semimetallic) film "sandwich" (see Fig. 2a). 

Thus, let us consider the interaction of degenerate 
conduction electrons in a thin n-semiconductor (semi­
metal) film with surface oscillations of the "heavy" 
holes in p-semiconductors (mp >> mn), assuming that 
only one subband is populated, and as T- 0 the elec­
trons in two-dimensional momentum space fill up the 
circle with limiting momentum fiKo = ti( 2rrNn L)112 • We 
note that depending on the parameters of the system, 
in the two-dimensional case the limiting energy of the 
electrons, J.lo =fi 2K5/2mn may be either larger or 
smaller than the maximum energy tiQP of the surface 
oscillations (seeC7 l ). 

Since the surface waves represent longitudinal os­
cillations of the charge density, the Hamiltonian de­
scribing the interaction of the electrons with these 
oscillations may be represented in the form 

(3 .1) 
where 

'F(J'(r)= ;_2ja,(J'e1"; Y.=c=Y.{n/L. x,. x,): (3.2) 
"' v ' . 

1 . 
cp, (r) ~~ -S- ~ {cfq (x) e'"' +C .C.}; !J =" !J {0, lj 1, qJ: (3 .3) 

q 

( V and S are, respectively, the normalization volume 
and surface area, where V /S = L). We note that in the 
case of sufficiently thin films, one can assume cp q 
~ const (see Sec. 2 ). 

Changing to a second-quantized representation for 
the oscillation field with the aid of the relation 

(3.4) 

where bq (bq) is the boson creation (annihilation) op­
erator for a quantized surface vibration ("plasmon") 
with frequency Wq = Op, we bring the Hamiltonian (3.1) 
to the following form (compare with the Hamiltonian 
for the electron-phonon interaction[u, 12 l ): 

(3 .5) 

where 
2e --

g'(!J)=--1-!J-Il':a/e, (I<II,.::::;qmnc"'='2Xo). (3.6) 

Introducing in analogy with [ 13 1, in second-order 
perturbation theory, a model Hamiltonian for the direct 
electron-electron interaction due to the exchange of 
virtual surface ''plasmons'' 

H - 1 "' g'(Y.--Y.')n''"~x· - - ( ) 
"d - -- y L.J ~--(-. ---,:-)" a,· 0 G ,._ . 0 a _,_ .c;ll,,,, 3. 7 

x, x' n ·1)x-x'- Sx- Sx' -

where i;K = (fi 2K2/2mn - J.lo ), within the framework of 

6>The question of the boundary conditions for a heterojunction re­
quires additional investigation. 
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the BCS theory we attain an equation for the gap A ( K ) 

in the spectrum of the conduction electrons which char­
acterizes the binding energy of the electron (Cooper) 
pairs: 

1 ~ ' '~(>t')t he(>t') ( ) 
Ll(>t)= W;:'g (>t->t)e(>t') an ~· 3.8 

where E(K) = .J 1;2 + A2(K'j. Replacing g2(K- K') by its 
minimal value g{ = 1Te 2/EnK~, for the condition IJ.o 
2: :liOp we obtain from here the following approximate 
estimate for the critical temperature Tc for the 
transition of a "sandwich" type system into a super­
conducting state (compare with [81 ): 

(3.9) 

where an= En:li2/mne2 is the effective Bohr radius of a 
conduction electron (En ~ 1 ). 

As we see, the critical temperature depends very 
strongly on the thickness of the film. Choosing 
L ~ 1/2 Ko, i.e., L ~ (81TNnf113 (it is precisely for such 
thicknesses that, on the one hand, the surface waves 
penetrate well into the n-semiconductor film and, on 
the other hand, the condition that only the first subband 
be populated is fulfilled), we obtain according to Eq. 
(3.9) 

(3.10) 

As an example let us consider a "sandwich" con­
sisting of semiconductors with free carrier effective 
masses mp ~me and mn ~ 0.1 me (where me is the 
mass of an electron) and concentrations Nn ~ Np 
~ 1018 cm-3. 1n this case L ~ 3 x 10- 7 em, an~ 5 
x 10- 8 em, and np ~ 5 x 1013 sec-\ so that Tc ~ :linp 
~ 0.03 eV ~ 300°K (whereas the temperature for 
degeneracy of the holes in p-semiconductors is Tp 
~ 30°K). We note that the temperature condition[7•8l 
for T ~ T c reduces to the inequality L « 10- 4 em, 
but the mean free path of the conduction electrons for 
T n ~ 10-12 sec (where T n is the relaxation time of the 
electrons with respect to momentum) equals ln ~ 2 
x 10- 5 em. 

However, the estimate given above for the critical 
temperature may be somewhat overstated since we 
did not take the Coulomb repulsion between electrons 
into consideration. With the latter taken into account, 
the Hamiltonian for the electron-electron interaction 
is given by7 > 

(3.11) 

and the equation for the gap for T « Tc (but T > Tp) 
takes the form 

1 (' d>t' g2 (>t-lt')(l;x-Gx•)2 il(>t') 
Ll(>t)= 2DJ(2n)2 1t'Qv'-(£x-£x•)2 e(>t'). 

(3.12) 

lntegrating with respect to the angle between the vec­
tors K and K 1 with Eq. (3.6) taken into account, and 

7>The Hamiltonian (3.11) is analogous to the three-dimensional Ham­
iltonian in the so-called "jellium" model. [14 1 We note that in the two­
dimensional case, one can neglect the effects of screening of the Coulomb 
interaction. 

changing to new variables !; = i;K and ( = liK', from 
here we obtain 

c\(1;)= 2:~£ ~ fi'Q;,~~~:·~-i;) 2 i:-;~)f~;~:;' (3.13 ) 

1n what follows we shall be interested in the width of the 
gap A= A(O) for l; = 0. Assuming that A(l;) ~A 
= const in the region l; :s :liOp and A ( l; ) = 0 for 
l; > tiOp, 8> we arrive at the following equation for the 
determination of A ( 1J. 0 > tinp ) : 

(3.14) 

It is not difficult to see that the integral on the right 
hand side of Eq. (3.14) is logarithmically divergent at 
the point l;' = :linp. This divergence is associated with 
the fact that within the framework of perturbation 
theory the normal state of the conduction electrons in 
an n-semiconductor was chosen as the zero-order ap­
proximation. For a more consistent approach with the 
electron pairing taken into consideration (see[ 10' 15 l for 
three-dimensional superconductors), this divergence 
vanishes and under the condition A << tiOp we obtain, 
correct to within terms ~ ln (A/:Iinp), the following 
asymptotic formula for the energy gap: 

e' 
Ll ~ 21H2,e-1iP, p = e,,f,hQ,,. (3.15) 

1n connection with the values of the "sandwich" 
parameters chosen above, expression (3.15) leads, as 
before, to a value Tc ~ 300°K, However, assuming 
Np ~ 1020 cm- 3 (in this connection tinp >> 1J.o and 
A = 2ti0pe-21P; see[7 J ), we now obtain the estimate Tc 
~ 103 °K corresponding to the maximum of the gap (for 
p f:::J 2). 

Thus, the numerical estimates made above show that 
in lamellar structures of the "sandwich" type consist­
ing of heavily doped p-semiconductors separated by 
sufficiently thin layers ( L < 10-6 em) of degenerate 
n-semiconductors (or semimetals), under certain con­
ditions (equality of the work functions, large width of 
the p-semiconductors forbidden band, etc.) supercon­
ductivity in principle is possible with rather high 
critical temperatures Tc ~ ( 102 to 103 )"K, owing its 
existence to the interaction of conduction electrons in 
the film with collective surface oscillations of the 
"heavy" holes in the p-semiconductors. 

1n conclusion the author wishes to thank E. A. 
Muzalevskii for numerous discussions during the 
course of the present work. 
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